§2.5 对数与对数函数(讲解部分)

合集下载

对数与对数函数PPT课件

对数与对数函数PPT课件
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数和对数函数互为反函数。
二、高考考查题型:
以小题为主,如运算、比较大小、图象、性质等。
第1页/共14页
二、基础知识要点强化
1.对数的概念:
2.对数的运算:
(1)loga 1 _0__; loga a ___;
(2)loga MN __________;
(3)loga
M N
___________;
(4)log a
m
Mn
__________;
(5)a loga N ___; loga aN ___;
(6)loga b logb a __1 _;
(7)换底公式:logb N ______.
第2页/共14页
对数函数y=log a x (a>0, a≠1)
(2)若f (x)在( ,1上为增函数,求a的取值范围。
第9页/共14页
思考:带有参数的对数问题,做题应注意什么?
(1)对于带有参数的函数,不仅仅是对数函数,定义域 为R的问题应转化为恒成立问题解决,这种恒成立问题也 是高考的重点热点问题。 (2)在第二问中,应特别强调对数的真数在给定区间上 应恒大于0。
第7页/共14页
题型2:对数函数的图象
例4(2008山东理)已知函数 f (x) loga(2x b 1)(a 0,a 1)
的图象如图示,则 a,b 满足的关系是( A )
y
A. 0 a1 b 1 B. 0 b a1 1 O
x
C.0 b1 a 1 D. 0 a1 b1 1
第10页/共14页
巩固练习: 已知函数 f (x) log2(x2 ax在 a区) 间(-∞, 1- ] 3

2.5对数与对数函数

2.5对数与对数函数

第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
对数运算的一般思路 (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂 的形式,使幂的底数最简,然后正用对数运算性质化简合并. (2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对 数的运算性质,转化为同底对数真数的积、商、幂的运算.
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
3.若 log147=a,14b=5,则用 a,b 表示 log3528= ________ .
解析:∵14b=5,∴log145=b,又 log147=a, 142
∴log3528=lloogg11442385=log1lo45g+14 l7og147=2a-+ab. 答案:2a-+ab
课时 分组冲关
(2)对数的运算法则 如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)= logaM+logaN ; ②logaMN= logaM-logaN ; ③logaMn= nlogaM (n∈R); ④logamMn=mn logaM(m,n∈R,且 m≠0).
第二章
基础 自主夯实 考点 层级突破
应用对数型函数的图象可求解的问题 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在 求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思 想. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题, 利用数形结合法求解.
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
g(x)=-logbx 的图象可能是(
)
第二章
基础 自主夯实 考点 层级突破
课时 分组冲关
4.(教材改编)函数 y= log0.54x-3的定义域为 ________ . 解析:由4loxg-0.534>x0-3≥0 ,解得 x∈34,1. 答案:34,1

对数与对数函数

对数与对数函数
y
o
1
3
0<a<1时,在 x=1右侧总是 底大图低.
练习3. 比较大小
12
log23 > log32 >log0.53 ___________________________. (2) log0.34 _____ <
(1) log32,log23, log0.53的大小关系为
log0.20.7
练习4.已知下列不等式,比较正数m,n的大小 (1)若log3m < log3n 则 m
log0.71.8
解:∵函数y= log0.7x 中底数 0<0.7<1 ∴ 函数y= log0.7x在(0,+)上 是减函数 ∵ 1.6 < 1.8 ∴ log0.71.6 > log0.71.8
③.
loga4
loga3.14
解 :讨论 a 的情况 I. 当 a>1 时 y=logax 是增函数 因为 所以 4 > 3.14 loga4 > loga3.14 y=logax 是减函数
所以所求函数的定义域为{x| x>
2 7
且x ≠
2 5
}.
例2、比较下列各组数中两个数的大小:
(1)log 2 3 . 4 与 log 2 8 . 5 解:∵ y = log 2 x 在 ( 0 , + ∞) 上是增函数
4
且 3 . 4 <8 . 5
∴ log 2 3 . 4 < log 2 8 . 5
1.2
1
0.8
0.6
0.4
0.2
1.8
0.5 1 1.5 2
2.7
2.5 3 3.5
-0.5 -0.2

《 对数与对数函数》课件

《 对数与对数函数》课件

1 题目1
已知log35≈1.465,求log325的值。
3 题目2
已知log23≈1.585,求log63的值。
2 解答1
log325=log3((5)2)=2log35≈2×1.465≈2.93。
4 解答2
log63=log23/log26≈1.585/1.585≈1。
例题: 求解对数方程
1 题目1
求解方程log2(3x-2)=3。
3 题目2
求解方程log2x-14=log2(x-1)。
2 解答1
化为指数形式得:23=3x-2,解得x=7/3。
4 解答2
化为指数形式得:(2x-1)log42=x-1,解得x=3。
例题: 理解对数运算的应用
1 题目1
已知ab=c,则logac=?
2 解答1
根据对数的定义得:logac=b。
定义域为(0,+∞),值域为(-∞,+∞)。

对数函数的图像特征
随着x的增加而变化
当x>1时,y随x的增加而增加;当x=1时,y=0;当 0<x<1时,y随x的减小而增加;当x<0时,对数函数 无意义。
渐近线
对数函数的图像有两条渐近线,即x轴和y轴的反比 例函数。
对数函数的性质
1
单调性
当a>1时,对数函数单调递增;当0<a<1
3 题目2
已知log23≈1.585,log27≈2.807,求log521 的值。
4 解答2
log221=log2(3×7)=log23+log27≈1.585+2.80 7=4.392。利用换底公式得: log521=log221/log25≈4.392/2.322≈1.892。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

2019届高考数学一轮必备考情分析学案:2.5《对数与对数函数》(含解析)

2019届高考数学一轮必备考情分析学案:2.5《对数与对数函数》(含解析)

2.5对数与对数函数考情分析1.考查对数函数的定义域与值域. 2.考查对数函数的图象与性质的应用.3.考查以对数函数为载体的复合函数的有关性质. 4.考查对数函数与指数函数互为反函数的关系. 基础知识 1.对数的概念 (1)对数的定义如果a x=N(a >0且a≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)几种常见对数2.对数的性质与运算法则 (1)对数的性质①alog a N =N ;②log a a N=N(a >0且a≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b·log b c·log c d =log a d.(3)对数的运算法则如果a >0且a≠1,M >0,N >0,那么①log a (MN)=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =nlog a M(n ∈R);④log am M n=n m log a M.3.对数函数的图象与性质4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 注意事项1.对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明.2.解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.3.画对数函数4.对数值的大小比较方法(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1). (4)化同真数后利用图象比较. 典型例题题型一 对数式的化简与求值【例1】计算:(1)121316324(12427162(8)--+-+-;(2)2(lg 2)lg 2lg 50lg25+⋅+;(3)3948(log 2log 2)(log 3log 3)+⋅+ 解:(1)原式12133(1)246324(113228⨯-⨯-⨯⨯=-+-⨯213332113222118811⨯=+-+-⨯=-=(2)原式22(lg 2)(1lg 5)lg 2lg 5(lg 2lg 51)lg 22lg 5=+++=+++ (11)lg 22lg 52(lg 2lg 5)2=++=+=(3)原式lg 2lg 2lg 3lg 3lg 2lg 2lg 3lg 3()()()()lg 3lg 9lg 4lg8lg 32lg 32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅= 【变式1】已知11223x x-+=,求22332223x x x x--+-+-的值解:∵11223x x-+=,∴11222()9x x -+=,∴129x x -++=,∴17x x -+=,∴12()49x x -+=,∴2247x x -+=,又∵331112222()(1)3(71)18x x x x x x ---+=+⋅-+=⋅-=, ∴223322247231833x x x x--+--==-+-题型二 对数值的大小比较【例2】►已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f(log 47),b =f(log 123),c =f(0.2-0.6),则a ,b ,c 的大小关系是( ).A .c <a <bB .c <b <aC .b <c <aD .a <b <c解析 log 123=-log 23=-log 49,b =f(log 123)=f(-log 49)=f(log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49,又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的, ∴f(0.2-0.6)<f(log 123)<f(log 47),即c <b <a ,故选B.答案 B【变式2】设a =log 32,b =ln 2,c =5-12,则( ).A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析 法一 a =log 32=1log 23,b =ln 2=1log 2e ,而log 23>log 2e >1,所以a <b ,c =5-12=15,而5>2=log 24>log 23,所以c <a ,综上c <a <b ,故选C.法二 a =log 32=1log 23,b =ln 2=1log 2e ,1<log 2e <log 23<2,∴12<1log 23<1log 2e <1;c =5-12=15<14=12,所以c <a <b ,故选C. 答案 C题型三 对数函数性质的应用【例3】►已知函数f(x)=log a (2-ax),是否存在实数a ,使函数f(x)在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.. 解 ∵a >0,且a≠1,∴u =2-ax 在[0,1]上是关于x 的减函数.又f(x)=log a (2-ax)在[0,1]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2.∴a 的取值范围是(1,2).【变式3】 已知f(x)=log 4(4x-1) (1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求f(x)在区间⎣⎢⎡⎦⎥⎤12,2上的值域. 解 (1)由4x-1>0解得x>0, 因此f(x)的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f(x 1)<f(x 2),f(x)在(0,+∞)上递增.(3)f(x)在区间⎣⎢⎡⎦⎥⎤12,2上递增, 又f ⎝ ⎛⎭⎪⎫12=0,f(2)=log 415, 因此f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为[0,log 415]. 重难点突破【例1】设f(x)=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x≤0,若f(f(1))=1,则a =________.【例2】► (2018辽宁改编)设函数f(x)=⎩⎪⎨⎪⎧21-x,x≤1,1-log 2x ,x >1,则满足f(x)≤2的x 的取值范围是________.巩固提高1. 2 log 510+log 50.25=( ).A .0B .1C .2D .4 解析 原式=log 5100+log 50.25=log 525=2. 答案 C2.(人教A 版教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <cD .c <a <b解析 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1. 答案 C3.(2018·黄冈中学月考)函数f(x)=log 2(3x+1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)解析 设y =f(x),t =3x+1. 则y =log 2t ,t =3x+1,x ∈R.由y =log 2t ,t>1知函数f(x)的值域为(0,+∞). 答案 A4.(2018汕尾模拟)下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ).A .(-∞,1]B.⎣⎢⎡⎦⎥⎤-1,43C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析 法一 当2-x≥1,即x≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D. 法二 f(x)=|ln(2-x)|的图象如图所示.由图象可得,函数f(x)在区间[1,2)上为增函数,故选D. 答案 D5.若log a 23>1,则a 的取值范围是________.答案⎝ ⎛⎭⎪⎫23,1。

对数与对数函数的基础知识梳理

对数与对数函数的基础知识梳理

课堂互动讲练
(2)原式=(llgg23+llgg29)·(llgg34+llgg38) =(llgg23+2llgg23)·(2llgg32+3llgg32) =32llgg23·56llgg32=54; (3)分子=lg5(3+3lg2)+3(lg2)2 =3lg5+3lg2(lg5+lg2)=3; 分母=(lg6+2)-lg 130600×110 =lg6+2-lg1060=4; ∴原式=34.
课堂互动讲练
自我挑战
(3)当x∈(1,+∞)时,f(x)>f(1), 要使f(x)>0,须f(1)≥0,∴a-b≥1.12分
规律方法总结
1.比较两个对数的大小的基本 方法是构造相应的对数函数,若底 数不相同时,可运用换底公式化为 同底数的对数,还要注意与0比较或 与1比较.
规律方法总结
2.把原函数做变量代换化归为二次 函数,然后用配方法求指定区间上的最 值是求对数函数的常见题型.在给定条 件下,求字母的取值范围也是常见题型, 尤其是与对数函数结合在一起的高考试 题更是屡见不鲜.
课堂互动讲练
跟踪训练
(2)法一:∵loga2=m,∴am=2. ∵loga3=n,∴an=3. 故a2m+n=(am)2·an=4×3=12. 法二:∵loga2=m,loga3=n, ∴a2m+n=a2loga2+loga3= aloga12=12.
课堂互动讲练
考点二
对数函数的图象
要正确识别函数图象,一是熟 悉各种基本函数的图象,二是把握图 象的性质,根据图象的性质去判断, 如过定点、定义域、值域、单调性、 奇偶性.
函数值分布
1,则 y<0 ; ②当0<a<1时:若x>1,
则 y<0 ;若x=1,则 y=0 ;

对数及对数函数

对数及对数函数

[答案] D
(2011·佛山一模)已知函数f(x)为奇函数,且当x>0时,f(x)=log2x.则满足不等式f(x)>0的x的取值范围是________. [答案] (-1,0)∪(1,+∞) (2010·天津文数)设a=log54,b=(log53)2,c=log45,则( ) A.a<c<b B.b<c<a C.a<b<c D.b<a<c [解析] 因为0<log53<1,所以0<(log53)2<log53,又log53<log54<1 log45>1,所以b<a<c. [答案] D
3.形如y=logaf(x)(a>0,a≠1)的函数有如下性质
化同底后利用函数的单调性; 作差或作商法; 利用中间量(0或1); 化同真数后利用图象比较.
4.对数值的大小比较的方法.
“当底数与真数同时大于1或底数与真数同时大于0而小于1时,对数值是正数,否则对数值小于0”.这一结论对解选择题,填空题很有帮助,能大大提高解题的效率.
Annual Work Summary Report
2021
2023
lgN
lnN
零与负数
0
1
logaN=b(a>0,a≠1)
1.对数的概念及运算性质 (1)对数的概念 如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记 . 以10为底的对数叫做常用对数,记作 .以无理数e=2.71828…为底的对数叫做自然对数,记作 . (2)对数的性质 ① 没有对数;②loga1= ;③logaa= ;④alogaN=N(对数恒等式).
命题等价于x2-2ax+3>0的解集为{x|x<1或x>3} ∴x2-2ax+3=0的两根为1和3, ∴2a=1+3即a=2 [点评与警示] 对数函数的值域为R时,其真数必须取遍所有的正数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 (2020届河北邯郸模拟,15)已知函数f(x)=|log3x|,实数m,n满足0<m<n,且
f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则 n =
.
m
解析 ∵f(x)=|log3x|,正实数m,n满足m<n,且f(m)=f(n),∴0<m<1<n,∴-log3m=
log3n,∴mn=1.
∴ln a>-ln(2-a)⇒a(2-a)>1,无解. 综上,a的取值范围为(0,1),故选A.
答案 A
考向二 对数函数性质的应用 例3 (2019陕西西安高新区第一中学模拟,6)已知函数f(x)=5-log3x,x∈(3,27], 则f(x)的值域是 ( ) A.(2,4] B.[2,4) C.[-4,4) D.(6,9]
答案 (3,+∞)
考向三 指数式与对数式的大小比较 例6 (2019山西吕梁第一次模拟,6)已知a=log35,b=1.51.5,c=ln 2,则a,b,c的大 小关系是 ( ) A.c<a<b B.c<b<a C.a<c<b D.a<b<c
解析
1<a=log35=
1 2
log325<
1 2
log327=1.5,b=1.51.5>
解析 由对数的运算公式和换底公式可得
log29×log34+2log510+log50.25=2log23×
log2 log2
4 3
+log5(102×0.25)=4+2=6.故选D.
答案 D
考向基础
考点二 对数函数的图象与性质
1.对数函数的图象与性质
a>1
0<a<1
图象
性质 定义域:(0,+∞) 值域:R 过点(1,0),即x=1时,y=0 当x>1时,y>0;当0<x<1时,y<0 是(0,+∞)上的增函数
当x>1时,y<0;当0<x<1时,y>0 是(0,+∞)上的减函数
2.反函数 指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0且a≠1)互为反函数,它 们的图象关于直线y=x对称.其图象关系如图所示.
3.比较底数的大小 由图象可知,a>b>1>c>d,在第一象限内,从左向右,底数越来越大.
logba
(a,b,c均大于0且不等于1,d>0)
运算 条件 法则 结论
a>0且a≠1,M>0,N>0
loga(MN)=logaM+logaN
loga =logaM-logaN
M
logaMN n=nlogaM(n∈R)
考向突破 考向 对数的运算 例1 (2018皖西高中教学联盟期末,4)计算log29×log34+2log510+log50.25= () A.0 B.2 C.4 D.6
考向突破 考向一 对数函数图象的应用
例2 (2020届山西运城模拟,7)已知函数f(x)=|ln x|满足f(a)>f(2-a),则实数a 的取值范围是 ( ) A.(0,1) B.(1,2) C.(2,3) D.(1,3)
解析
f(x)=
ln x,x 1, -ln x,0 x
画出f(x)的大致图象如图,
1 3
x
与y=log3x两函数图象交点的横坐标,易得b
=-2.画出y=
1 3
x
,y=3x,y=log3x,y=lo
g
1 3
x的图象,可看出b<a<c.
答案 A
方法2 对数函数的性质及其应用
1.比较对数值大小的类型及相应方法
2.研究复合函数y=loga f(x)的单调性(最值)时,应先研究其定义域,结合函数 u=f(x)及y=logau的单调性(最值)确定函数y=loga f(x)的单调性(最值)(其中a> 0且a≠1).
x
故实数a的取值范围是(0,1)∪(1,4].
答案 (0,1)∪(1,4]
考向二 与对数函数有关的复合函数的单调性
例5 函数f(x)=log2(x2-2x-3)的单调增区间是
.
解析 由题意可知x2-2x-3>0,∴x>3或x<-1. 令u=x2-2x-3,该函数在(-∞,-1)上单调递减,在(3,+∞)上单调递增, 又∵y=log2u在(0,+∞)上单调递增,∴y=log2(x2-2x-3)在(-∞,-1)上单调递减, 在(3,+∞)上单调递增,故f(x)的单调增区间为(3,+∞).
9
综上可得 n =9.
m
答案 9
1,
由图知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
根据题意可知 2a-a
0, 0
⇒0<a<2.
①当0<a<1,2-a>1时,∵f(a)>f(2-a),
∴-ln a>ln(2-a)⇒a(2-a)<1,解得a≠1⇒0<a<1;
②当a=1时,f(a)=f(2-a),不符合题意;
③当1<a<2,0<2-a<1时,∵f(a)>f(2-a),
考向突破 考向一 与对数函数有关复合函数的值域
例4
(2018江西一模,15)若函数f(x)=loga
xLeabharlann a x-4(a>0且a≠1)的值域为R,
则实数a的取值范围是
.
解析
函数f(x)=loga
x
a x
-4
(a>0且a≠1)的值域为R,则x+
a x
-4能取到所有
正数.易知x>0,∵x+ a ≥2 a ,∴只需2 a -4≤0,即2 a ≤4,解得a≤4.
考点清单
考点一 对数的概念及运算
考向基础 1.对数的概念 (1)对数的定义 一般地,如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN, 其中a叫做对数的底数,N叫做真数.
(2)几种常见对数
对数形式 一般对数 常用对数 自然对数
特点 底数为a(a>0且a≠1)
底数为10 底数为e
∵f(x)在区间[m2,n]上的最大值为2,函数f(x)在[m2,1]上是减函数,在(1,n]上是
增函数,
∴-log3m2=2或log3n=2.
若-log3m2=2,则m=1 ,从而n=3,此时log3n=1,满足题意,故 n =3÷1 =9;
3
m3
若log3n=2,则n=9,从而m=1 ,此时-log3m2=4,不满足题意.
解析 因为3<x≤27,所以1<log3x≤3,2≤f(x)<4, 即f(x)的值域是[2,4).
答案 B
考点三 对数函数的综合应用
考向基础 1.与对数函数有关的复合函数的定义域、值域 (1)y=loga f(x)的定义域是满足f(x)>0的x的值组成的集合. (2)先确定f(x)>0时对应的x的取值范围及此时f(x)的取值范围,再根据对数 函数的单调性确定y=loga f(x)的值域. 2.与对数函数有关的复合函数的单调性 函数y=loga f(x)的单调区间必须保证在f(x)>0时相应x的取值范围内,这时内 外层函数要注意“同增异减”.
记法 logaN lg N ln N
2.对数的性质、换底公式与运算法则
性质
loga1=0;logaa=1 a loga N =N;logaaN=N(a>0且a≠1)
换底 公式
loga N
logbN= logab (a,b均大于0且不等于1,N>0)
相关结论:logab= 1 ;logab·logbc·logcd=logad
例1
(2018广东广州执信中学月考,5)设a,c为正数,且3a=lo
g
1 3
a,
1 3
b
=9,
1 3
c
=log3c,则 ( )
A.b<a<c B.c<b<a C.c<a<b D.a<b<c
解析 方程的根可以转化为两图象交点的横坐标,a为y=3x与y=log1 x两函
3
数图象交点的横坐标,c为y=
1.5,c=ln
2<1,所以c<a<b,
故选A.
答案 A
方法技巧
方法1 对数函数的图象及其应用
1.底数与1的大小关系决定了图象的升降,a>1时,图象上升;0<a<1时,图象下 降. 2.设y1=logax,y2=logbx,其中a>1,b>1(或0<a<1,0<b<1).当x>1时,“底大图低”, 即若 a>b,则y1<y2;当0<x<1时,“底大图高”,即若a>b,则y1>y2. 3.对一些可通过平移、对称作出其图象的对数函数型问题,在求解其单调 性(单调区间)、值域(最值)、零点时,常利用数形结合法.
相关文档
最新文档