高三一轮复习文科立体几何学案

合集下载

数学一轮复习第七章立体几何第3讲空间点直线平面之间的位置关系学案含解析

数学一轮复习第七章立体几何第3讲空间点直线平面之间的位置关系学案含解析

第3讲空间点、直线、平面之间的位置关系[考纲解读]1。

理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理,并运用它们证明一些空间图形的位置关系的简单命题.(重点)2.主要考查平面的基本性质,空间两直线的位置关系及线面、面面的位置关系,能正确求出异面直线所成的角.(重点、难点) [考向预测]从近三年高考情况来看,尽管空间点、线、面的位置关系是立体几何的理论基础,但却很少独立命题.预测2021年高考会有以下两种命题方式:①以命题形式考查空间点、线、面的位置关系;②以几何体为载体考查线、面的位置关系或求异面直线所成的角.题型为客观题,难度一般不大,属中档题型.1.空间两条直线的位置关系(1)位置关系分类错误!错误!(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的□04锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:错误!(0°,90°].(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角错误!相等或互补.2.空间直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交错误!a∩α=A□021个平行错误!a∥α错误!0个在平面内错误!a⊂α错误!无数个续表图形语言符号语言公共点平面与平面平行错误!α∥β错误!0个相交错误!α∩β=l错误!无数个3.必记结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过一点有且只有一条直线与已知平面垂直.(2)异面直线的判定定理平面外一点A与平面内一点B的连线与平面内不经过B点的直线互为异面直线.1.概念辨析(1)两两相交的三条直线最少可以确定三个平面.()(2)如果两个平面有三个公共点,则这两个平面重合.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b 不可能是平行直线.()(4)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()答案(1)×(2)×(3)√(4)×2.小题热身(1)对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线答案C解析不论l∥α,l⊂α还是l与α相交,α内都存在直线m 使得m⊥l。

高三数学第一轮复习教学案---立体几何全章

高三数学第一轮复习教学案---立体几何全章

高三数学第一轮复习教学案---立体几何全章(2008.7)第九章直线、平面、简单几何体知识图谱二、考纲要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念(对于异面线的距离,只要求会计算已给出公垂线时的距离或在坐标表示下的距离).(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平面间的距离的概念掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体的概念,了解凸多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解正多面体的概念.(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.第一节:平面的基本性质教学目的:①知识目标:掌握平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系;②能力目标:能够运用平面的基本性质,进行有关推理,培养空间想能力;③情感目标:结合实际,认识学习基础知识的重要性。

教学重点、难点及其突破:本节内容是高考的基本考核内容,是为进一步学习和培养逻辑推理能力打下基础,高考中,一般不单独命题。

复习中要掌握平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。

难点是平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。

高三数学一轮复习 立体几何教案

高三数学一轮复习 立体几何教案

江苏省徐州市贾汪区建平中学高三数学一轮复习教案:立体几何教学目标了解柱体、锥体、台体、球的表面积和体积公式;了解一些简单组合体(如正方体和球,正四面体和球);教学重难点柱体、锥体、台体、球的表面积和体积公式的使用教学参考教材,教参,学案,优化探究授课方法自学引导,讲练结合教学辅助手段多媒体专用教室教学过程设计教学二次备课一、主干知识梳理1.侧面积公式:S=直棱柱侧,S=正棱锥侧,S=正棱台侧,S=圆台侧,S=圆柱侧,S=圆锥侧.2.体积公式:V=长方体= ,V=柱体,V=锥体,V=台体.3.球:V=球体,S=球面.二、基础自测自评1.若一个球的体积为π34,则它的表面积为_______.2.已知圆锥的母线长为2,则该圆锥的侧面积是.3.若圆锥的母线长为3cm,侧面展开所得扇形圆心角为23π,则圆锥的体积为D.v≤40 km/B. v>40 km/ D.v≤40 km/h D.a+c>b学生课前预习师生共同回顾主干知识通过小题巩固公式的记忆及使用教学过程设计教学二次备课三、典例分析【例1】(1)一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2,则(1)圆台高 为 (2)截得此圆台的圆锥的母线长为 .(2)若三棱锥的三个侧棱两两垂直,,则其外接球的表面积是 .(3)三棱柱的一个侧面面积为S ,此侧面所对的棱与此面的距离为h ,则此棱柱的体积为 .【例2】 例2如图所示,在棱长为2的正方体1111ABCD A B C D -中, E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥;(3)求三棱锥1B EFC V -的体积.四、课堂小结:了解柱体、锥体、台体、球的表面积和体积公式;了解一些简单组合体(如正方体和球,正四面体和球);练习:1.一个球的外切正方体的全面积等于26cm ,则此球的体积为 .2.等边圆柱(底面直径和高相等的圆柱)的底面半径与球的半径相等,则等边圆柱的表面积与球的表面积之比为 .课外作业 优化探究变式训练1教 学 小 结 中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

高三一轮复习文科立体几何学案

高三一轮复习文科立体几何学案

第一节空间几何体的结构特征一.知识梳理1.空间几何体的结构特征(1)多面体的结构特征多面体定义结构特征棱柱棱锥棱台(2)旋转体的形成旋转体定义旋转图形旋转轴圆柱圆锥圆台球2.空间几何体的三视图(1.)画三视图的规则:(2)三视图的排列顺序:3.空间几何体的直观图:空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为________ ,z′轴与x′轴和y′轴所在平面________(2)原图形中平行于坐标轴的线段,直观图中仍分别________;平行于x轴和z轴的线段在直观图中保持原长度________;平行于y轴的线段在直观图中长度为________直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22二.考点突破空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(3)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线(4)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.(5)有半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高为_______(6)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,则圆台的母线长为________ cm.能力练通抓应用体验的“得”与“失”1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上2.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是() A.0B.1 C.2 D.3空间几何体的三视图例1.(1)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥平面A 1B 1C 1,正视图是边长为2的正方形,该三棱柱的侧视图的面积为( )(2)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( ) A .正方形 B .圆 C .等腰三角形 D .直角梯形 (3)正四棱锥的底面边长为2,侧棱长均为3, 其正视图和侧视图是全等的等腰三角形, 则正视图的周长为_______.[例2](1)如图所示,四面体ABCD 的四个顶点是长方体的四个顶点,则四面体ABCD 的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)( ) A .①②⑥ B .①②③ C .④⑤⑥D .③④⑤(2)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )能力练通 抓应用体验的“得”与“失” 1.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC , 已知其正视图的面积为23,则其侧视图的面积为( )A.32B.33C.34D.362.如图所示,三棱锥P -ABC 的底面ABC 是直角三角形,直角边长AB =3,AC =4,过直角顶点的侧棱P A ⊥平面ABC ,且P A =5,则该三棱锥的正视图是( )3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )4.一个几何体的三视图如图所示,则侧视图的面积为________.空间几何体的直观图例 1.(1)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )(2)已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 能力练通 抓应用体验的“得”与“失”1.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 22.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.第二节 空间几何体的表面积与体积一.知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式 (1)柱体: (2)锥体: (3)台体: 二.考点突破空间几何体的表面积[例1](1) 某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( ) A .1+ 3 B .2+ 3 C .1+2 2D .2 2(2)图(1)图空间几何体的体积[例2] (1)某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A.16 B.13 C.12 D .1(2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2(3)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π能力练通 抓应用体验的“得”与“失” 1.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( ) A.13+23π B.13+23π C.13+26π 2.已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3 cm 3D .3π cm 33.某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 51题图 2题图 4.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+22 .1422C + .15D5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸): 若π取3,其体积为12.6(立方寸),则图中的x 的值为________.考点三球体1.球与正方体(1)正方体的内切球,位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球, 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.2.球与长方体:长方体内接于球,它的体对角线正好为球的直径.例(1)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.(2)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.正四面体.三棱锥与球的切接问题(1) 正四面体的内切球,位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有64R h a ==; (2)正四面体的外接球:例(1) 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.(2)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为( )A.26 B. 3 C. 23 D. 224.其它棱锥(柱)与球的切接问题(构造长方体、正方体模型)例(1).若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .(2)三棱锥P ABC -的四个顶点都在球D 的表面上,PA ⊥平面ABC ,AB ⊥BC ,2PA =, 2AB BC ==,则球O 的体积为(3)直三棱柱111ABC A B C -的六个顶点都在球O 的球面上.若2AB BC ==,90ABC ∠=,122AA =,则球O 的表面积为____________.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4能力练通 抓应用体验的“得”与“失”1.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .43.如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π[全国卷5年真题集中演练——明规律](2013·全国新课标1已知H 是球O 的直径AB 上一点,A H ∶H B =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π2.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.323π C .8π D .4π3.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2C .6πD.32π34.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16 D.15.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .86.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π8.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.139.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π10.(2013·新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.第三节 空间点、直线、平面之间的位置关系一.知识梳理1.公理1~3 表示 公理 文字语言图形语言符号语言公理1公理2 公理32推论1:推论2: 推论3:3.空间中两直线的位置关系: 4.公理4和等角定理:①公理4:②等角定理:5.异面直线所成的角(1)定义 (2)范围:6.空间中线面的位置关系:二.考点突破考点一点、线、面的位置关系[例1] (1)①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c . A .①②③ B .②④ C .③④D .②③(2)下列说法正确的是( )A .若a ⊂α,b ⊂β,则a 与b 是异面直线B .若a 与b 异面,b 与c 异面,则a 与c 异面C .若a ,b 不同在平面α内,则a 与b 异面D .若a ,b 不同在任何一个平面内,则a 与b 异面(3)以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2D .3(4)下列命题中正确的 是( )(填序号) ①若直线l 上有无数个点不在平面α内,则//l α②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行。

2024届高考数学一轮复习学案第七章立体几何与空间向量7.9空间距离及立体几何中的探索问题新人教A版

2024届高考数学一轮复习学案第七章立体几何与空间向量7.9空间距离及立体几何中的探索问题新人教A版

§7.9 空间距离及立体几何中的探索问题 考试要求 1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件. 知识梳理1.点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt△APQ 中,由勾股定理,得PQ =|AP →|2-|AQ →|2 =________________.2.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =⎪⎪⎪⎪⎪⎪AP →·n |n |=⎪⎪⎪⎪⎪⎪AP →·n |n |=__________.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( )(2)点到直线的距离也就是该点与直线上任一点连线的长度.( )(3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( )(4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( )教材改编题1.正方体ABCD -A 1B 1C 1D 1的棱长为2,则A 1A 到平面B 1D 1DB 的距离为( )A. 2 B .2 C.22 D.3222.已知直线l 经过点A (2,3,1)且向量n =⎝ ⎛⎭⎪⎫22,0,22为l 的一个单位方向向量,则点P (4,3,2)到l 的距离为________.3.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.题型一 空间距离例1 (1)(2023·长沙模拟)空间中有三点P (1,-2,-2),M (2,-3,1),N (3,-2,2),则点P 到直线MN 的距离为( )A .2 2B .2 3C .3D .2 5听课记录:______________________________________________________________ ________________________________________________________________________(2)(2022·济宁模拟)如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥平面BCC 1B 1,BC =12AB =12AA 1=2,BC 1=23,M 为线段AB 上的动点.①证明:BC 1⊥CM ;②若E 为A 1C 1的中点,求点A 1到平面BCE 的距离.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 思维升华 (1)点到直线的距离.①设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d =|PA →|2-PA →·n 2;②若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.(2)求点面距一般有以下三种方法.①作点到面的垂线,求点到垂足的距离;②等体积法;③向量法.跟踪训练1 (1)(2023·枣庄模拟)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G分别是AB ,CC 1的中点,则△D 1GF 的面积为________.(2)如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.①证明:D 1E ⊥A 1D ;②当E 为AB 的中点时,求点E 到平面ACD 1的距离.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 题型二 立体几何中的探索性问题例2 (2022·常德模拟)如图,三棱柱ABC -A 1B 1C 1的底面是等边三角形,平面ABB 1A 1⊥平面ABC ,A 1B ⊥AB ,AC =2,∠A 1AB =60°,O 为AC 的中点.(1)求证:AC ⊥平面A 1BO ;(2)试问线段CC 1上是否存在点P ,使得平面POB 与平面A 1OB 夹角的余弦值为277,若存在,请计算CP CC 1的值;若不存在,请说明理由. ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 跟踪训练2 如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求平面PAC与平面DAC夹角的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________。

高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)

高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)

模块: 十一、立体几何课题: 1、平面、空间直线教学目标: 知道平面的含义,理解平面的基本性质,会用文字语言、图形语言、集合语方表述平面的基本性质;掌握确定平面的方法,并能运用于确定长方体的简单截面.掌握空间直线与直线、直线与平面、平面与平面的各种位置关系,并能用图形、符号和集合语言予以表示.重难点: 平面的基本性质,平行线的传递性,空间直线与直线、直线与平面、平面与平面的各种位置关系及其表示方法.一、 知识要点1、平面的基本性质公理1、如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理2、如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3、经过不在同一条直线上的三点,有且只有一个平面.推论1、经过一条直线和直线外的一点有且只有一个平面.推论2、经过两条相交直线有且只有一个平面.推论3、经过两条平行直线有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.2、空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点. 3、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.二、 例题精讲例1、四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC=2∶3,DH ∶HA=2∶3求证:EF 、GH 、BD 交于一点.答案:证明略.例2、已知n 条互相平行的直线123,,,,n l l l l 分别与直线l 相交于点12,,,n A A A , 求证:123,,,,n l l l l 与l 共面.例3、已知四边形ABCD 中,AB ∥CD ,四条边AB ,BC ,DC ,AD (或其延长线)分别与平面α相交于E ,F ,G ,H 四点,求证:四点E ,F ,G ,H 共线.例4、平面α平面βC =,a α⊂,且//a c ,b β⊂,b c M =,求证:直线a b 、是异面直线.例5、A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.答案:(1)略;(2)45︒例6、长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.答案:(1);;b c 22c b bc +;(2)))((2222222c b a b a b a +++-.例7、在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90BAD ︒∠=,//AD BC ,AB BC a ==,2AD a =,且PA ⊥底面ABCD ,PD 与底面成30︒角.(1) 若AE PD ⊥,E 为垂足,求证:BE PD ⊥;(2) 求异面直线AE 与CD 所成角的余弦值.答案:(1)略;(2)4.三、 课堂练习1、在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 .2、在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若EFGH 是正方形,则AC 与BD 满足的条件是 .答案:垂直且相等.3、已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点,则在上面的结论中,正确结论的编号是 .答案:(1)(2)(4)4、已知m n 、为异面直线,m ⊂平面α,n ⊂平面β,l αβ=,则l ( )A 、与m n 、都相交B 、与m n 、中至少一条相交C 、与m n 、都不相交D 、至多与m n 、中的一条相交答案:B5、一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:(1)AB EF ⊥;(2)AB 与CM 成60︒;(3)EF 与MN 是异面直线;(4)//MN CD ,其中正确的是( )A 、(1)(2)B 、(3)(4)C 、(2)(3)D 、(1)(3)答案:D6、与正方体1111ABCD A B C D -的三条棱111AB CC A D 、、所在直线的距离相等的点( )A 、有且只有1个B 、有且只有 2个C 、有且只有3个D 、有无数个 答案:D四、 课后作业一、填空题1、空间中有8个点,其中有3个点在一条直线上,此外再无任何三点共线,由这8个点可以确定 条直线,最多可确定 个平面.答案:26,452、已知PA ⊥平面ABC ,90ACB ︒∠=,且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于 .答案:2.3、(1)若//,//a b b c ,则//a c ;(2)若,,a b b c ⊥⊥则a c ⊥;(3)若a 与b 相交,b 与c 相交,则a 与c 也相交;(4)若a 与b 异面,b 与c 异面,则a 与c 也异面.上面的四个命题中,正确命题的题号是 .答案:(1)4、已知平面//αβ,A C α∈、,B D β∈、,直线AB 与CD 交于S ,且AS=8,BS=9,CD=34,则CS= .答案:16或2725、以下命题:(1)过直线外一点有且只有一条直线与已知直线平行;(2)某平面内的一条直线和这个平面外的一条直线是异面直线;(3)过直线外一点作该直线的垂线是唯一的;(4)如果一个角的两边和另一个角的两边分别平行,则这两个角相等或互补.则其中正确的命题的题号是 .答案:(1)(4)6、对于四面体ABCD ,下列命题正确的是 .(1)相对棱、AB 与CD 所在的直线异面;(2)由顶点A 作四面体的高,其垂足是BDC ∆的三条高线上的交点;(3)若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;(4)分别作三组相对棱中点的连线,所得的三条线段相交于一点;(5)最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.答案:(1)(4)(5)二、选择题7、正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱的侧面对角线1E D 与1BC 所成的角是( )A 、90︒B 、60︒C 、45︒D 、30︒ 答案:B8、已知直线a 和平面αβ、,l αβ=,a α⊄,a β⊄,a 在αβ、内的射影分别为直线b 和c ,则b c 、的位置关系是( )A 、相交与平行B 、相交或异面C 、平行或异面D 、相交、平行或异面答案:D9、空间中有五个点,其中有四个点在同一个平面内,但没有任何三点共线,这样的五个点确定平面的个数最多可以是( )A 、4个B 、5个C 、6个D 、7个 答案:D三、解答题10、正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD 、交于点M ,求证:点1C O M 、、共线.11、如图,在四面体ABCD 中作截面PQR ,如PQ 、CB 的延长线交于点M ,RQ 、DB 的延长线交于点N ,RP 、DC 的延长线相交于点K .求证:M 、N 、K 三点共线.11、长方体1111ABCD A B C D -中,12,,AB BC a A A a E H ===、分别是11A B 和1BB的中点,求:(1)EH 与1AD 所成的角;(2)11A D 与1B C 之间的距离;(3)1AC 与1B C 所成的角.答案:(1)1arccos5;(2)2a ;(3)arccos 5.。

2021版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积教案文新人教A版

第2讲 空间几何体的表面积与体积一、知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h 台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 31.正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R ,(1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ;(3)若球与正方体的各棱相切,则2R=2a .2.长方体共顶点的三条棱长分别为a ,b,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 二、习题改编1.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为 cm.解析:由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm).答案:22.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为 .解析:设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23.答案:23一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区(1)锥体的高与底面不清楚致误; (2)不会分类讨论致误.1.如图,长方体ABCD ­A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E ­BCD 的体积是 .解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V E ­BCD=13×12ab ×12c =112abc =10. 答案:102.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是 .解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2020·湖南省五市十校联考)某四棱锥的三视图如图所示,其侧视图是等腰直角三角形,俯视图的轮廓是直角梯形,则该四棱锥的各侧面面积的最大值为( )A .8B .4 5C .8 2D .12 2【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个底面为直角梯形,高为4的四棱锥,如图,其中侧棱PA ⊥平面ABCD ,PA =4,AB =4,BC =4,CD =6,所以AD =25,PD =6,PB =42,连接AC ,则AC =42,所以PC =43,显然在各侧面面积中△PCD 的面积最大,又PD =CD =6,所以PC 边上的高为62-⎝ ⎛⎭⎪⎫4322=26,所以S △PCD =12×43×26=122,故该四棱锥的各侧面面积的最大值为122,故选D.【答案】 (1)B (2)D空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2020·江西七校第一次联考)一个半径为1的球对称削去了三部分,其俯视图如图所示,那么该立体图形的表面积为( )A .3πB .4πC .5πD .6π解析:选C.由题中俯视图可知该球被平均分成6部分,削去了3部分,剩余的3部分为该几何体,所以该立体图形的表面积为2×π×12+3×π×12=5π,故选C.2.(2020·辽宁丹东质量测试(一))一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为 .解析:设圆锥的底面圆半径为r ,因为圆锥的轴截面是面积为1的等腰直角三角形,所以等腰直角三角形的斜边长为2r ,斜边上的高为r ,所以12×2r ×r =1,解得r =1,圆锥的母线长l =12+12=2,圆锥的侧面积为πrl =2π. 答案:2π空间几何体的体积(多维探究) 角度一 求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A .8B .6C .4D .2(2)将一张边长为12 cm 的正方形纸片按如图(1)所示将阴影部分的四个全等的等腰三角形裁去,余下部分沿虚线折叠并拼成一个有底的正四棱锥,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A.3236 cm 3B.6436 cm 3C.3232 cm 3D .6432 cm 3【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B.(2)设折成的四棱锥的底面边长为a cm ,高为h cm ,则h =32a cm ,由题设可得四棱锥侧面的高等于四棱锥的底面边长,所以12a +a =12×22⇒a =42,所以四棱锥的体积V =13×(42)2×32×42=6463cm 3,故选B. 【答案】 (1)B (2)B简单几何体体积的求法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.角度二 求组合体的体积(2020·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4【解析】 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×(1×1-14×π×12)+2×(1×1)+14×2π×1×1=4.故选D.【答案】 D(1)处理体积问题的思路(2)求体积的常用方法 直接法 对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算 等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.(2019·高考北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .解析:如图,由三视图可知,该几何体为正方体ABCD ­A 1B 1C 1D 1去掉四棱柱B 1C 1GF ­A 1D 1HE 所得,其中正方体ABCD ­A 1B 1C 1D 1的体积为64,VB 1C 1GF ­A 1D 1HE =(4+2)×2×12×4=24,所以该几何体的体积为64-24=40.答案:402.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.解析:长方体ABCD ­A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O ­EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O ­EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(师生共研)(1)若直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,且AB =3,AC =4,AB⊥AC ,AA 1=12,则球O 的表面积为 .(2)(一题多解)(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解析】 (1)将直三棱柱补形为长方体ABEC ­A 1B 1E 1C 1,则球O 是长方体ABEC ­A 1B 1E 1C 1的外接球.所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.(2)法一:由题意得圆柱的高为四棱锥高的一半,底面圆的直径为以四棱锥侧棱的四个中点为顶点的正方形的对角线,易求得圆柱的底面圆的直径为1,高为1,所以该圆柱的体积V =π×⎝ ⎛⎭⎪⎫122×1=π4.法二:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以该圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 【答案】 (1)169π (2)π4处理球的“切”“接”问题的求解策略解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.正四棱锥P ­ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C.8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12 AB 2+BC 2=12(22)2+(22)2=2,所以PO =PA 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC ­A 1B 1C 1,则球O 的体积与正三棱柱ABC ­A 1B 1C 1的体积的比值为 .解析:设球O 半径为R ,正三棱柱ABC ­A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC ­A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC ­A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——数学文化与空间几何体(2020·甘肃、青海、宁夏3月联考)汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为( )A .32B .40 C.32103D .40103【解析】 将三视图还原成如图所示的几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积V =12π×22×4+13×12π×22×4=323π,因为圆周率的平方除以16等于58,即π216=58,所以π=10,所以V =32103.故选C.【答案】 C本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2020·安徽六安一中模拟(四))我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的半椭球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,短半轴长为1,长半轴长为3的椭球体的体积是 .解析:因为S 圆=S 环总成立,所以半椭球体的体积为πb 2a -13πb 2a =23πb 2a ,所以椭球体的体积V =43πb 2a .因为椭球体的短半轴长为1,长半轴长为3. 所以椭球体的体积V =43πb 2a =43π×12×3=4π.答案:4π[基础题组练]1.(2020·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.(2020·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝ ⎛⎭⎪⎫12×2×2×3= 2.故选B.3.(2020·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x ,3,1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.4.(2020·辽宁大连第一次(3月)双基测试)我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何 ”.羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47解析:选C.由三视图可知,该几何体的直观图如图所示,其中平面ABCD ⊥平面ABEF ,CD =2,AB =6,EF =4,等腰梯形ABEF 的高为3,等腰梯形ABCD 的高为4,等腰梯形FECD的高为9+16=5,三个梯形的面积之和为2+62×4+4+62×3+2+42×5=46,故选C.5.(2020·辽宁沈阳东北育才学校五模)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π解析:选B.将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆半径为R ,则有2πR =3×2π3,所以R =1.设圆锥的内切球半径为r ,圆锥的高为h ,内切球球心必在圆锥的高线上,因为圆锥的母线长为3,所以h =9-1=22,所以有rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B. 6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .解析:设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案:77.(2020·沈阳质量监测)某四棱锥的三视图如图所示,则该四棱锥的侧面积是 .解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ­ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.答案:4+4 28.(2020·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为 .解析:记所有棱长都是2的三棱锥为P ­ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ­ABC 的体积V =13S △ABC·OP =13×34×(2)2×233=13.答案:139.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面积=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. 10.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P ­A 1B 1C 1D 1,下部的形状是正四棱柱ABCD ­A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P ­A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD ­A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.[综合题组练]1.(2019·高考全国卷Ⅰ)已知三棱锥P­ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π解析:选D.因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P­ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P­ABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.2.如图,正方体ABCD­A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论不正确的是( )A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A­BEF的体积为定值D.四面体ACDF的体积为定值解析:选B.对于A,如图1,AB1∥DC1,易证AB1∥平面C1BD,同理AD1∥平面C1BD,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,A 正确;对于B ,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝ ⎛⎭⎪⎫3222=364,点C 到平面AEF的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A ­CEF=V C ­AEF=13×364×d =64d 为定值,所以B 错误;对于C ,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A ­BEF=13×32×d =12d 为定值,C 正确;对于D ,如图4,四面体ACDF 的体积为V A ­CDF=V F ­ACD=13×12×3×3×3=92为定值,D 正确.3.(2020·东北师大附中、重庆一中等校联合模拟)若侧面积为4π的圆柱有一外接球O ,当球O 的体积取得最小值时,圆柱的表面积为 .解析:设圆柱的底面圆半径为r ,高为h , 则球的半径R =r 2+⎝ ⎛⎭⎪⎫h 22.因为球的体积V =4π3R 3,故V 最小当且仅当R 最小.圆柱的侧面积为2πrh =4π,所以rh =2.所以h 2=1r,所以R =r 2+1r 2≥2,当且仅当r 2=1r2.即r =1时取等号,此时k 取最小值,所以r =1,h =2,圆柱的表面积为2π+4π=6π.答案:6π4.(2020·新疆第一次毕业诊断及模拟测试)如图,A 1B 1C 1D 1是以ABCD 为底面的长方体的一个斜截面,其中AB =4,BC =3,AA 1=5,BB 1=8,CC 1=12,求该几何体的体积.解:过A 1作A 1E ⊥BB 1于点E , 作A 1G ⊥DD 1于点G , 过E 作EF ⊥CC 1于点F ,过D 1作D 1H ⊥CC 1于点H ,连接EH ,GF , 因为平面ABB 1A 1∥平面DCC 1D 1, 所以A 1B 1∥D 1C 1.因为AA 1=BE =5,所以EB 1=8-5=3,C 1H =EB 1=3,GD 1=HF =12-5-3=4,则几何体被分割成一个长方体ABCD ­A 1EFG ,一个斜三棱柱A 1B 1E ­D 1C 1H 和一个直三棱柱A 1D 1G ­EHF .故该几何体的体积为V =3×4×5+12×3×4×4+12×3×4×3=102.。

高三一轮复习文科立体几何学案.docx

第一节空间几何体的结构特征一.知识梳理1.空间几何体的结构特征(1)多面体的结构特征多面体定义结构特征棱柱棱锥棱台(2)旋转体的形成旋转体定义旋转图形旋转轴圆柱圆锥圆台球2.空间几何体的三视图(1.)画三视图的规则:(2)三视图的排列顺序:3.空间几何体的直观图:空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中 x 轴、 y 轴、 z 轴两两垂直,直观图中,x′轴, y′轴的夹角为 ________ , z′轴与 x′轴和 y′轴所在平面 ________(2)原图形中平行于坐标轴的线段,直观图中仍分别________;平行于 x 轴和 z 轴的线段在直观图中保持原长度 ________;平行于y 轴的线段在直观图中长度为________直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:2(1) S 直观图=4 S 原图形.(2)S 原图形= 22二.考点突破空间几何体的结构特征[例 1] (1) 用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A .圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2) 下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点( 3)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线(4)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.( 5)有半径为r的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高为_______( 6)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是 3 cm,则圆台的母线长为________ cm.能力练通抓应用体验的“ 得” 与“ 失”1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是 ()A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上2.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是 () A .0B.1C.2D. 3空间几何体的三视图例 1.( 1)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱 AA1⊥平面 A1B1C1,正视图是边长为 2 的正方形,该三棱柱的侧视图的面积为()( 2)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为()A .正方形B.圆C.等腰三角形D.直角梯形(3)正四棱锥的底面边长为 2,侧棱长均为 3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为 _______.[例 2](1)如图所示,四面体 ABCD 的四个顶点是长方体的四个顶点,则四面体ABCD 的三视图是 (用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A .①②⑥B .①②③C.④⑤⑥D .③④⑤(2 )将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧 (左 )视图为 ()能力练通抓应用体验的“ 得” 与“ 失”1.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA=VC,已知其正视图的面积为23,则其侧视图的面积为()3 B.3C.33A. 234 D. 62.如图所示,三棱锥P -ABC 的底面 ABC 是直角三角形,直角边长AB= 3,AC= 4,过直角顶点的侧棱PA⊥平面 ABC,且 PA= 5,则该三棱锥的正视图是()3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为 2 的正三角形,侧视图是有一条直角边为 2 的直角三角形,则该三棱锥的正视图可能为()4.一个几何体的三视图如图所示,则侧视图的面积为________.空间几何体的直观图例 1.(1 )用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是 ()( 2)已知正三角形ABC 的边长为2,那么△ ABC 的直观图△ A′ B′ C′的面积为 ________.能力练通抓应用体验的“ 得” 与“ 失”1.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于 y 轴, BC, AD 平行于 x 轴.已知四边形 ABCD 的面积为 2 2 cm2,则原平面图形的面积为()A . 4 cm2B. 4 2 cm2C.8 cm2D. 8 2 cm22. 等腰梯形ABCD ,上底 CD= 1,腰 AD= CB=2,下底 AB= 3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A′ B′ C′ D ′的面积为 ________.第二节空间几何体的表面积与体积一.知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式r ′=r r′= 0圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧= 2πrl ――→ S 圆台侧=π(r+r ′)l――→ S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式(1)柱体:(2)锥体:(3)台体:二.考点突破空间几何体的表面积[例 1] (1 )某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为 ()A . 4π+ 16+ 4 3B . 5π+ 16+ 4 3C. 4π+16+ 2 3D . 5π+ 16+ 23(2) 一个四面体的三视图如图所示,则该四面体的表面积是()A . 1+3B . 2+3C. 1+ 2 2 D . 22(2) 图( 1)图空间几何体的体积[例 2](1) 某三棱锥的三视图如图所示,则该三棱锥的体积为()A.1116 B.3 C.2D. 1(2) 某几何体的三视图如图所示,则该几何体的体积为()A.1+2π B.13π C.7π D.5π3632( 3)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()( A )2 2( B )4 2()332 2() 4 2能力练通抓应用体验的“ 得” 与“ 失”1.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为() 1+21+ 21+ 22A. 33πB.3 3πC.36π D .1+6π2.已知一个几何体的三视图如图所示,则该几何体的体积为()5πcm337πcm33A. 3B. 2π cm C. 3 D . 3π cm3.某几何体的三视图如图所示,则它的表面积为()A . 12 5+20B. 24 2+ 20 C.44D. 1251 题图2 题图4.某几何体的三视图如图所示,则该几何体的表面积等于()A . 8+2 2B. 11+ 2 2 C.14 2 2 D.155.中国古代数学名著《九章算术》中记载了公元前344 年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸 ):若π取 3,其体积为12.6( 立方寸 ),则图中的x 的值为 ________.考点三球体1. 球与正方体( 1)正方体的内切球,位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为 a ,球的半径为 r ,这时有2r a .( 2)正方体的外接球,位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为 a ,球的半径为 r ,这时有 2r3a .2. 球与长方体:长方体内接于球,它的体对角线正好为球的直径.例( 1)已知一个正方体的所有顶点在一个球面上,若球的体积为9π________.,则正方体的棱长为2( 2)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16B.20C.24D.323.正四面体 . 三棱锥与球的切接问题( 1)正四面体的内切球,位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为 a ,高为h;球的半径为R ,这时有4R h6a ;3( 2)正四面体的外接球:1例( 1 )若一个正四面体的表面积为12S= ________.S ,其内切球的表面积为S,则S2( 2) 已知三棱锥S ABC 的所有顶点都在球O 的球面上,ABC 是边长为 1 的正三角形,SC 是球 O 的直径,且 SC 2 ;则此棱锥的体积为()A.2322B.6C. D.6324.其它棱锥(柱)与球的切接问题(构造长方体、正方体模型)例 (1).若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是.(2) 三棱锥P ABC 的四个顶点都在球 D 的表面上, PA ⊥平面 ABC , AB ⊥ BC , PA 2 ,AB BC 2 ,则球 O 的体积为( 3)直三棱柱ABC A1 B1C1的六个顶点都在球 O 的球面上.若AB BC 2 ,ABC90o,AA 2 2 ,则球 O 的表面积为 ____________.1(4) 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ()81π27πA. 4B. 16πC. 9π D. 4能力练通抓应用体验的“ 得” 与“失”1.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为 2 的正方形 ),则该几何体外接球的体积为________.4.(2015 新·课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A . 1B .2C. 3D. 43.如图是某几何体的三视图,则该几何体的外接球的表面积为()A . 200 πB. 150 πC. 100 πD. 50π[全国卷 5 年真题集中演练——明规律](2013 ·全国新课标 1 已知 H 是球 O 的直径 AB 上一点, A H ∶H B= 1∶ 2, AB ⊥平面α,H 为垂足,α截球 O 所得截面的面积为π,则球 O 的表面积为 ________.1. (2016 全·国甲卷 ) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A . 20πB. 24πC. 28πD. 32π2. (2016 全·国甲卷 )体积为 8 的正方体的顶点都在同一球面上,则该球的表面积为()32π C. 8π D .4πA . 12π B. 33.(2016 全·国丙卷 )在封闭的直三棱柱 ABC-A B C内有一个体积为V 的球.若 AB⊥ BC, AB= 6,111BC =8, AA1= 3,则 V 的最大值是 ()9π32πA . 4π B. 2C. 6π D. 31111A. 8B. 7C.6D. 5.5. (2015 ·课标全国卷Ⅰ新)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+ 20π,则 r =()A . 1B .2C.4D. 86.(2015 新·课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一 ) ,米堆底部的弧长为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为3,估算出堆放的米约有 ()A . 14 斛B. 22 斛C. 36 斛D. 66 斛7.(2015 ·课标全国卷Ⅱ新)已知 A,B 是球 O 的球面上两点,∠ AOB= 90°,C 为该球面上的动点.若三棱锥 O -ABC 体积的最大值为36,则球 O 的表面积为 ()A . 36πB. 64πC.144π D . 256 π8.(2014 ·课标全国卷Ⅱ新)如图,网格纸上正方形小格的边长为1( 表示 1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3 cm,高为 6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()175C.101A. 27B.927 D.39. (2013 新·课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A .16+ 8πB .8+ 8πC.16+ 16πD. 8+ 16π10. (2013 ·课标全国卷Ⅰ新 )已知 H 是球 O 的直径 AB 上一点, AH ∶ HB = 1∶ 2, AB⊥平面α,H 为垂足,α截球 O 所得截面的面积为π,则球 O 的表面积为 ________.第三节空间点、直线、平面之间的位置关系一.知识梳理1.公理 1~ 3表示文字语言图形语言符号语言公理公理 1公理 2公理 32.公理 2 的三个推论推论 1:推论 2:推论 3:3.空间中两直线的位置关系:4.公理 4 和等角定理:①公理4:②等角定理:5.异面直线所成的角(1)定义(2)范围:6.空间中线面的位置关系:二.考点突破考点一点、线、面的位置关系[例 1] (1)下列结论正确的是()①在空间中,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交;④空间四条直线a, b, c, d,如果 a∥ b, c∥d,且 a∥ d,那么 b∥ c.A .①②③B.②④C.③④D.②③( 2)下列说法正确的是()A .若 a? α, b? β,则 a 与 b 是异面直线B .若 a 与 b 异面, b 与 c 异面,则 a 与 c 异面C.若 a, b 不同在平面α内,则a与b异面D.若 a, b 不同在任何一个平面内,则 a 与 b 异面(3)以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;②若点 A, B, C, D 共面,点 A, B,C,E 共面,则 A,B, C, D, E 共面;③若直线 a, b 共面,直线 a, c 共面,则直线 b, c 共面;④依次首尾相接的四条线段必共面.A . 0B. 1C. 2D. 3( 4)下列命题中正确的是 ()(填序号)①若直线 l 上有无数个点不在平面内,则 l //②若直线 l 与平面 平行,则 l 与平面内的任意一条直线都平行。

数学一轮复习第七章立体几何第7讲立体几何中的向量方法学案含解析

第7讲立体几何中的向量方法[考纲解读]1。

理解直线的方向向量及平面的法向量,并能用向量语言表述线线、线面、面面的平行和垂直关系.(重点)2.能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.(难点)[考向预测]从近三年高考情况来看,本讲为高考必考内容.预测2021年高考将会以空间向量为工具证明平行与垂直以及进行空间角的计算.试题以解答题的形式呈现,难度为中等偏上。

1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔错误!v1∥v2⇔v1=λv2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量为v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=错误!x v1+y v2。

(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔错误!v⊥u⇔错误!v·u=0。

(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔错误!u1∥u2⇔u1=λu2。

2.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔错误!v1⊥v2⇔错误!v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔错误!v∥u⇔错误!v=λu.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔错误!u1⊥u2⇔错误!u1·u2=0。

3.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则4.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|=错误!错误!,φ的取值范围是[0°,90°].5.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=□01〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=错误!|cos<n1,n2〉|=错误!错误!,二面角的平面角大小是向量n1与n2的夹角(或其补角).1.概念辨析(1)若空间向量a平行于平面α,则a所在直线与平面α平行.()(2)两异面直线夹角的范围是(0°,90°],直线与平面所成角的范围是[0°,90°],二面角的范围是[0°,180°].()(3)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(4)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是180°-θ.()答案(1)×(2)√(3)×(4)×2.小题热身(1)若直线l的方向向量为a=(1,0,2),平面α的法向量为n =(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交但不垂直答案B解析因为a=(1,0,2),n=(-2,0,-4),所以n=-2a,所以a∥n,所以l⊥α.(2)已知向量错误!=(2,2,1),错误!=(4,5,3),则平面ABC的单位法向量是()A。

高三文科数学一轮复习学案立体几何专题 共6课时

第1课时 空间点、直线、平面之间的位置关系【考试说明】内 容要 求 A B C 点、线、面、之间的位置关系平面及其基本性质√【学习要求】1、理解空间点、线、面的位置关系;会用数学语言规范的表述空间点、线、面的位置关系。

了解公理1、2、3及公理3的推论1、2、3,并能正确判定;了解平行公理和等角定理。

2、理解空间直线、平面位置关系的定义,能判定空间两直线的位置关系,了解异面直线所成角。

【知识梳理】1、公理1:如果一条直线上的 在一个平面内,那么这条直线上 都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们还有其他的公共点,这些公共点的集合是公理3:经过 的三点,有且只有一个平面。

推论1:经过 ,有且只有一个平面。

推论2:经过 ,有且只有一个平面。

推论3:经过 ,有且只有一个平面。

2 、空间两条直线的位置关系位置关系 共面情况 公共点的个数 相交直线 在同一平面内 平行直线没有不同在任何一个平面内没有3、平行直线的公理及定理(1)公理4:平行与同一直线的两条直线(2)等角定理:如果一个角的两边和另一个角的两边分别 并且方向 ,那么这两个角相等。

例题1、在棱长为1的正方体1111ABCD A B C D 中,E 、F 分别为棱1,AB AA 的中点. (1)求证:1,,,E C D F 四点共面;(2)求证:1,,CE D F DA 三线共点。

例题2、如图,E 、F 、G 、H 分别是空间四边形ABCD 各边AB 、BC 、CD 、DA 上的点,且直线EF 和GH 交于点P,求证:点A 、C 、P 在同一条直线上。

例题3、正方体1111ABCD A B C D 中,对角线1A C 与平面1BDC 交于点O ,AC 与BD 交于M ,求证:1,C O M ,共线.例题4、证明两两相交且不交于同一个点的四条直线共面。

第2课时 直线与平面的位置关系(1)1、 了解直线与平面的位置关系,了解空间平行的有关概念;除了能熟练运用线面平行的判定定理和性质定理外,还要充分利用定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.知识梳理1.空间几何体的结构特征 (1)多面体的结构特征2.(1.)画三视图的规则: (2)三视图的排列顺序:3.空间几何体的直观图:空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为 ________ ,z ′轴与x ′轴和y ′轴所在平面________(2)原图形中平行于坐标轴的线段,直观图中仍分别________;平行于x 轴和z 轴的线段在直观图中保持原长度________;平行于y 轴的线段在直观图中长度为________ 直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:二.考点突破[例1] (1)( ) A .圆柱 B .圆锥 C .球体 D .圆柱、圆锥、球体的组合体(2)下列说法正确的是( )A .有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都可以是直角三角形C .有两个平面互相平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不一定交于一点 (3)下列结论正确的是( ) A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线(4)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.(5)有半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高为 _______ (6)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,则圆台的母线长为________ cm.1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是( )A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D .等腰四棱锥的各顶点必在同一球面上 2.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是( ) A .0 B .1 C .2D .3例1.(11A 1B 1C 1,正视图是边长为2的正方形,该三棱柱的侧视图的面积为( )(2)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( ) A .正方形 B .圆 C .等腰三角形 D .直角梯形 (3)正四棱锥的底面边长为2,侧棱长均为3, 其正视图和侧视图是全等的等腰三角形, 则正视图的周长为_______.[例2](1)如图所示,四面体ABCD 的四个顶点是长方体的四个顶点,则四面体ABCD 的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)( ) A .①②⑥ B .①②③ C .④⑤⑥D .③④⑤(2)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )1.如图,三棱锥V ­ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC , 已知其正视图的面积为23,则其侧视图的面积为( )A.32B.33C.34D.362.如图所示,三棱锥P ­ABC 的底面ABC 是直角三角形,直角边长AB =3,AC =4,过直角顶点的侧棱PA ⊥平面ABC ,且PA =5,则该三棱锥的正视图是( )3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )4.一个几何体的三视图如图所示,则侧视图的面积为________.例1.(1方形,则原来的图形是( )(2)已知正三角形ABC的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.1.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 22.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.第二节 空间几何体的表面积与体积一.知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→S 圆台侧=π(r +r ′)l ――→S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式 (1)柱体: (2)锥体: (3)台体: 二.考点突破[例1](1) 积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( ) A .1+ 3 B .2+ 3 C .1+2 2 D.2 2(2)图 (1)图[例2] (1)A.16 B.13 C.12D .1(2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π2(3)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)3(B )3()()1.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( ) A.13+23π B.13+23π C.13+26π D .1+26π2.已知一个几何体的三视图如图所示,则该几何体的体积为( ) A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 33.某几何体的三视图如图所示,则它的表面积为( ) A .125+20 B .242+20 C .44 D .12 51题图 2题图 4.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+22 .14C +.15D5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.1.球与正方体(1)正方体的内切球,位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球, 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.2.球与长方体:长方体内接于球,它的体对角线正好为球的直径.例(1)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.(2)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.正四面体.三棱锥与球的切接问题(1) 正四面体的内切球,位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有43R h a ==; (2)正四面体的外接球:例(1) 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.(2)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为( )A.63 D. 24.其它棱锥(柱)与球的切接问题(构造长方体、正方体模型),则其外接球的表例(1).若三棱锥的三条侧棱两两垂直,面积是 .D 的表面上,PA ⊥平面ABC ,(2)三棱锥P ABC -的四个顶点都在球AB⊥BC ,2PA=,2AB BC ==,则球O 的体积为(3)直三棱柱111ABC A B C -的六个顶点都在球O 的球面上.若2AB BC ==,90ABC ∠=,1AA =O 的表面积为____________.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π41.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .43.如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π[全国卷5年真题集中演练——明规律](2013·全国新课标1已知H 是球O 的直径AB 上一点,A H ∶H B =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A .20πB .24πC .28πD .32π2.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .323π C.8π D.4π3.(2016·全国丙卷)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6π D.32π34.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15 .5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .86.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π8.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.139.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A .16+8πB .8+8πC .16+16πD .8+16π10.(2013·新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.第三节 空间点、直线、平面之间的位置关系一.知识梳理1.公理1~32推论1: 推论2: 推论3:3.空间中两直线的位置关系: 4.公理4和等角定理:①公理4:②等角定理: 5.异面直线所成的角(1)定义 (2)范围:6.空间中线面的位置关系:二.考点突破[例1] (1)①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c .A.①②③ B.②④ C.③④ D.②③(2)下列说法正确的是( )A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面(3)以下四个命题中,正确命题的个数是( )①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1 C.2 D.3(4)下列命题中正确的是( )(填序号)①若直线l上有无数个点不在平面α内,则//lα②若直线l与平面α平行,则l与平面α内的任意一条直线都平行。

相关文档
最新文档