第三章 河流水质模型

合集下载

第三章 水环境评价

第三章 水环境评价

3、上海水质指数

上海地区水系水质调查组和华东师范大学地理系在对黄浦江评价 时提出了“有机污染综合评价值A:
BODi CODi NH 3 N i DOi A BOD0 CODi NH 3 N 0 DO0
下标带i的均为实测值;下标为0的均为标准值。 分级情况:


A ﹤0 0~1 1~2 2~3 3~4 ﹥4 污染程度(等级) 0 1 2 3 4 5 级别 良好 较好 一般 轻度污染 中度污染 严重污染 另外还有一些国外的评价系数。
K值(1/d) 0.001—0.05 0.05—0.30 0.3

②实验室模拟法(S----P方程)
C0 1 K ln t C
③经验系数 污染物类型 难氧化的化合物 一般氧化的化合物 易氧化的化合物

3、污染物在湖泊中的扩散(混合模型)

污染物进入湖中,扩散情况与河流不一样,一般湖中水的流速缓 慢,污染物在湖中停滞时间较长,如有的湖水停滞达5年之久 C/C0 1 0.5
式中:
O——河水(从排放口)向下游任意距离处 的溶解氧浓度(mg/l); Os——河水的饱和溶解氧浓度(mg/l); O0—— 河 水 与 污 水 混 合 后 的 溶 解 氧 浓 度 (mg/l); K2——复氧系数,l/d或l/s;
二、湖泊(水库)水体质量预测 (一) 湖泊(水库)的特征 (二)湖泊(水库)水体质量预测模式




式中:W—为湖泊水体的环境容量(mg, kg, t/d) △t—枯水期时段(d)一般可取60~90天 CN—为水环境质量标准浓度 C0—为初始浓度 V—湖泊的安全容积 k—湖泊中的污染物质的自然衰减系数(d-1) q—湖泊每天向外排出的污染物的量

河流水质模型

河流水质模型

[exp(
1x)
exp(
2 x)]
1
ux 2DL
(1
1
4DL
K1
/
u
2 x
)
2
ux 2DL
(1
1
4DL
K
2/uFra bibliotek2 x
)
李光炽
水质模型
当忽略弥散项时有如下形式的解:
L L0 exp( K1x / ux )
O
Os
(Os
O0
)
exp(
K2
x
/
ux
)
K1L0 K1 K2
[exp(
K1x
/
ux
)
exp(
李光炽
水质模型
对于稳态情形
ux
L x
DL
2L x 2
K1L
O
2O
ux x DL x 2 K1L K 2 (Os O)
边界条件
x x
0, L L0 ,O O0 , L 0,O Os
李光炽
水质模型
解为
L L0 exp( 1x)
O
Os
(Os
O0
) exp(
2 x)
K 1 L0 K1 K2
均匀混合模型适用于均匀河段,要求x足够
小,否则会造成较大误差。
李光炽
水质模型
5.3 一维BOD-DO水质模型
BOD-DO模型的基本假定是:
(1) BOD的降解符合一级动力学反应规律;即 在任何时候反应速率都和剩余的有机物数量 成正比。以L表示BOD浓度,则 r K1L 。 (2) 水体中溶解氧DO的减少只是由于BOD降解 所引起的,而且与BOD的降解有相同的速率。

3 河流水质模型

3 河流水质模型

c t
0
,因此得到
数学模型
2 c c ux Kc 0 D x 2 x x c x x c0 0 c x 0
运用数学物理方程的求解方法,可以求得其解析解:
污染源
u x
Dx
K
x 0 c c0
0
x
图2.1 河流中一维扩散示例图
由式(2.27)和(2.28)可得到断面任一点浓度与断面 平均浓度的比值:
c c 1 4 {exp( y
2 2
4 B
) exp[
(B y) 4 B
2
2
] exp[
(B y) 4 B
2
2
]} ( 2 . 29 )
式中 :

Dxx uxB
2
根据定义,当污染物达到岸边时,c
t0 c max
1
c max
2
t1
t2
x m 2 x
c max
n
tn
x0
x1
xm
x m 2 x
xn
x
图2.6扩散过程态图
例题1:一项扩建工程向河流排放废水,废水量
为 Q2=0.15m3/s ,主要污染物苯酚浓度为30 ug/L , 河流量 Q1=5.5 m3/s,流速0.3m/s,纵向弥散系数为 Dx=10m2/s 。苯酚在原河流中监测浓度为 0.5 ug/L, 它的降解系数K=0.2d-1(如图)。求:下游10km处苯 酚浓度 ? 解: (1)计算起始处完全混合后的初始浓度
0 . 0137
x 0 . 0137 u x B Dy
2
c
0 . 05
可以求出

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。

环境学概论 第三章水体环境解读

环境学概论  第三章水体环境解读

3.水资源的特性(与其它自然资源相比)
A B C D 资源的循环性 储量的有限性 分布的不均衡性 利用的多用性
E
利害的两重性(图)
5
4.地球上局部存在水荒的原因
A B C 淡水在地球上的分布极不平衡 城市、工业区高度集中,耗水量大。 水污染严重,“水质型缺水” 突出。(图A) (图B)
二.天然水的水质 1.天然水化学成份的形成 2.天然水的化学组成 3.各种类型的天然水质 4.天然水体的自净作用
*放射性类
来源:核武器试验;原子能工业排放或泄漏 。 危害:主要通过α、β、γ等射线损害人体组织,并可在人
体内蓄积,促成贫血、白血球增生、恶性肿瘤等病
症,严重的可导致生命危险。
19
第二节
污染物在水体中的扩散
一. 污染物在水体中的运动特征
1.推流迁移:指污染物在水流作用下产生的迁移作用 此过程中污染物质总量不变,浓度也不变 2.分散作用:包含分子扩散、湍流扩散和弥散三个方面。 此过程中污染物质总量不变,但浓度减小 3.污染物的衰减和转化 进入水环境中的污染物可以分为两大类: 保守物质和非保守物质 此过程中污染物质总量与浓度均发生变化
1.有机物生物化学分解 ①水解反应:指复杂的有机物分子与水电离出的H+或OH-
结合生成较简单化合物的反应。
②氧化反应:包括脱氢作用和脱羧作用两类 2.耗氧有机物的生物降解
代表性有机物:碳水化合物;脂肪和油类;蛋白质 (1)碳水化合物
25
(2)脂肪和油类
(3)蛋白质
26
需氧有机物降解的共同规律是:首先在细胞体外发生水解, 然后在细胞内部继续水解和氧化。降解的后期产物都是生成各 种有机酸,在有氧条件下,可以继续分解,其最终产物是CO2、 H2O及NO3-等;在缺氧条件下则进行反硝化、酸性发酵等过程, 其最终产物除CO2、H2O外,还有NH3、有机酸、醇等。 2.耗氧有机物降解与溶解氧的平衡 在污染河流中耗氧作用和复氧作用影响着水中溶解氧的含量 耗氧作用:指有机物分解和有机体呼吸时耗氧,使水中溶解

3 河流水质模拟2

3 河流水质模拟2
1.14 K N 2 ( N 2 )0 K N1 ( N1)0 ] exp( K N 2t ) K N 2 K2 K N1 K N 2
( K N1 K N 2 , K N1 K 2 , K N 2 K 2 , K1 K3 K 2 )
K1 L0 3.43K N 1 ( N1) 0 O Os (Os O0 ) K1 K 3 K 2 K N1 K 2

1.14 K N 2 ( N 2 ) 0 K N1 ( N1) 0 1 ( K 2 K N 2 )t exp( K N 2t ) K N 2 K2 K N 2 K2
( K N1 K N 2 , K N1 K 2 , K N 2 K 2 , K1 K3 K2 )
( N 2 )1 Q1 exp [ K N 1 x / u uy 2 /( 4 Dy x)] h 4D y xu
(54)
ux
(55)
ux
(56)
ux
(57)
ux
dO d 2O Dy K 2 (Os O) K1 L 3.43K N 1 ( N1) 1.14 K N 2 ( N 2) dx dy 2
(58)
对于 BOD/DO 也可写成如 Dobbins-Camp 所提出的下列方程组:
u x u x dL d 2L Dy 2 ( K1 K 3 ) L S dx dy dO d 2O Dy K 2 (Os O) K1 L ( P R) dx dy 2
第三章 河流水质模拟(二)
符号定义: K1——BOD 衰减系数 K2——复氧系数 K3——BOD 沉浮系数 KN1——NH3-N 衰减系数 - -N 衰减系数 KN2——NO2 Kp——酚的衰减系数 KCOD——COD 的衰减系数 Dy——横向扩散系数 u——平均流速 h——水深 I——底坡 n——河床粗糙系数 B——河宽 s——弯曲系数 L——BOD 浓度 N1——NH3-N 浓度 - -N 浓度 N2——NO2 - -N 浓度 N3——NO3 Lp——酚浓度 LC——COD 浓度 O——DO 浓度 Oc——临界 DO 浓度 Os——饱和 DO 浓度 T——水温 t——河流纵向流动时间 x——纵向坐标距离 y——横向坐标距离 lB——横向混合区距离

环境学概论 3水体污染

环境学概论 3水体污染

③总有机碳量(TOC):水中溶解性和 悬浮性有机物中存在的全部碳量 ④ 总需氧量(TOD):当有机物全部被 氧化时,碳被氧化为二氧化碳,而氢、 氮、硫则被氧化为水、一氧化氮和二氧 化硫等。此时氧化所需的氧量称为总需 氧量。 • 在水质状况基本相同的情况下,BOD5与 TOC或TOD之间存在一定的相关关系。 通过实验建立相关,则可快速测定出 TOC,从而推算出其他有机物污染指标。
• 用BOD、DO两组方程式来表达水质变化。则 S-P模型的基本形式:
dL k1 L dt dc k1 L k2 (cs c ) dt
这两个方程式是耦合的。当取边界条件时
L 0
• 可得解析解为
L L0e k1 L0 k1t k2t k2t C C ( e e ) ( C C ) e s s 0 k2 k1
(一)河流 • 污染程度随径流量变化 • 污染扩散快 • 污染影响大 (二)湖泊(水库) • 污染来源广、途径多、类型复杂 • 污染稀释和搬运能力弱 • 生物降解和累积能力强
(三)地下水 • 污染来源广泛 • 污染难于治理 • 污染危害严重 (四)海洋 • 污染源多而复杂 • 污染持续性强 • 污染扩散范围大
• 常用的表示耗氧有机物污染的指标有: ① 化学耗氧量(COD):在规定条件下, 使水样中能被氧化的物质氧化所需耗用氧 化剂的量。常用的氧化剂K2Cr2O7、 KMnO4。 2K2Cr2O7+3C+8H2SO4→ 2K2SO4+2Cr2(SO4)3+3CO2+8H2O ② 生化需氧量(BOD):指在好气条件下, 微生物分解水体中有机物质的生物化学过 程中所需溶解氧的量,是反映水体中有机 污染程度的综合指标之一

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍

有机污染物迁移转化的动力学机理 表征化合物固有性质:可由实验室测得。 模型中的水 质参数:
(溶解度,蒸汽 压,辛醇-水分配系数等)
表征环境特征:取决于实际水环境。
(水流量,流速,pH,水温,风速,细菌数,光强等)
化合物迁移转化过程:
负载过程(输入过程)
来源:污水人为排放, 大气沉降,陆地径流 等将有机毒物引入水 体。
2.吸着过程对有机物消失的影响 有机物在颗粒物上的吸着会降低有机物在水中的浓度, 吸着也会发生转化(如微生物转化代谢),但在这里 不考虑转化过程或转化很慢(比溶液中慢),并且吸 着过程具有可逆性。 当有机物含量很低时,它在水和颗粒物之间的分配往 往可以用分配系数(KP)来表示:
CS KP CW


转化过程 生物降解:微生物代谢将改变污染物和它们的毒性。 光解作用:破坏有毒有机物分子的结构。 水解作用:使污染物分子变成简单分子,低毒或无毒化 合物。 氧化还原:微生物催化氧化,光催化氧化,均将改变有机 分子的结构。
生物积累过程 生物浓缩:通过可能的生物浓缩手段(如鱼腮吸附), 摄取有机物进入生物体。 生物放大:高营养级生物以低营养级生物为食物,使生 物体中有机毒物的浓度随营养级的提高而逐步增大。
CT CS CP CW
Cs、Cw分别为有机毒物在颗粒物和水中的平衡浓度; CT、CP分别为单位体积水溶液有机毒物和颗粒物总浓度。
将上式代入
RT Ki [C] KT [C]
KT CT RT K P CP 1
ln 2 t1 (CP K P 1) KT 2

3.稳态时的浓度(动态平衡) 假设: 有机毒物输入水体的速率 RI,有机毒物在水环 境中消失的速率 RL 当 RI = RL 时,有机毒物就达到稳态浓度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 1961年,托马斯(H· Thomas)提出了河流中BOD衰减的另 一个原因—沉淀,如果反映生化作用和沉淀作用的BOD衰减 速度常数分别为Kd和Ks,则
Kc= Kd + Ks
3. 1966年, K· Bosko研究了河流中生化作用的BOD衰减速度常数 Kd和实验室的数值Kc之间的关系:
Kd= Kc +
污水排放点 河流BOD=L0 溶 解 氧 D0 Dc
饱和溶解氧浓度Cs
氧垂曲线
O—河流中的溶解氧值 Os —饱和溶解氧值
DO
复氧曲线
L0-河流起始点的BOD值
D0-河流起始点的氧亏值 Dc-临界点的氧亏值 tc—由起始点到临界点的流经时间 耗氧曲线
tc 溶解氧氧垂曲线
时间t
S-P模型的修正型
卡普修正式 上游来量及旁侧入流叠加 托马斯修正式
考虑泥沙、悬浮固体对有机物的吸附沉降,化学 絮凝沉降及水流冲刷再悬浮。
托曼修正式
考虑断面流速和浓度分布不均匀而引起的剪切
流纵向分散。
杜宾斯修正式
考虑底泥释放或沿程地表径流加入的BOD浓度
沃康纳修正式 认为BOD5不能反映有机污染物BOD的总量
3.3 多河段水质模型
一、多河段水质模型的概化
第三章
河流水质模型
1.河流中的基本水质问题 2.单一河段水质模型 3.多河段水质模型 4.其它河流水质模型 5.河口水质模型
3.1 河流中的水质问题
一、污染物与河水的混合
污染物排入河流后,从污水排放口到污染物在河流横断 面上达到均匀分布,通常需经历竖向混合和横向混合两个阶 段: 竖向混合——污染物进入河流后,在较短距离内即达到竖 向的均匀分布 横向混合——污染物达到竖向均匀分布到污染物在整个断面 上达到均匀分布的过程
2. DO模型
3.4 其他河流水质模型
一.综合水质模型
BOD和DO只反映河流中最简单的水质关系。为了较详尽 的描述河流的水质状态,需要引进更多的变量。综合水质模 型就是在BOD-DO耦合模型的基础上发展起来的多组分水 质模型。 QUAL-II模型是美国EPA1973年组织开发的,可以描述河 流的动态和稳态特征。
河口一维解析模型
比之河流水质模型,河口水质模型则更为复杂,求解也困难。潮 汐作用是得水流在涨潮时向上游流动,尽管在整个潮周期里净水 流是向下游流动的。
ห้องสมุดไป่ตู้
Case 1.
某河沿岸有一城市,先准备在城市上游某处建一食品工业基地。城市 和食品基地的污水都排入河中(处理或不处理)。食品基地的下游不远 处有一城镇,要求河流流入该城镇前达到某一水质标准。为了预测食品 基地建立后的水质影响,问:
1)如何对河流划分河段? 2)需要收集哪些自然条件信息? 拟建食品厂 3)需要进行哪些现场试验? 4)有哪些内业整理工作? 5)如何预测控制断面的水质? 6)如何估计全部工作量? 7)水质预测工作所需的费用如何估计?
支 流
城市 控制断面 控制断面


注: 直道中,主要动力为横向弥散作用; 弯道中,横向环流大大加速了横向扩散。
二、生物化学分解
1. 河流中的有机物经过生物降解所产生的浓度变化,可由一 级反应式表示: L=L0 e -Kc*t
Kc —含碳有机物的降解速度常数,为温度的函数 实验室测定Kc值:通过实验室中测定生化需氧量(BOD)和时间的关系
Cs =
468 31.6 + T
四、光合作用
水生植物的光合作用是河流溶解氧的另一个重要来源。 欧康奈尔假定光合作用的速度随着光照强度的变化而变化。 中午光照强度最大时,产氧速度最快,夜晚没有光照时,产 氧速度为零。
五、藻类的呼吸作用
藻类的呼吸作用要消耗河水中的溶解氧,通常把藻类呼吸 耗氧速度看作是常数
水质模型的解析解是在均匀和稳定的水流条件下取得的,
划分断面的原则: a)河流 断面形状发生剧烈变化处 b)支流或污水的输入处 c) 河流取水口处 d)其他需要设立断面的地方
二、多河段BOD模型及DO模型的建立
1. BOD模型
河流水质的特点之一是上游每一个排放口排放的污 染物对下游每一断面的水质都会产生一个增量,而下游 的水质对下游不会产生影响。 因此,河流每一个断面的水质状态都可以视为上游每 一个断面排放污染物和本断面排放污染物的影响的总和。
二.重金属水质模型
进入河流的重金属,除了前面提到的基本运动过程外,还 存在悬浮物的吸附和解吸附作用,重金属的存在形态还与水 流的PH值有关。
3.5 河口水质模型
河口的水质特征
河口:入海河流受到潮汐作用的一段水体。受到潮汐的影 响,水质显示出明显的时空特征 河口水质特征:
由海潮带来大量的溶解氧,与上游下泄的 水流相汇,形成强烈 的混 合作用,使污染物分布更趋近均匀。 由于潮汐的顶托作用,延长了污染物在河口的停留时间,有机物的 降解会进一步降低水中的溶解氧,是水质下降。 潮汐使河口含盐量增加。
六、底栖动物和沉淀物的耗氧
底泥耗氧的主要原因是由于底泥中的耗氧物返回到水中和 底泥顶层耗氧物质的氧化分解
3.2 单一河段水质模型
定义:在所研究的河段内只有一个排放口时称该河段为单一河段 坐标:在研究单一河段时,一般把排放口置于河段的起点,即定 义排放口处的纵向坐标 x=0
S-P模型—描述河流水质的第一个模型,由斯特里特(H • Streeter)
和菲而普斯(E • Phelps)在1925年建立。
基本假设:河流中的BOD的衰减和溶解氧的复氧都是一级反应, 反应速度为常数;河流中的耗氧是由BOD衰减引起的,而河流 中的溶解氧来源则是大气复氧。
S-P氧垂公式
Kd L0 O= Os-D = Os[e-Kd t - e-Ka t] - D0 e-Ka t Ka - Kd
ux
H
为河床活度常数,综合反映河流对有机物生化降解作用的影响
4. 稳态河流中BOD的变化规律满足下式: 〔exp( -Kc Lc=L0 x ux
x ux
)〕
5. 含氮有机物排入河流后,同样发生生物化学氧过程:
LN =LN0〔exp( -KN
)〕
三、大气复氧
水中溶解氧的主要来源是大气。氧气由大气进入水中的 质量传递速度:
dC = dt K LA (Cs - C) V
欧康奈尔 ( D.O’· Conner )和多宾斯(W· Dobbins)在1958 年提出根据河流的流速、水深计算大气复氧速度常数的方法:
uxn Ka = C m H 饱和溶解氧浓度Cs是温度、盐度和大气压力的函数。在
760mmHg压力下,淡水中的饱和溶解氧浓度为
相关文档
最新文档