切比雪夫不等式成立的几个充分条件

合集下载

概率论与数理统计51切比雪夫不等式和大数定律课件

概率论与数理统计51切比雪夫不等式和大数定律课件
概率论与数理统计51切比雪夫不 等式和大数定律课件
目录
• 切比雪夫不等式 • 大数定律 • 切比雪夫不等式与大数定律的联系 • 案例分析 • 习题与解答
01
切比夫不等式
Chapter
切比雪夫不等式简介
01
切比雪夫不等式是概率论中的一个基本不等式,它提供了在一定条件下,一个随 机变量的概率分布的上界和下界。
注意事项
使用切比雪夫不等式时,应注意其适用条件,特 别是随机变量的方差必须存在。
大数定律
要点一
总结词
大数定律描述了当试验次数趋于无穷时,随机事件的相对 频率趋于其概率的规律。
要点二
详细描述
大数定律表明,当试验次数n趋于无穷时,随机事件的相 对频率将以概率收敛于该事件的概率。具体来说,对于任 意小的正数ε,有$lim_{n to infty} P(| frac{X_n}{n} - p| < varepsilon) = 1$,其中$X_n$是n次试验中事件A发生的 次数,p是事件A的概率。
切比雪夫不等式的限制
虽然切比雪夫不等式在许多情况下都 很有用,但它也有一些限制。例如, 当随机变量的分布不是对称的或者偏 斜度较大时,切比雪夫不等式的估计 可能会不准确。
VS
因此,在使用切比雪夫不等式时,需 要考虑到这些限制,并根据具体情况 进行适当的调整和修正。
02
大数定律
Chapter
大数定律的定义
大数定律
定义
大数定律是指在独立同分布随机变量 序列中,当样本量趋于无穷大时,样 本均值的概率分布趋近于真实均值。
应用
大数定律在统计学中有着重要的应用 ,例如在样本均值的分布、置信区间 估计和假设检验等领域。
切比雪夫不等式与大数定律的联系

切比雪夫不等式及切比雪夫大数定律

切比雪夫不等式及切比雪夫大数定律
电子科技大学概率论与数理统计MOOC
第5 章
知识点名称:切比雪夫不等式及切比雪夫大数定律 主讲人:秦旭
切比雪夫大数定律
一、回顾
实验者
抛掷次数n
出现正面次数m
德·摩根 德·摩根 德·摩根 德·摩根 蒲丰 皮尔逊 皮尔逊 维尼
2048 2048 2048 2048 4040 12000 24000 30000
n
X
i 1
n
i
1 n
i 1
E( Xi
)
| ε}
1 n
1
D( n i1 ε2
Xi )
1
C nε2
1,
(as n ).
切比雪夫大数定律 五、切比雪夫(Chebyshev)不等式
设随机变量 X 的数学期望 E(X ) 和方差D(X )都存在, 则对于
任意的 > 0, 有
P{| X E(X ) | ε}
变量, 若对于任意的> 0, 有
lim
n
P {| X n
X
| ε }
0

lim P{| X n X | ε} 1
n
称随机变量序列{Xn}依概率收敛于X,记为
X n P X
或者
lim
n
Xn
X,
( P)
切比雪夫大数定律
注1 在定义中, 随机变量 X也可以是常数 a, 称随机变量序列 {Xn} 依概率收敛于常数 a .
注2 随机变量序列依概率收敛不同于微积分中数列或函数列的 收敛性.
结论 随机变量序列{Xn}依概率收敛于X,指当 n 足够大时, 有
足够大的概率保证Xn 任意接近于X , 但Xn仍然有可能与X相差很大.

第45讲 切比雪夫不等式

第45讲 切比雪夫不等式

概率论与数理统计主讲:四川大学四川大学第45讲切比雪夫不等式1第五章大数定律及中心极限定理四川大学第45讲切比雪夫不等式3第五章大数定律及中心极限定理§0切比雪夫不等式§1 大数定律§2中心极限定理四川大学第45讲切比雪夫不等式4§5.0 切比雪夫不等式四川大学第45讲切比雪夫不等式5第45讲切比雪夫不等式四川大学牟尼沟四川大学第45讲切比雪夫不等式6切比雪夫(1821~1894)ЧебышёвChebyshev俄罗斯数学家、力学家。

他一生发表了70多篇科学论文,内容涉及数论、概率论、函数逼近论、积分学等方面。

他证明了贝尔特兰公式,自然数列中素数分布的定理,大数定律的一般公式以及中心极限定理。

四川大学第45讲切比雪夫不等式15例子四川大学第45讲切比雪夫不等式16-四川大学第45讲切比雪夫不等式24例5 证明方差的性质4 ( 教材103页(第41讲) ):设()0{()}1D X P XE X =⇔==证充分性(教材103页){()}1P X E X ==则22[()]{}1P X E X ==2()X 2]E X=⨯2[()]E X =22()()[()]D X E X E X =-0=四川大学四川大学四川大学第45讲切比雪夫不等式26例6 设某电网有10000盏电灯,夜间每一盏灯开灯的概率都是0.7。

假设电灯开、关时间彼此独立,试估计夜晚同时开着的电灯数在6800与7200盏之间的概率。

解用X 表示在夜晚开着的电灯的盏数,则X 服从参数n =10000, p =0.7的二项分布。

(k =0, 1, …, n ){}P X k =(1)kk n k n C p p -=-{68007200}P X <<100007199100006801(0.7)(0.3)k k k k C -==∑计算量太大。

下面用切比雪夫不等式估计概率四川大学四川大学四川大学第45讲切比雪夫不等式28例7 一机床加工长为50cm 的零件,由于随机扰动,零件长度有一定误差。

3-8切比雪夫不等式

3-8切比雪夫不等式
目录 上一页 下一页 返回 结束
概率论与数理统计教程(第四版)
§3.8 切比雪夫不等式与大数定律
[例] 从某工厂生产的产品中任取 200 件来检查, 是否相信该工厂的产品 结果发现其中有 6 件次品, 的次品率 p ≤ 1% ? 解:假设该工厂的次品率 p ≤ 1%, 则检查 200 件产品 发现其中次品数 X ≥ 6的概率
概率论与数理统计教程(第四版)
目录
上一页
下一页
返回
结束
§3.8 切比雪夫不等式与大数定律
小结
D X) ( [ 1. 切比雪夫不等式: P X −E(X) ≥ε] ≤ 2 .
2. 大数定律及其含义. 3. 小概率事件的实际不可能性原理. .
ε
概率论与数理统计教程(第四版)
目录
上一页
下一页
返回
结束
§3.8 切比雪夫不等式与大数定律
D X) ( ≥1− 2 .
ε
切比雪夫不等式给出了离差与方差的关系, 可用它 注: 来估计 [ X − E ( X ) < ε ] 的概率.
概率论与数理统计教程(第四版)
目录
上一页
下一页
返回
结束
§3.8 切比雪夫不等式与大数定律
2.大数定律 .
[定义 对随机变量序列 X 1 , X 2 ,⋯ , X n ,⋯, 若存在 定义] 定义 常数 a , 使得对于任意的 正数 ε ,
概率论与数理统计教程(第四版)
目录
上一页
下一页
返回
结束
第三章 随机变量的数字特征
§3.8 切比雪夫不等式与大数定律
概率论中用来阐明大量随机现象平均结果的稳定性的一系 列定理统称为大数定律.

切比雪夫不等式及其应用

切比雪夫不等式及其应用

切比雪夫不等式及其应用【标题】切比雪夫不等式及其应用【作者】许娟【关键词】切比雪夫不等式?大数定律?随机变量?伯努利试验【指导老师】林昌盛【专业】数学与应用数学【正文】1引言概率论是一门研究随机现象数量规律的科学.而切比雪夫不等式又是概率论中介绍的极少数的重要不等式之一,所以它的应用是非常多的,它可以解决或说明很多关于分布的信息.尤其在估计某些事件的概率的上下界时,常用到切比雪夫不等式.另外,切比雪夫不等式和切比雪夫大数定理是概率论极限理论的基础,其中切比雪夫不等式又是证明切比雪夫大数定理的重要工具和理论基础,而且以切比雪夫不等式的基础上发展起来了一系列不等式是研究中心极限定理的有力工具.切比雪夫不等式作为一个理论工具,它的应用是普遍的.事实上,马尔可夫不等式也是切比雪夫不等式的第一种推广形式.在切比雪夫不等式的诞生至今,切比雪夫不等式的应用性质还没有条理性的给出,本文将在切比雪夫不等式在随机现象中的应用方面进行探究.2切比雪夫不等式的基本理论2.1切比雪夫不等式的有限形式和积分形式定理1(有限形式)?若?和?是两个实序列,且满足?或?则成立如下的不等式?(1)不等式(1)称为切比雪夫不等式.为叙述积分形式的切比雪夫不等式,先给出一个定义.?定义如果函数?与?对一切?均成立?,则?与?成拟序;倘若反向的不等式成立,则称?与?成反序.下面是切比雪夫不等式的积分形式?定理2如果连续函数?与?在区间?上成拟序,则成立如下的不等式?(2)相反,如果?与?成反序,则不等号反向.不等式(2)称为切比雪夫不等式的积分形式.定理2的简易证明方法如下.证明只须证明?与?成拟序的情形(反序可以类似证明)引入辅助函数,?求导得,?由于?与?在?上成拟序,故有?,于是?,因此?上单调递增,又?,即?,移项,即得到要证明的不等式.切比雪夫不等式的有限形式和积分形式其实是一种新的证明方法,可以证明许多含有积分形式的不等式.其主要应用于数学分析的解题,它可以灵活简便的解决一些较难微积分中有关不等式的题型.但是切比雪夫不等式的有限形式和积分形式在应用中有很多的条件限制,要满足全部的条件后才能使用于解题当中.2.2切比雪夫不等式的概率形式定理3?设随机变量?存在数学期望?和方差?,则对任意常数?有或?切比雪夫这两种表达形式是等价的,下面是其的证明过程.证明?(1)设X为离散型随机变量,其分布列为?,?则(2)设X为连续随机变量,其概率密度函数为?,由于?存在,则切比雪夫不等式仅用数学期望及方差就对随机变量在某范围取值的概率做出估计许多常见的随机变量的分布,当随机变量的分布未知时,由期望和方差、利用切比雪夫不等式也能提供关于分布的信息,利用这个信息可以粗略的估计随机变量落入关于其数学期望对称区间内的概率.从切比雪夫不等式的证明步骤中,我们可以看出在含有期望和方差的概率不等式的证明方法.第一步是先将随机变量在区间内取值的概率用其概率密度在该区间上的积分表示.第二步是利用随机变量取值满足的不等式,将被积函数放大,产生概率不等式.第三步是将被积分区间扩大为?,将积分再次放大,且使积分化为随机变量或随机变量的函数的期望和方差表示?,则得到要证明的概率不等式.3?切比雪夫不等式的应用3.1切比雪夫不等式的推广例1、若连续型随机变量?有?(?为正常数),则对任意的?,有?.证明?设?的概率密度为?,?函数?为非减函数,?事件?与事件等价.故即得证.(该证明是以切比雪夫不等式推导出马尔可夫不等式的证明过程)例2、设?,且为非降函数,设?为连续型随机变量且?存在.?试证对任意,有?.证明?设随机变量?的概率密度为?,则有?.由于?,且非降,故当?时,有?,?既得证.(这是切比雪夫不等式的一种推广,当?时,即为切比雪夫不等式.)3.2估计随机变量?内的概率基本步骤为(1)选择随机变量;(2)计算数学期望?与方差?;(3)将事件?改写为?或?的形式,确定?;(4)利用切比雪夫不等式估计所求的概率.估计随机变量?内的概率还可以用于伯努利试验.在二项分布中,频率与概率的精度估计不等式的两种形式?主要问题之一就是与切比雪夫不等式有关的,已知?和估计事件的概率求实验的次数?.下面的例3就是该问题的相应例题.例3、一颗骰子连续掷6次,点数总和记为?,试估计?.分析?该题是估计随机变量?落入区间?内的概率的典型题,根据上面给出的基本步骤既可解答.解?设第?次掷得的点数为?(显然互相独立,?),则?.由?的分布为得故因而,由?的独立性有?故由切比雪夫不等式可得例4、已知正常男性成人血液中,每毫升含白细胞数的平均值是7300,均方差是700,利用切比雪夫不等式估计每毫升血液含白细胞数在?之间的概率?.解?设?表示每毫升血液中含白细胞个数,则?而?又?所以?例5、设伯努利实验的参数?,问至少需要进行多少次这种试验才能使频率在0.74到0.76之间的概率至少为0.90?解?设?重伯努利实验中成功的次数为,则?~?,依题意得?由切比雪夫不等式及?可知?令其?.故至少要做?次试验才能保证频率在?间的频率至少为?.3.3估计的?值,使?例6、设在相同条件下,独立地对某物件长度?进行?次测量,各次的测量结果?均服从正态分布?,记?,问该物体的长度至少要测量多少次,才能使用测量的平均值作为物体长度,且真值的近似值的误差不超过?的概率不小于?.分析?该题解读后,我们可以知道要应用切比雪夫不等式来解答.故该题第一步要求出?和?;第二步将?化成?的形式,再用切比雪夫不等式进行估计解答.解?设对物体进行?次独立测量,依题意可得,要求?即可.由切比雪夫不等式可得即为所以,只需?.至少做12次测量才能使测量的平均值作为物体长度,且真值的近似值的误差不超过?的概率不小于0.99.例7、设?为随机变量,已知?存在,若要求?,问?至少是多少?解?由切比雪夫不等式得到所以,?至少为0.3.?例? 8、投掷一枚硬币,为了至少有?的把握使正面向上的频率在?与?之间,试估计投掷的次数?.解?用?表示在?次试验中出现正面的次数显然,次试验中事件A出现的频率为?;由切比雪夫不等式得由题意可知解得即至少要投掷这枚硬币?次,才能至少有?的把握使正面向上的频率在?与?之间.4?证明不等式和大数定理4.1证明不等式例9、,证明?解?故可把问题转化为?的形式?于是取?又所以,由切比雪夫不等式得到即得证.例10、证明?若?则?证明?由于?而?所以,由切比雪夫不等式得即在例10中可以知道,应用切比雪夫不等式只能直接估计方差存在的随机变量在以期望值为中心的对称区间上取值的概率.例11、设?是随机变量列,且有?,令?,证明?依概率收敛于?证明?由于?由切比雪夫不等式得依概率收敛于?.4.2证明大数定律定理4?(切比雪夫定理)?设独立随机变量序列的数学期望?和方差?都存在,并且方差是一致有上界的,即存在常数?,使得则对于任意的正数?,有.证明我们用切比雪夫不等式证明该定理.因为,而?相互独立性,所以应用切比雪夫不等式得因为,所以,由此得?当?时,得?但是概率不能大于1,所以有?证毕.从证明过程我们可以看出,切比雪夫大数定理是切比雪夫不等式的推论.定理5?(伯努利定理)?在独立试验序列中,设事件A的概率?,则对于任意的正数?,当试验的次数?时,有?其中?是事件A 在n次试验中发生的频率.证明设随机变量?表示事件A在第?次试验中发生的次数(?),则这些随机变量相互独立,服从相同的“0-1”分布,并有数学期望与方差?于是,由切比雪夫定理得易知?就是事件A在n次试验中发生的次数?,由此可知?,所以有证毕.5总结切比雪夫不等式的概率的两种表达形式是等价的,从上面的典型例题和分析我们把切比雪夫不等式归结为以下的几点?(一)它刻化了随机变量取值的离散程度.切比雪夫不等式估计出随机变量在区间?内取值的概率不小于?,由此可知?若方差越小,则概率?越大,说明随机变量?取值在数学期望?附近的密集程度越高;若方差越大,则概率?越小,说明随机变量?取值在数学期望?附近的密集程度越低.切比雪夫不等式说明方差刻化了随机变量的取值对其期望的离散程度.(二)估计随机变量落入有限区间的概率.许多常见的随机变量的分布,当类型已知时,可以完全由它的数学期望和方差决定.当随机变量的分布未知时,由期望和方差、利用切比雪夫不等式也能提供关于分布的信息(实用性强),利用这个信息可以粗略的估计(估计粗略)随机变量落入关于其数学期望对称区间内(有限制)的概率.(三)说明随机变量取值偏离?超过?的概率很小.在切比雪夫不等式中,取?,则?.可见,对任何分布,只要期望?和方差?存在,则随机变量取值偏离?超过?的概率是很小的,不超过0.111.(四)切比雪夫不等式可以求解或证明有关概率不等式.切比雪夫不等式是证明切比雪夫大数定理的重要工具和理论基础,而且以切比雪夫不等式的基础上发展起来了一系列不等式是研究中心极限定理的有力工具.所以由切比雪夫不等式我们可以推导出切比雪夫大数定理,由于伯努利大数定理又是由切比雪夫大数定理推导而来的,之后的泊松大数定理也是切比雪夫大数定理的特例,故切比雪夫不等式在概率学中有着重要的作用和意义.(五)切比雪夫不等式应用的优缺点.我们说到切比雪夫不等式在应用上是非常广泛的,但是切比雪夫不等式的应用必定有它的优点和缺点.我们在应用它时,应该注意到它的优缺点,在酌情加以应用.切比雪夫不等式的优点是无需知道?的分布,只要知道其期望和方差就可以估计事件?的概率,因而实用性强.而且切比雪夫不等式是很多不等式及大数定理的基础,所以基础性强且较简单.切比雪夫不等式的缺点是所给出的估计值一般比较粗糙,精度不够,且只限于以均值?为中心的有限对称区间.。

概率论第四章-切比雪夫不等式

概率论第四章-切比雪夫不等式

不等式的其它形式
例1 估计 解
的概率
例2一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 一电网有1万盏路灯, 晚上每盏灯开的概率为0.7. 求同时开的灯数在6800至7200之间的概率。 求同时开的灯数在6800至7200之间的概率。 6800 之间的概率 解 为同时开的灯数。 设X 为同时开的灯数。 用二项分布
P | X − µ |≥ε}≤σ /ε {
2
2
P | X −µ |<ε}≥1−σ /ε {
2
2
对未知分布X 对未知分布X,取
ε =3 , 2 , σ σ
2 2
9 2 3 2 P{| X −µ |< 2 } ≥1−σ / ( 2 ) = = 0.75 σ σ 4
P{| X −µ |< 3 } ≥1−σ / ( 3 ) = 8 = 0.89 σ σ

ε
∫(x−µ)
f (x)dx
σ = 2 ε
ε
2
f (x)dx
2
是 于 P{| X −µ |<ε}≥1−σ / ε
2
2
P{| X −µ |≥ε}≤σ2 / ε2
P{| X −µ |<ε}≥1−σ / ε
2
2
切比雪夫不等式 证明切贝谢夫大数定律; 说明 (1)证明切贝谢夫大数定律; (2)表明D(X)描述了X偏离E(X)的离散程度; 表明D 描述了X偏离E 的离散程度; (3)给出X的分布未知时,事件 给出X的分布未知时, 概率的一个大致估计。 概率的一个大致估计。 大致估计 |X|X-E(X)|<ε的
定理:(切比雪夫不等式) 定理:(切比雪夫不等式) :(切比雪夫不等式
设随机变量X 设随机变量X 有数学期望 E = µ, 方 D =σ2 X 差 X 对任意 ε > 0, 不等式

切比雪夫不等式要求独立同分布

切比雪夫不等式要求独立同分布

切比雪夫不等式要求独立同分布摘要:1.切比雪夫不等式的概念2.切比雪夫不等式的要求3.独立同分布的定义和性质4.独立同分布与切比雪夫不等式的关系正文:1.切比雪夫不等式的概念切比雪夫不等式(Chebyshev"s inequality)是一种概率论中的基本不等式,用于估计一个随机变量偏离其数学期望的概率。

切比雪夫不等式可以表示为:对于任意实数k,随机变量X 的数学期望为μ,方差为σ,则有P(|X - μ| ≥ kσ) ≤ 1/k。

2.切比雪夫不等式的要求要应用切比雪夫不等式,需要满足以下两个条件:(1)随机变量X 的数学期望存在,即μ存在;(2)随机变量X 的方差存在,即σ存在。

3.独立同分布的定义和性质独立同分布(independently and identically distributed,简称i.i.d.)是指一组随机变量具有相互独立且具有相同的概率分布。

对于i.i.d.随机变量X_1, X_2,..., X_n,有以下性质:(1)任意两个随机变量之间的概率相关系数为0,即Cov(X_i, X_j) =0,其中i ≠ j;(2)每个随机变量的概率分布与总体概率分布相同,即P(X_i = x) = P(X = x),其中x 为随机变量X 的取值。

4.独立同分布与切比雪夫不等式的关系独立同分布是切比雪夫不等式成立的充分条件。

当随机变量满足独立同分布时,切比雪夫不等式可以得到更加简洁的形式:P(|X_i - μ| ≥ kσ) ≤ n/k,其中n为随机变量个数。

综上所述,切比雪夫不等式要求独立同分布,而独立同分布具有相互独立和具有相同概率分布的性质。

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

[注]: X n P → a 注: 推论(辛钦大数定律) 推论(辛钦大数定律)
X n − a P → 0
设独立随机变量 X 1 , X 2 ,⋅ ⋅ ⋅, X n 服从同一分布 并且有数学 服从同一分布, 期望 µ 及方差 σ 2, X 1 , X 2 ,⋅ ⋅ ⋅, X n 的算术平均值当 n → ∞ 则 时,按概率收敛于µ, 即对于任何正数 ε,恒有 按概率收敛于 ,
第五章 大数定理与中心极限定理
“大数定律”: 用来阐明大量随机现象平均结果稳定性的定理 大数定律” 用来阐明大量随机现象平均结果稳定性的定理. 大数定律
一、切比雪夫不等式
切比雪夫不等式: 切比雪夫不等式: 设随机变量 X 有数学期望 EX 及方差 DX, , 下列不等式成立: 则对于任何正数 则对于任何正数 ε,下列不等式成立:
2 i
n
则:E(Yn ) =
2 µi , D(Yn ) = ∑σi2 = sn . ∑
n i =1
n
i =1
i =1
∴ Z n = Yn
1 = sn

n Y n − EY n 1 n = = ∑ X i − ∑ µ i sn i =1 DY n i =1
∑ (X
i =1
n
i
− µ i ), 则有:E ( Z n ) = 0 , D ( Z n ) = 1 . 则有:
概率论中有关论证随机变量的和的极限分布是正态分布的定 概率论中有关论证随机变量的和的极限分布是正态分布的定 随机变量的和的极限分布是正态分布 是独立随机变量, 设 X 1 , X 2 ,⋅ ⋅ ⋅ , X n ,⋅ ⋅ ⋅ 是独立随机变量,并各有
EX i = µ i , DXi = σ , i = 1,2,⋅ ⋅ ⋅, n,⋅ ⋅ ⋅. 设 n = ∑Xi , Y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档