概率论与数理统计之古典概率

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论文---古典概型浅析

概率论文---古典概型浅析

浅析古典概型1018202班于春旭1101800214经过一学期的概率论与数理统计的学习,从最开始的随机事件与概率到多维随机变量,再到数理统计,参数估计。

对于概率的一些基本知识已经有所掌握。

那么回过头来,让我们去分析一下概率论中最为基础的也是最为贴近平时生活的一种概型,古典概型。

所谓古典概型是一种概率模型。

古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。

若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。

历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。

计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。

例如:掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;又如对有限件外形相同的产品进行抽样检验,也属于这个模型。

是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。

一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。

相较于其他概型,古典概型有以下特点:1、实验的样本空间只包括有限个元素;2、实验中每个基本事件发生的可能性相同。

求古典概型的概率的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m/n,求出P(A)。

古典概率模型是在封闭系统内的模型,一旦系统内的某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。

数学实验概率论与数理统计分册习题1-推荐下载

数学实验概率论与数理统计分册习题1-推荐下载

数学实验概率论与数理统计分册习题第1章古典概率2.碰运气能否通过英语四级考试大学英语四级考试是全面检验大学生英语水平的一种综合考试,具有一定难度。

这种考试包括听力、语法结构、阅读理解、写作等。

除写作占15分外,其余85道为单项选择题,每道题附有A、B、C、D四个选项。

这种考试方法使个别学生产生碰运气和侥幸心理,那么,靠运气能通过英语四级考试吗?解:假设学生作文得满分,即15分,85道选择题每道题都靠蒙,即每道题做对的概率为1/4,得60分则通过考试。

则该同学通过考试的概率为:P=4540 45851344C⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>> nchoosek(85,40)*(1/4)^45*(3/4)^40ans =2.3448e-008即:82.344810-⨯由此可见,即使该同学作文满分,靠运气通过考试的概率也是如此的低,所以可以认为靠运气不能通过英语四级考试。

3.在区域H={(x,y)| (x,y)∈Q,x2+y2≤1},Q={(x,y) |0≤x≤1,0≤y≤1}上考虑计算二重积分(利用Monte-carlo法):⎰⎰++=HdxdyyxyxI) sin(解:积分区域如右图所示:>> n = 10000; % 模拟次数x = rand(n,1); % 点的x坐标y = rand(n,1); % 点的y坐标m = sum(sin(x+y)./(x+y) & x.^2 + y.^2 <= 1); Vn = m/n % 落到所求面积内的点的频率,即概率的模拟值Vn =0.7891第2章 随机变量及其分布4.公共汽车车门的高度是按成年男子与车门碰头的机会在0.01以下的标准来设计的。

根据统计资料,成年男子的身高X 服从均值为168厘米,方差为7厘米的正态分布,那么车门的高度应该至少设计为多少厘米?解:>> norminv(0.99, 168, 7)ans =184.2844则车门的高度应该至少设计为184.3厘米5.某研究中心有同类型仪器300台,各仪器工作相互独立,而且发生故障的概率均为0.01,通常一台仪器的故障由一人即可排除。

概率论与数理统计(二)

概率论与数理统计(二)

欢迎阅读内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。

不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 若A 11111,,nnni i i i i i i i A A A A ∞=====等等。

例1 2(1(2(3(4(5))()()(AB P A P B A P -=-(6)若n A A A ,,21两两互不相容,则∑===ni i ni i A P A P 11)()((7)若n A A A ,,21相互独立,则例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P(1)无放回抽样:(2)有放回抽样:每次有放回的取一球,连取两次[注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而)(=P A P 4(1(2例103 (3,j i j i ,,≠)(i B(4例5 某工厂生产的产品以100个为一批,在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的,设每批产品中的次品最多不超过4个,并且恰有)4,3,2,1(=i i 个次品的概率如下(1)求各批产品通过的概率;(2)求通过检查的各批产品中恰有i 个次品的概率。

)4,3,2,1(=i解:(1)设事件i B 是恰有i 个次品的一批产品)4,3,2,1(=i ,则由题设设事件A 是这批产品通过检查,即抽样检查的10个产品都是合格品,则我们有1)(0=B A P由全概率公式,即得8142.0)()()(40≈=∑=i i i B A P B P A P(2)由Bayes 公式,所求概率分别为5.事件的独立性(1)定义:A 、B 相互独立等价于)()()(B P A P B A P ⋅=(2)若n A A A ,,,21 相互独立,则有)()()()(2121n n A P A P A P A A A P =(3)有放回抽样中的诸事件是相互独立的。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率论与数理统计总结1

概率论与数理统计总结1

三Байду номын сангаас 事件间的关系与运算
1. 包含关系: 若事件发生必然导致事件发生 B A或A B 2. 相等关系: A B 且B A 3. 事件的和 ( A B ) :A 与 B 至少有一个发生构成的事件 4. 事件的积 ( A B , 或AB) : A与B 同时发生构成的事件 5.互不相容事件(互斥事件) :A 与 B 不能同时发生,即 AB=
二. 条件概率
在实际问题中, 常常需要计算在某个事件 B 已发生的条件下,, 另一个事件 A 发生的概率 。 在概率论中,称此概率为事件 B 已发生的条件下事件 A 发生的条件概率,记为 P( A | B ) 。 一般地,因为增加了“事件 B 已发生”的条件,所以 P( A | B ) P ( A) 。
下面举例引出条件概率的定义. 例 1 某工厂有职工 500 人,男女各占一半,男女职工中技术优秀的分别为 40 人与 10 人。 现从中人选一名职工,试问: (1) 该职工为技术优秀的概率是多少? (2) 已知选出的是女职工,她为技术优秀的概率是多少? 解 设 A 表示选出的职工为技术优秀的事件, B 表示选出的是女职工的事件。 40 10 1 (1) P( A) 500 10 10 1 (2) P( A | B ) 250 25 显然, P( A) P( A | B) 。这是因为限制在 B 已发生的条件下求 A 的概率的缘故。 10 10 500 P( AB) 另外,可由 P( A | B ) 250 250 P( B ) 500 推得一般情况下条件概率的定义. 设实验的基本事件总数为 n ,事件 B 所包含的基本事件数为 m B , 事件 AB 所包含的基本事件数为 m B ,则有
i 1 i 1 n n

概率论与数理统计练习题随机事件与古典概型

概率论与数理统计练习题第一次 随机事件与古典概型一.填空1. 设S 为样本空间,A,B,C 是任意的三个随机事件,根据概率的性质,则(1)P(A )=_______;(2)P(B-A)=P(B A )=_______;(3)P(A U B U C)= _____;2. 设A,B,C 是三个随机事件,试以A ,B ,C 的运算来表示下列事件:(1)仅有A 发生_______;(2)A ,B ,C 中至少有一个发生_______;(3)A ,B ,C 中恰有一个发生_______;(4)A ,B ,C 中最多有一个发生_______;(5)A ,B ,C 都不发生_______;(6)A 不发生,B ,C 中至少有一个发生_______;3. A,B,C 是三个随机事件,且p(A)=p(B)=p(C)=1/4, P(AC)=1/8;P(AB)=P(BC)=0,则A ,B ,C 中至少有一个发生的概率为: _______;A ,B ,C 中都发生的概率为: _______;A ,B ,C 都不发生的概率为: _______;4. 袋中有n 只球,记有号码 1,2,3,…………n . (n>5) 则事件(1)任意取出两球,号码为1,2的概率为_______;(2)任意取出三球,没有号码为1的概率为_______;(3) 任意取出五球,号码1,2,3中至少出现一个的概率为_______;5. 从一批由此及彼5件正品,5件次品组成的产品中,任意取出三件产品,则其中恰有一件次品的概率为_______;二.某码头只能容纳一只船,现预知将独立来到两只船,且在24小时内各时刻来到的可能性都相同,如果他们需要的停靠时间分别为3小时与4小时,试求有一只船要在江中等待的概率? 三.已知A ,B 两个事件满足条件P(AB)=P(A B ),且P(A)=p; 求P(B).第二次 条件概率 乘法公式 全概率公式 贝叶斯公式一.填空1. 条件概率的计算公式P(B|A)= _______;乘法公式P(AB)= _____; 2.12,,,n A A A 为样本空间S 的一个事件组,若12,,,n A A A 两两互斥,且12n A A A =S,则对S 中的事件B 有全概率公式_______;3. 设B 为样本空间S 的一个事件, 123,,A A A 为样本空间S 的一个事件组,且满足:(1)123,,A A A 互不相容,且P(i A )>0 (I=1,2,3) ; (2) S=123A A A 则贝叶斯公式为___; 4 两事件A,B 相互独立的充要条件为_______;5 已知在10只晶体管中,有2只次品,在其中取两次,每次随机地取一只,做不放回抽样,则(1)两只都是正品的概率为_______;(1)一只正品,一只为次品的概率为_______;(3)两只都为次品的概率为_______;(4)第二次取出的是次品的概率_______;二.某工厂有甲,乙,丙3个车间,生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,3个车间中产品的废品率分别为5%,4%,2%,求全厂产品的废品率。

概率论与数理统计 第一章1.3古典概型与几何概型


基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分
别为 A, B,C, D.
(1) 各球自左至右或自右至左恰好排成 1,2,3,4 的
顺序;
(1) A 中有两种排法, 故有
P(
A)
2 24
1 12
.
(2) 第 1 号球排在最右边或最左边;
(2) B 中有 2 (3!) 12 种排法, 故有

计算古典概率的方法
基本计数原理
加法原理
乘法原理
排列组合方法 排列公式
应用举例
组合公式
二项式

例 1 一个袋子中装有 10 个大小相同的球, 其中 3
个黑球, 7 个白球, 求: (1) 从袋子中任取一球, 这个球是黑球的概率;
(2) 从袋子中任取两球, 刚好一个白球一个黑球的
概率 以及两个球全是黑球的概率.
顺序;
(2) 第 1 号球排在最右边或最左边; (3) 第 1 号球与第 2 号球相邻;
解 将 4 个球随意地排成一行有4!=24 种排法, 即 基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分 别为 A, B,C, D.
解 将 4 个球随意地排成一行有4!=24 种排法, 即
三班 6 名的分法有:
C145C151C
6 6
15! 4!5!6!
(种).
解 15 名优秀生分别分配给一班 4 名, 二班 5 名,
三班 6 名的分法有:
C145C151C
பைடு நூலகம்
6 6
15! 4!5!6!
(种).
(1) 将 3 名优秀生分配给三个班级各一名, 共有 3!
种分法, 再将剩余的 12 名新生分配给一班 3 名,

概率论与数理统计-古典概型_图文


思考题
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
则有
该式称为等可能概型中事件概率的计算公式.
[例1]
表达方法:
[例 2]
解:(1) 有放回情形 样本空间中基本事件总数:
所包含的基本事件总数: 于是,
(2) 无放回情形 样本空间中基本事件总数:
所包含的基本事件总数:
于是,
[例3](继上题) 将抽样方式改为“一次任取 件样品”,求相应
的概率. 解: 样本空间中基本事件总数为:
解:基本事件总数为:
* 2.几何概型
假设随机试验包含无穷多个基本事件,且每个基本 事件都是等可能的. 定义
小结
1. 古典概型:构建合适的样本空间,正确计算样本 点个数.构建样本空间时,要特别注意样本点的等可能 性.
2. 两个重要的概率模型---无放回抽样(超几何分 布),抽签次序无关性.
3. 几何概型---古典概型的推广:样本空间为无穷 集合.
所包含的基本事件总数为:
于是,
附:不放回依次抽样与一次抽样的等价性
例4 在10张奖券中有2张中奖券,有10人依次逐个 抽取一张奖
[例4] 一批产品共有 件,其中有 件次品.每次从中 任取一件,取出后不放回,接连取 个产品.求第 次取 得次品的概率.
概率论与数理统计-古典概型_图文.ppt
一、古典概型的定义
定义 1。试验的样本空间只包含有限个元素; 2。试验中每个基本事件发生的可能性相同.
等可能概型的试验大量存在, 它在概率论发 展初期是主要研究对象. 等可能概型的一些概念 具有直观、容易理解的特点, 应用非常广泛.

概率论与数理统计-第1章-第2讲-古典概率与几何概率

19
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
20
概率论与数理统计
第1章 随机事件与概率
第2讲 古典概率与几何概率
主讲教师 |
本章内容
01 古典概率 02 几何概率
02 古典概率
在概率论发展的历史上,最早研究的一类最直观、最简单的问题是等 可能摡型,在这类问题中,样本空间中每个样本点出现的可能性是相等的.
例如 抛掷一枚均匀的硬币,或抛掷一颗均匀的骰子,这类随机试验,它 们都有如下的两个特点:
10
02 古典概率
例 “分房模型”的应用
某班级有 k (k≤365)个人,求k 个人的生日均不相同的概率. 恰有 k 个盒子中各有一球
P( A)
C
k 365
k
!
365k
Ak 365
365k
问:如何求“至少有两人同生日”的概率?
下一讲揭晓
11
02 古典概率
几何概型 (古典概型的推广)
古典概型考虑了样本空间仅包含有限个样本点的等可能概率模型, 但等可能概型还有其它类型,如样本空间为一线段、平面或空间区域 等,这类等可能概型称为几何概型,思路如下:
(n k 1) n! (n k)!
从n个不同元素中任取 k个的不同排列总数
(4)组合公式
C
k n
n(n 1)
(n k 1) n!
ห้องสมุดไป่ตู้
k!
(n k)!k!
从n个不同元素中任取 k个的不同组合总数
5
02 古典概率
典型例题
例 设有N件产品,其中有M件次品,现从这N件中任取n件, 求其中恰 有k件次品的概率.
9
02 古典概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无限等可能概型(几何概型):
若随机试验满足下述两个条件: (1)无限性: 它的样本空间有无限个样本点,且 全体样本点可用一个有度量的几何区域来表示; (2) 等可能性:每个样本点出现的可能性相同.
几何概率的定义
设几何概型的样本空间可表示为有度量的
区域S,事件A所对应的区域仍用A表示,则定义
A的概率为:
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率 为0.476.
表 P15 人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
100
0.9999997
例4:将n个不同的球,投入N个不同的盒中(n≤N), 设每一球落入各盒的概率相同,且各盒可放的球数 不限,
C
k n
Dk
(N

D) nk
于是所求的概率为:
P

C
k n
Dk
(N

D) nk
Nn

C nk
(
D N
)k
(1
D N
) nk
此式即为二项分布的概率公式。
返回主目录
例5(分房问题) 有 n 个人,每个人都以同样的概 率 被分配在 N(n N) 间房中的每一间中,每个房间 人数不限,试求下列各事件的概率:
2. 计算 S 以及感兴趣的事件 A 所包含的样本点数,分别记 作n和m.
3. 计算得 P( A) . m n
备注
• 放回抽样 取出元素旋即放回,参加下一次抽取, 即每次抽取都是在全体元素中进行.
• 不放回抽样 某元素一旦被取出就不再参加以后 的抽取,所以每个元素至多被选中一次.
第一章 概率论的基本概念
§4 有限等可能概型(古典概型)
一、古典概型的定义
若随机试验满足下述两个条件: (1)有限性: 它的样本空间只有有限个样本点; (2) 等可能性:每个样本点出现的可能性相同. 则称这种试验为有限等可能概型(古典概型).
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
第一章 概率论的基本概念
等可能概型
例 2 一口袋装有 6 只球,其中 4 只白球、2 只
黑球。从袋中取球两次,每次随机的取一只。考
虑两种取球方式:
• 放回抽样 第一次取一只球,观察其颜色后放
回袋中, 搅匀后再取一球。
• 不放回抽样 第一次取一球不放回袋中,第二
次从剩余的球 中再取一球。
分别就上面两种方式求:
(2)恰有n间房中各有一人,所有可能的分法为
C
n N
n!;
(3)某指定一间房中恰有m人,可能的分法为
C
m n
(N
1) nm .
进而我们可以得到三种情形下事件的概率,其分别为 :
(1)n! N n
(2)
C
n N
n!
Nn
(3)
C
m n
(
N
1) nm
Nn.
上述分房问题中,若令 N 365, n 30, m 2 则可 演化为生日问题.全班学生30人, (1) 某指定30天,每位学生生日各占一天的概率; (2) 全班学生生日各不相同的概率; (3) 全年某天,恰有二人在这一天同生日的概率。
(1)某指定 n 间房中各有一人 ; (2)恰有 n 间房,其中各有一人; (3) 某指定一间房中恰有 m(m n) 人。
解 先求样本空间中所含样本点的个数。
首先,把 n 个人分到N间房中去共有 N n种分法,其次 ,求每种情形下事件所含的样本点个数。
(1)某指定n间房中各有一人,所含样本点的个 数,即可能的的分法为 n!;
P( A)
A的度量 S的度量
第一章 概率论的基本概念
等可能概型
例 3 将 15 名新生随机地平均分配到 3 个班中去,这 15 名新生中有 3 名是优秀生。问: (1) 每个班各分配到一 名优秀生的概率是多少? (2) 3 名优秀生分配到同一个班级的概率是多少?
解:15名新生平均分配到 3 个班级中去的分法总数为:
等可能概型

A2
3
4

西



e1 e2 …… ek


en
返回主目录
第一章 概率论的基本概念
等可能概型
若事件 A 包含 k 个基本事件,即 A ={e1, e2, …ek },
则有 :
P( A)
k n

A包含的基本事件数 S中基本事件总数
.
返回主目录
例 1 : 52张扑克取13张,其中取出的结果为5黑桃;3张红心; 3张方块;2张草花的概率。
p

1
365 364
(365 36564

64

1)

0.997.
美国数学家伯格米尼曾经做过一个 别开生面的实验,在一个盛况空前、 人山人海的世界杯足球赛赛场上,他 随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟 发现其中有两人同生日.
用上面的公式可以计算此事出现的概率为
85 1946 7 2 3 10
二、古典概率的定义
设试验E是古典概型, 其样本空间S由n个样本 点组成 , 事件A由k个样本点组成 . 则定义事件 A的概率为:
A包含的样本点个数
P(A)=k/n=
S的样本点总数
称此概率为古典概率. P13 例1
古典概型的解题步骤:
1. 选取适当的样本空间 S,判断是否为古典概型(有限性、 等可能性).
可解析为一个64人的班上,至少有两人在同一天过
生日的概率为99.7%.
p

C C k nk D ND
C
n N
此式即为超几何分布的概率公式。
返回主目录
第一章 概率论的基本概念
2) 有放回抽样
等可能概型
从N件产品中有放回地抽取n件产品进行排列,
可能的排列数为 N n 个,将每一排列看作基本 事件,总数为 N n 。
而在 N 件产品 中取 n 件,其中恰有 k件次品
的取法共有
记A={ 恰有n个盒子各有一球 },求P(A).
解:
① ②……n
12
N


12
N

① 12

……

N
12
N
即当n=2时,共有N2个样本点;一般地,n个球
放入N个盒子中,总样本点数为Nn,使A发生的样本
点数
ห้องสมุดไป่ตู้
C
n N
n!
P( A) CNn n!/ N n
若取n=64,N=365
P( A) 1 CNn n!/ N n 0.997
1)取到的两只都是白球的概率;
2)取到的两只球是黑的概率;
3)取到的两只球中至少有一只是白球的概率。
返回主目录
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的.
把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法(几何概率)
第一章 概率论的基本概念
等可能概型
例 设有 N 件产品,其中有 D 件次品,今从中任 取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少?
第一章 概率论的基本概念
等可能概型
由乘法原理知:在 N 件产品 中取 n 件,其中恰有 k
件次品的取法共有
C C k nk D ND
种,
于是所求的概率为:
利用上述结论可得到概率分别为 :
练习3 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率.
解 64 个人生日各不相同的概率为
p1

365
364
(365 36564

64

1)
故64 个人中至少有2人生日相同的概率为
相关文档
最新文档