高三上学期期末数学试卷
山东省威海市2023-2024学年高三上学期期末考试 数学含答案

高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。
北京市房山区2023-2024学年高三上学期期末考试数学含答案解析

房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32- B.32C.23- D.235.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b > B.11a b> C.b a a b> D.2211ab a b>6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9B.1-或9C.1-或9- D.1或9-7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A .2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.14.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.20.已知函数()1e x f x a x ⎛⎫=+⋅⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N,都有n mna q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j ijQ j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-【答案】C 【解析】【分析】计算出集合B 后由交集定义运算可得.【详解】{}{}101B x x x x =->=<,故{}2,0A B ⋂=-.故选:C.2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-【答案】A 【解析】【分析】利用复数的几何意义可得出复数z ,再利用复数的乘法可求得()1i z --的值.【详解】在复平面内,若复数z 对应的点为()1,1-,由复数的几何意义可得1i z =-+,因此,()()()1i 1i 1i 2z --=--⋅-+=.故选:A.3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.【答案】B 【解析】【分析】先表示出,,a b a b ⋅ ,然后根据πcos 3a b a b ⋅= 求解出m 的值.【详解】因为2a b m ⋅= ,2,a b ==所以πcos 3a b a b ⋅= ,所以1222m =,解得33m =或33m =-(舍去),故选:B.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32-B.32C.23- D.23【答案】B 【解析】【分析】写出二项式展开式通项,令x 的指数为零,求出参数的值,代入通项即可得解.【详解】432x x ⎛⎫+ ⎪⎝⎭的展开式通项为()()431241442C C 20,1,2,3,4kk k kk k k T x x k x --+⎛⎫=⋅⋅=⋅⋅= ⎪⎝⎭,令1240k -=,可得3k =,因此,展开式中的常数项为3334C 24832T =⋅=⨯=.故选:B.5.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b >B.11a b> C.b a a b > D.2211ab a b>【答案】D 【解析】【分析】对A 、B 、C 举反例即可得,对D 作差计算即可得.【详解】对A :若0a b >>,则22a b <,故错误;对B :若0a b >>,则11a b<,故错误;对C :若0a b >>,则22a b >,0ab >,左右同除ab ,有a bb a>,故错误;对D :由a b >且a ,b 为非零实数,则2222110a b ab a b a b --=>,即2211ab a b>,故正确.故选:D.6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9 B.1-或9 C.1-或9- D.1或9-【答案】D 【解析】【分析】利用圆心到直线的距离等于圆的半径,可求得实数b 的值.【详解】圆C 的圆心为()1,2C -因为直线:20l x y b -+=与圆C=,即45b +=,解得1b =或9-.故选:D.7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据给定条件,可得函数()f x 是R 上的偶函数,利用充分条件、必要条件的定义,结合偶函数性质及单调性判断即得.【详解】由函数()f x 满足()()0f x f x --=,得函数()f x 是R 上的偶函数,而()f x 在[0,)+∞上单调递减,因此22()()(||)(||)||||f a f b f a f b a b a b >⇔>⇔<⇔<,所以“22a b <”是“()()f a f b >”的充要条件.故选:C8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%【解析】【分析】根据题意可得9001e5kP P -⋅=,解得1331e 5k -⎛⎫= ⎪⎝⎭,从而求得关于残留数量与过滤时间的函数关系式,再将12t =代入即可求得答案.【详解】因为前9个小时废气中的污染物恰好被过滤掉80%,所以9001e5kP P -⋅=,即91e ,5k -=所以1331e 5k -⎛⎫= ⎪⎝⎭.再继续过滤3小时,废气中污染物的残留量约为()4341230000011ee0.58512%55kkP P P P P --⎛⎫⋅=⨯=⨯≈⨯≈ ⎪⎝⎭.故选:A.9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A.2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=【答案】C 【解析】【分析】根据给定条件,利用双曲线定义确定2PQ PF +最小时,点Q 的位置,进而求出,a b 的关系即得.【详解】双曲线C :22221(0,0)x y a b a b-=>>的渐近线为0bx ay ±=,由对称性不妨令点P 在第二象限,由双曲线定义得211||||2||2PQ PF PQ PF a F Q a +=++≥+,当且仅当P 为线段1FQ 与双曲线的交点时因此2PQ PF +的最小值为1||F Q 的最小值与2a 的和,显然当1FQ 与渐近线0bx ay +=垂直时,1||F Q 取得最小值,而1PF 平行于渐近线0bx ay -=,于是双曲线的两条渐近线互相垂直,即1ba=,则双曲线22221x y a b -=的渐近线方程为0x y ±=,显然选项ABD 不满足,C 满足,所以双曲线C 的方程可能是22122x y -=.故选:C10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5【答案】B 【解析】【分析】根据题意不断计算即可解出.【详解】因为2a 为强率,由310π13<<可得,373101331.31244159a +==>+,即3a 为强率;由313π14<<可得,473131631.41254159a +==>+,即4a 为强率;由316π15<<可得,573161931.51264159a +==>+,即5a 为强率;由319π16<<可得,673192231.61274159a +==>+,即6a 为强率;由322π17<<可得,763222531.1252183.41597a +===<+,即7a 为弱率,所以7m =,故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.【答案】()1,00,2⎛⎫-∞⋃ ⎪⎝⎭【解析】【分析】由真数大于零及分母不等于零计算即可得.【详解】由题意可得120x ->、0x ≠,故12x <且0x ≠,故该函数定义域为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.故答案为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.【答案】29n -【解析】【分析】由等差数列及其前n 项和的性质计算即可得.【详解】设()()1171n a a n d n d =+-=-+-,则313321315S a d d =+=-+=-,即2d =,故()72129n a n n =-+-=-.故答案为:29n -.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.【答案】π4【解析】【分析】根据给定条件,利用正弦定理边化角,再利用和角的正弦公式求解即得.【详解】在ABC 中,由2cos 2b c a C -=及正弦定理,得2sin sin sin cos 2B C A C -=,则sin()sin sin cos 2A C C A C +-=,整理得cos sin sin 2A C C =,而sin 0C >,因此2cos 2A =,又0πA <<,所以π4A =.故答案为:π414.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.【答案】28(0)x y y =-≤或0(0)x y =>【解析】【分析】设出点M 的坐标,利用已知列出方程化简即得.【详解】设点(,)M x y ,依题意,||||2MF y =+||2y =+,整理得24(||)x y y =-,所以M 的轨迹方程是28(0)x y y =-≤或0(0)x y =>.故答案为:28(0)x y y =-≤或0(0)x y =>15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.【答案】①②④【解析】【分析】建立空间直角坐标系后逐个分析即可得.【详解】以D 为原点,建立如图所示空间直角坐标系,则有()0,0,0D 、(),0,0A a 、()1,0,A a a 、(),,0B a a 、()10,0,D a 、()1,,B a a a 、()0,,0C a 、()10,,C a a ,则()1,0,B C a a =-- 、()1,,BD a a a =-- 、()11,,0A C a a =- 、()1,0,A D a a =-- 、()10,,AB a a = 、()11,0,0A D a =- 、()10,0,AA a = ,设11B P B C λ= ,[]0,1λ∈,则()11,,AP AB B P a a a a λλ=+=-- ,222210AP BD a a a a λλ⋅=-+-= ,故1AP BD ⊥,故①正确;设平面11AC D 的法向量为(),,n x y z =,则有11100A C n A D n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00ax ay ax az -+=⎧⎨--=⎩,取1x =,则()1,1,1n =- ,有0AP n a a a λλ⋅=-+-+= ,故AP n ⊥ ,又AP ⊄平面11A C D ,则//AP 平面11A C D ,故②正确;当0λ=时,有()0,,AP a a = ,此时110000A A P D =+⋅+= ,即11AP A D ⊥,即此时直线AP 与直线11A D 所成角为π2,故③错误;由()1,1,1n =- ,()11,,PA AA AP a a a λλ=-=- ,则133PA n d n ⋅== ,故④正确.故答案为:①②④.【点睛】关键点睛:对空间中线上动点问题,可设出未知数表示该动点分线段所得比例,从而用未知数的变化来体现动点的变化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)6【解析】【分析】(1)由线面平行的判定定理即可得;(2)选①,由题意及CD PA ⊥去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题;选②,由题意及PB =结合勾股定理的逆定理去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题.【小问1详解】连接点B 与AP 中点E 、连接ME ,又M ,N 分别为棱PD ,BC 的中点,故//ME AD 、12ME AD =,又底面ABCD 是正方形,故//BN AD 、12=BN AD ,故//ME BN 且ME BN =,故四边形MEBN 为平行四边形,故//MN EB ,又EB ⊂平面PAB ,MN ⊄平面PAB ,故//MN 平面PAB ;【小问2详解】选条件①:CD PA ⊥,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由CD PA ⊥,CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.条件②:PB =,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由PB =,则222PB PA AB =+,故PA AB ⊥,又//AB CD ,故CD PA ⊥,又CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.【答案】(1)π4ϕ=(2)π5π,1212⎛⎤ ⎥⎝⎦【解析】【分析】(1)求出平移后所得函数的解析式,根据正弦型函数的奇偶性,结合ϕ的取值范围可求得ϕ的值;(2)利用三角恒等变换化简得出()1sin 22g x x =-,由0x m <<可得022x m <<,结合题意可得出关于m 的不等式,解之即可.【小问1详解】解:将函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,可得到函数ππ2284y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,函数π24y x ϕ⎛⎫=+- ⎪⎝⎭为奇函数,则()ππ4k k ϕ-=∈Z ,可得()ππ4k k ϕ=+∈Z ,又因为π2ϕ<,则π4ϕ=.【小问2详解】解:由(1)可知,()π2sin 2cos 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,则()()()21112cos sin 2cos 21cos 2sin 2222g x f x x x x x x =-+=+-++=-,因为0x m <<,则022x m <<,由()0g x =,可得1sin 22x =,因为()g x 在区间()0,m 上有且只有一个零点,则π5π266m <≤,解得π5π1212m <≤.因此,实数m 的取值范围是π5π,1212⎛⎤ ⎥⎝⎦.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).【答案】(1)27(2)X 的分布列见解析,()47E x =(3)23s >2212s s =【解析】【分析】(1)利用古典概型计算公式进行求解即可;(2)利用古典概型计算公式,结合数学期望公式进行求解即可.(3)根据数据的集中趋势进行判断即可.【小问1详解】由图可知,七天中只有1日、2日乙获得流量大于丙获得流量,所以该天乙获得流量大于丙获得流量的概率为27;【小问2详解】由(1)可知七天中只有1日、2日乙获得流量大于丙获得流量,因此0,1,2X =,()2527C 100C 21P X ===,()2227C 12C 21P X ===,()1011011212121P X ==--=,所以X 的分布列如下图所示:X012P 10211021121()1010140122121217E X =⨯+⨯+⨯=;【小问3详解】根据图中数据信息,甲、乙七天的数据相同,都是1个50,2个30,1个10,3个5;而且丙的的数据最分散,所以,23s >2212s s =.19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.【答案】19.22143x y +=20.3260x y ±-=【解析】【分析】(1)由题意计算即可得;(2)设出直线,联立曲线,得到P 、Q 两点的纵坐标,结合面积公式计算即可得.【小问1详解】由13A F a c =+=,12c e a ==,解得2a =,1c =,故3b ==,即椭圆C 的标准方程为22143x y +=;【小问2详解】由椭圆C 的标准方程为22143x y +=,则()12,0A -、()22,0A 、()1,0F ,由题意可得直线2A P 斜率存在且不为0,设2:2A P l x my =+,令0x =,则2y m =-,故20,Q m ⎛⎫- ⎪⎝⎭,联立222143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234120m y my ++=,即()234120m y m y ⎡⎤++=⎣⎦,故0y =或21234m y m -=+,由()22,0A ,故21234P m y m -=+,则112121144222A PQ A A Q A A P Q P Q P S S S y y y y =-=⨯-⨯=- ,又()212122P A FP P y S y =⨯-=,即2422P Q P P y y y y -=⨯=,即Q P P y y y -=,若Q P y y >,则2Q P y y =,即2122234m m m -=⨯+,即223412m m +=,即249m =,则23m =±,若Q P y y <,则P Q P y y y -=,即0Q y =,不符,故舍去,即23m =±,故22:23A P l x y =±+,即直线2A P 的方程为3260x y ±-=.20.已知函数()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.【答案】(1)ey =(2)15,2⎛⎫+-∞- ⎪ ⎪⎝⎭、51,2⎛⎫+∞ ⎪ ⎪⎝⎭(3)()0,∞+【解析】【分析】(1)当0a =时,求出()1f 、()1f '的值,利用导数的几何意义可求得所求切线的方程;(2)当1a =时,求出()f x ',利用函数的单调性与导数的关系可求得函数()f x 的单调递增区间;(3)令()21g x ax x =+-,分析可知,函数()g x 在()0,1上有且只有一个异号零点,对实数a 的取值进行分类讨论,结合题意可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:当0a =时,()e xf x x =,则()()2e 1x x f x x-'=,所以,()1e f =,()10f '=,故当0a =时,曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=,即e y =.【小问2详解】解:当1a =时,()()1e 11e x x x f x x x +⎛⎫=+= ⎪⎝⎭,该函数的定义域为{}0x x ≠,()()()()2221e 2e 1e x x x x x x x x f x x x +-+-+'==,由()0f x ¢>,即210x x +->,解得152x +<-或512x ->,因此,当1a =时,函数()f x的单调递增区间为1,2⎛+-∞- ⎪⎝⎭、⎫+∞⎪⎪⎝⎭.【小问3详解】解:因为()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭,则()()2221e 11e x x ax x f x a xx x +-⎛⎫'=+-= ⎪⎝⎭,令()21g x ax x =+-,因为函数()f x 在()0,1上有且只有一个极值点,则函数()g x 在()0,1上有一个异号零点,当0a =时,对任意的()0,1x ∈,()10g x x =-<,不合乎题意;当0a >时,函数()21g x ax x =+-在()0,1上单调递增,因为()010g =-<,只需()10g a =>,合乎题意;当a<0时,函数()g x 的图象开口向下,对称轴为直线102x a=->,因为()010g =-<,只需()10g a =>,不合乎题意,舍去.综上所述,实数a 的取值范围是()0,∞+.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N ,都有n m na q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【答案】(1)53(2){}n a 不具有性质“(2,1,3)Q ”,理由见解析(3)证明见解析【解析】【分析】(1)由{}n a 具有性质“(4,2,3)Q ”,可得当2n ≥时,43n n a a +=,结合题意计算即可得;(2)由题意计算出n a 通项公式后,检验2n na a +是否恒等于3即可得;(3)借助{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,则当1n ≥时,有1n i n a q a +=,2n j n a q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,通过运算得到12j i q q =,从而可验证对任意的1n i ≥+时,是否有2j i n j ij n a q a -+-=即可得.【小问1详解】由{}n a 具有性质“(4,2,3)Q ”,则当2n ≥时,43n na a +=,故623a a =,953a a =,117339a a a ==,又31a =,52a =,故691125323393329120a a a a a a a ++=++=+⨯+⨯=,即253a =;【小问2详解】{}n a 不具有性质“(2,1,3)Q ”,理由如下:设()11n b b n d =+-,112n n c c -=⋅,由234b c ==,112b c c +=,即有11111442b d c b c c +==⎧⎨+=⎩,解得1113b c d ==⎧⎨=⎩,故32n b n =-,12n n c -=,则1232n n n n a b c n -=+=+-,有()21122322234n n n a n n +-++=++-=++,则121234232n n n n a n a n ++-++=+-,不恒等于3,故{}n a 不具有性质“(2,1,3)Q ”;【小问3详解】由{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,即当1n ≥时,有1n i n a q a +=,2n j na q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,由i j <,故121212112212121j ii i j j i i j i j j i j i i j ia a a a a a a a a q a a a q a a a a a a ++++++++++⨯⨯⨯===⨯⨯⨯ ,故12j i q q =,即12i j q q =,由1n i n a q a +=,2n j n a q a +=,则21n j n i a q a q ++=,当1n i ≥+,即1n i -≥时,有22212j i n i j n j i j i n i in j a a q q q a a q q --++--+====,即对任意的1n i ≥+时,有2j i n j ij n a q a -+-=,即{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【点睛】关键点睛:本题关键点在于通过对数列新定义的分析,从而得到1n i n a q a +=,2n j na q a +=,并由此得到12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i i a a a q a a a +++⨯⨯⨯= ,从而得出12j i q q =.。
安徽省合肥一六八中学等学校2024届高三上学期名校期末联合测试数学试题及答案

2024届高三名校期末测试数学考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合{}{}{}1,2,3,4,5,2,3,2,U A B xx k k ====∈Z ∣,则U B A ⋂=ð()A.{}4 B.{}2,4 C.{}1,2 D.{}1,3,52.复数31i i ⎛⎫- ⎪⎝⎭的虚部为()A.8B.-8C.8iD.8i-3.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则ab ⋅= ()A.2B.52-C.-2D.1124.在ABC 中,“π2C =”是“22sin sin 1A B +=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则cos α=()A.4B.14-C.4D.146.,,,,A B C D E 五人站成一排,如果,A B 必须相邻,那么排法种数为()A.24B.120C.48D.607.若系列椭圆()22*:101,n n n C a x y a n +=<<∈N 的离心率12nn e ⎛⎫= ⎪⎝⎭,则n a =()A.114n⎛⎫- ⎪⎝⎭B.112n⎛⎫- ⎪⎝⎭8.已知等差数列{}n a (公差不为0)和等差数列{}n b 的前n 项和分别为n n S T 、,如果关于x 的实系数方程21003100310030x S x T -+=有实数解,那么以下1003个方程()201,2,,1003i i x a x b i -+== 中,有实数解的方程至少有()个A.499B.500C.501D.502二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分,有选错的得0分)9.已知一组数据:12,31,24,33,22,35,45,25,16,若去掉12和45,则剩下的数据与原数据相比,下列结论正确的是()A.中位数不变B.平均数不变C.方差不变D.第40百分位数不变10.双曲线2222:1(0,0)x y C a b a b -=>>,左、右顶点分别为,,A B O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于,P Q 两点,与其两条渐近线分别交于,R S 两点,则下列命题正确的是()A.存在直线l ,使得AP ∥ORB.l 在运动的过程中,始终有PR SQ=C.若直线l 的方程为2y kx =+,存在k ,使得ORB S 取到最大值D.若直线l 的方程为()2,22y x a RS SB =--= ,则双曲线C 11.如图所示,有一个棱长为4的正四面体P ABC -容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是()A.直线AE 与PB 所成的角为π2B.ABE 的周长最小值为4+C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为3D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为25三、填空题(本大题共3小题,每小题5分,共15分)12.小于300的所有末尾是1的三位数的和等于__________.13.已知函数()()ln 11axf x x x =+-+,若()0f x 恒成立,则a =__________.14.已知抛物线2:2(0)C y px p =>,点P 为抛物线上的动点,点4,02p A ⎛⎫- ⎪⎝⎭与点P 的距离AP 的最小值为2,则p =__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)在ABC 中,,,A B C 的对边分别为,,a b c ,已知4,cos 0b c a C b ==+=.(1)求a ;(2)已知点D 在线段BC 上,且3π4ADB ∠=,求AD 长.16.(15分)甲、乙两人进行射击比赛,每次比赛中,甲、乙各射击一次,甲、乙每次至少射中8环.根据统计资料可知,甲击中8环、9环、10环的概率分别为0.7,0.2,0.1,乙击中8环、9环、10环的概率分别为0.6,0.2,0.2,且甲、乙两人射击相互独立.(1)在一场比赛中,求乙击中的环数少于甲击中的环数的概率;(2)若独立进行三场比赛,其中X 场比赛中甲击中的环数多于乙击中的环数,求X 的分布列与数学期望.17.(15分)如图,圆台12O O 的轴截面为等腰梯形11111,224A ACC AC AA A C ===,B 为底面圆周上异于,A C 的点.(1)在平面1BCC 内,过1C 作一条直线与平面1A AB 平行,并说明理由.(2)设平面1A AB ⋂平面11,,C CB l Q l BC =∈与平面QAC 所成角为α,当四棱锥11B A ACC -的体积最大时,求sin α的取值范围.18.(17分)已知函数()()ln 1f x x ax x =--.(1)当0a <时,探究()f x '零点的个数;(2)当0a >时,证明:()32f x -.19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点,Q P 的距离之比(0,1),MQ MPλλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1(0)x y C a b a b+=>>的右焦点F 与右顶点A ,且椭圆C 的离心率为12e =.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于,B D (点B 在x 轴上方),点,S T 是椭圆C 上异于,B D 的两点,SF 平分,BSD TF ∠平分BTD ∠.①求BS DS的取值范围;②将点S F T 、、看作一个阿波罗尼斯圆上的三点,若SFT 外接圆的面积为81π8,求直线l 的方程.2024届高三名校期末测试·数学参考答案、提示及评分细则1.【答案】A【解析】{}{}{}U 1,2,3,4,5,2,3,1,4,5U A A ==∴= ð,又{}2,B x x k k ==∈Z ∣{}U 4B A ∴⋂=ð.故选:A.2.【答案】B【解析】因为331i (i i)8i i ⎛⎫-=+=- ⎪⎝⎭.故选:B.3.【答案】C【解析】由题b 在a 上的投影向量为()()2cos 0,||a b a ab t a a θ⋅⋅⨯== ,又()10,1,12a t -=∴= ,即()()1,1,01212b a b =∴⋅=⨯+-⨯=-.故选:C.4.【答案】A【解析】在ABC 中,πA B C ++=,则πB C A =--,充分性:当π2C =时,ππ,sin sin cos 22B A B A A ⎛⎫=-=-= ⎪⎝⎭,2222sin sin sin cos 1A B A A +=+=,所以“π2C =”是“22sin sin 1A B +=”的充分条件;必要性:当22sin sin 1A B +=时,取ππππ,121222A B A ==+=+,此时满足2222ππsin sin sincos 11212A B +=+=,但ππ32C =≠,所以“π2C =”是“22sin sin 1A B +=”的不必要条件.综上所述,“π2C =”是“22sin sin 1A B +=”的充分不必要条件.故选:A.5.【答案】B【解析】圆22410xy x +--=圆心()2,0C ,半径为r =;设()0,2P -,切线为PA PB 、,则PC PBC == 中,sin2BC PC α==,所以21cos 12sin 24αα=-=-.故选:B.6.【答案】C【解析】将,A B 看成一体,,A B 的排列方法有22A 种方法,然后将A 和B 当成一个整体与其他三个人一共4个元素进行全排列,即不同的排列方式有44A ,根据分步计数原理可知排法种数为2424A A 48=,故选:C.7.【答案】A【解析】椭圆n C 可化为22:111n x y a +=.因为01n a <<,所以离心率12nn ce a⎛⎫=== ⎪⎝⎭,解得:114nn a ⎛⎫=- ⎪⎝⎭.故选:A.8.【答案】D【解析】由题意得:210031003410030S T -⨯ ,其中()110031003502100310032a a S a +==,()110031003502100310032b b T b +==,代入上式得:250250240a b - ,要方程()201,2,3,,1003i i x a x b i -+== 无实数解,则240i i a b -<,显然第502个方程有解.设方程2110x a x b -+=与方程2100310030x a x b -+=的判别式分别为11003Δ,Δ,则()()()22221100311100310031100311003ΔΔ444a b a b a a b b +=-+-=+-+()()()22110035022502502502502242824022a a ab b a b +-⨯=-=- ,等号成立的条件是11003a a =,所以11003Δ0,Δ0<<至多一个成立,同理可证:21002Δ0,Δ0<<至多一个成立,501503Δ0,Δ0<< 至多一个成立,且502Δ0 ,综上,在所给的1003个方程中,无实数根的方程最多501个,故有实数解的方程至少有502个.故选:D.二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AD【解析】将原数据按从小到大的顺序排列为12,16,22,24,25,31,33,35,45,其中位数为25,平均数是()121622242531333545927++++++++÷=,方差是2222222221824(15)(11)(5)(3)(2)4681899⎡⎤⨯-+-+-+-+-++++=⎣⎦,由40%9 3.6⨯=,得原数据的第40百分位数是第4个数24.将原数据去掉12和45,得16,22,24,25,31,33,35,其中位数为25,平均数是()1861622242531333577++++++÷=,方差是222222217432181131455919167777777749⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-+++=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,由40%7 2.8⨯=,得新数据的第40百分位数是第3个数24,故中位数和第40百分位数不变,平均数与方差改变,故A ,D 正确,B ,C 错误.故选:AD.10.【答案】BD【分析】根据与渐近线平行的直线不可能与双曲线有两个交点可对A 项判断;设直线:l y kx t =+分别与双曲线联立,渐近线联立,分别求出,P Q 和,R S 坐标,从而可对B C 、项判断;根据2RS SB =,求出b =,从而可对D 项判断.【解析】对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线:l y kx t =+,与双曲线联立22221y kx tx y ab =+⎧⎪⎨-=⎪⎩,得:()()22222222220b a k x a ktx a t a b ---+=,设()()1122,,,P x y Q x y ,由根与系数关系得:2222212122222222,a kt a b a t x x x x b a k b a k++==---,所以线段PQ 中点2221212222222,,22x x y y a kta k t N tb a k b a k ⎛⎫++⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭,将直线:l y kx t =+,与渐近线b y x a =联立得点S 坐标为,atbt S b ak b ak ⎛⎫ ⎪--⎝⎭,将直线:l y kx t =+与渐近线b y x a =-联立得点R 坐标为,atbt R b ak b ak -⎛⎫ ⎪++⎝⎭,所以线段RS 中点222222222,a kt a k tM t b a k b a k ⎛⎫+ ⎪--⎝⎭,所以线段PQ 与线段RS 的中点重合,所以2PQ RSPR SQ -==,故B 项正确;对于C 项:由B 项可得22112,,22ORBR ab b R S OB y OB b ak b ak b ak -⎛⎫=⨯=⎪+++⎝⎭ ,因为OB 为定值,当k 越来越接近渐近线b y x a =-的斜率ba-时,2b b ak +趋向于无穷,所以ORB S 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线by xa =,解得2S ,联立直线l 与渐近线by xa =-,解得2R 由题可知,2RS SB = ,所以()2S R B S y y y y -=-即32S R B y y y =+,=,解得b =,所以e =D 项正确.故选:BD.11.【答案】ACD【解析】A 选项,连接AD ,由于D 为PB 的中点,所以,PB CD PB AD ⊥⊥,又,,CD AD D AD CD ⋂=⊂平面ACD ,所以直线PB ⊥平面ACD ,又AE ⊂平面ACD ,所以PB AE ⊥,故A 正确;B 选项,把ACD 沿着CD 展开与平面BDC 在同一个平面内,连接AB 交CD 于点E ,则AE BE +的最小值即为AB 的长,由于4AD CD AC ===,2222221cos 23CD AD AC ADC CD AD ∠+-===⋅,π22cos cos sin 23ADB ADC ADC ∠∠∠⎛⎫=+=-=-⎪⎝⎭,所以222222cos 2221633AB BD AD BD AD ADB ∠⎛⎫=+-⋅=+-⨯⨯-=+ ⎪ ⎪⎝⎭,故AB ABE ==的周长最小值为4+B 错误;C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设球心为O ,取AC 的中点M ,连接,BM PM ,过点P 作PF 垂直于BM 于点F ,则F 为ABC 的中心,点O 在PF 上,过点O 作ON PM ⊥于点N ,因为2,4AM AB ==,所以BM ==,同理PM =,则133MF BM ==,故3PF ==,设OF ON R ==,故3OP PF OF R =-=-,因为PNO PFM ∽,所以ON OP FM PM =3233R-=,解得63R =,C正确;D 选项,4个小球分两层(1个,3个)放进去,要使小球半径要最大,则4个小球外切,且小球与三个平面相切,设小球半径为r ,四个小球球心连线是棱长为2r 的正四面体Q VKG -,由C 选项可知,其高为263r ,由C 选项可知,PF 是正四面体P ABC -的高,PF 过点Q 且与平面VKG 交于S ,与平面HIJ 交于Z ,则26,3QS r SF r ==,由C 选项可知,正四面体内切球的半径是高的14,如图正四面体P HIJ -中,,3QZ r QP r ==,正四面体P ABC -高为2633r r r++43=,解得25r =,D 正确.故选:ACD.三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】3920【解析】小于300的所有末尾是1的三位数是101,111,121,,291 ,是以101为首项,以10为公差的等差数列,所以小于300的所有末尾是1的三位数的和为()202010129139202S ⨯+==,故答案为:3920.13.【答案】1【解析】由题意得()()22111(1)(1)x a af x x x x -'-=-=+++,①当0a 时,()0f x '>,所以()f x 在()1,∞-+上单调递增,所以当()1,0x ∈-时,()()00f x f <=,与()0f x 矛盾;②当0a >时,当()1,1x a ∈--时,()()0,f x f x '<单调递减,当()1,x a ∞∈-+时,()()0,f x f x '>单调递增,所以()()min ()1ln 1f x f a a a =-=--,因为()0f x 恒成立,所以()ln 10a a -- ,记()()()11ln 1,1,ag a a a g a a a-=--=='-当()0,1a ∈时,()()0,g a g a '>单调递增,当()1,a ∞∈+时()()0,g a g a '<单调递减,所以()max ()10g a g ==,所以()ln 10a a -- ,又()ln 10a a -- ,所以()ln 10a a --=,所以1a =.14.【答案】24,12【解析】设()()2222222,,||424428342222p p p p P x y AP x y x x px x p x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+-+=--+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2234822p x p p⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦(i )当3402p -,即803p < 时,2||AP 有最小值282p p -,即AP2=,解得2p =823+>,故2p =-.(ii )当3402p -<,即83p >时,2||AP 有最小值242p ⎛⎫- ⎪⎝⎭,即AP 有最小值422p -=,解得4p =或12.综上,p的值为24,12.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【答案】(1)a =(2)455【解析】(1)cos 0a C b +=,由余弦定理得22202a b c a b ab+-⋅+=,即22230,4a b c b c +-===,则可得a =;(2)由余弦定理2225cos 25b a c C ab +-===-,3ππsin ,544C ADB ADC ∠∠∴===∴= ,则在ADC 中,由正弦定理可得sin sin AD ACC ADC∠=,sin sin 52AC CAD ADC∠⋅∴==.16.【答案】(1)0.2(2)分布列见解析期望为0.6【解析】(1)设乙击中的环数少于甲击中的环数为事件B ,则事件B 包括:甲击中9环乙击中8环,甲击中10环乙击中8环,甲击中10环乙击中9环,则()0.20.60.10.60.10.20.2P B =⨯+⨯+⨯=.(2)由题可知X 的所有可能取值为0,1,2,3,由(1)可知,在一场比赛中,甲击中的环数多于乙击中的环数的概率为0.2,则()3,0.2X B ~,所以()()0312330C 0.2(10.2)0.512,1C 0.2(10.2)0.384P X P X ==⨯⨯-===⨯⨯-=,()()()22330332C 0.210.20.096,3C 0.2(10.2)0.008P X P X ==⨯⨯-===⨯⨯-=,故X 的分布列为X 0123P0.5120.3840.0960.008所以()30.20.6E X =⨯=.17.【解析】(1)取BC 中点P ,作直线1C P ,直线1C P 即为所求,取AB 中点H ,连接1,A H PH ,则有PH ∥1,2AC PH AC =,如图,在等腰梯形11A ACC 中,1112A C AC =.HP ∴∥1111,,A C HP A C =∴四边形11A C PH 为平行四边形.1C P ∴∥1A H ,又1A H ⊂平面11,A AB C P ⊄平面1A AB ,1C P ∴∥平面1;A AB(2)由题意作BO '⊥平面11A ACC ,即BO '为四棱锥11B A ACC -的高,在Rt ABC 中,22190,22BA BC BA BC ABC BO AC AC AC ∠⋅+=='=,当且仅当BA BC =时取等号,此时点O '为2O 重合,梯形11A ACC 的面积S 为定值,1113B A ACC V S BO -=⋅',∴当BO '最大,即点O '与2O 重合时四棱椎11B A ACC -的体积最大,又22,2BO AC BO ⊥=,以2O 为原点,射线2221,,O A O B O O 分别为,,x y z 轴建立空间直角坐标系,在等腰梯形11A ACC 中,111224AC AA A C ===,此梯形的高h =11A C 为OAC的中位线,(()()((()11,2,0,0,0,2,0,,1,,2,2,0O A B C BC AB ∴-=--=-,(()20,,2,0,0BO O A =-=,设,R BQ BO λλ=∈,则()2,22AQ AB BQ AB BO λλ=+=+=-- ,设平面QAC 的一个法向量(),,n x y z = ,则()2202220n O A x n AQ x y z λ⎧⋅==⎪⎨⋅=-+-+=⎪⎩ ,取111,1),sin cos ,||n BC n n BC n BC λα⋅=-∴===,令1t λ=+,则sin α=0t =时,sin 0α=,当0t ≠时,0sin 4α<=,当且仅当75t =,即25λ=时取等号,综上0sin 4α .18.【解析】(1)()21212ax ax f x ax a x x-++=-+=',定义域为()0,∞+.二次函数221ax ax -++的判别式为28a a +,对称轴为14x =.当0a <时,二次函数221ax ax -++的图象开口向上,①280a a +<,即80a -<<时,()f x '在()0,∞+上无零点;②280a a +=,即8a =-时,()f x '在()0,∞+上有1个零点14;③280a a +>,即8a <-时,()f x '在()0,∞+有2个不同的零点;综上,当80a -<<时,()f x '在()0,∞+上无零点;当8a =-时,()f x '在()0,∞+上有1个零点;当8a <-时,()f x '在()0,∞+有2个不同的零点;(2)由(1)分析知,当0a >时,()f x '在()0,∞+上有1个零点,设零点为0x ,则20012ax ax +=,解得,04a x a=,进一步,当00x x <<时,()0f x '>,当0x x >时,()0f x '<,所以()()()20000000ln 1ln f x f x x ax x x ax ax =--=-+ ()0000011ln ln 22ax ax x ax x +-=-+=+※易证ln 1x x - ,所以()()()()000822133341222222a a a x ax a x +++--+=-==※ .19.【答案】(1)22186x y +=(2)①1,13⎛⎫ ⎪⎝⎭②22y x =-【解析】(1)方法①特殊值法,令()222,0,22c c M a a -+±=-+,且2a c =,解得22c =.22228,6a b a c ∴==-=,椭圆C 的方程为22186x y +=,方法②设(),M x y,由题意MF MAλ==(常数),整理得:2222222222011c a a c x y x λλλλ--+++=--,故222222220141c a a c λλλλ⎧-=⎪⎪-⎨-⎪=-⎪-⎩,又12c a =,解得:a c ==.2226b a c ∴=-=,椭圆C 的方程为22186x y +=.(2)①由1sin 21sin 2SBFSDF SB SF BSF SB S S SD SD SF DSF ∠∠⋅⋅==⋅⋅ ,又SBF SDF BF S S DF = ,BS BF DSDF∴=(或由角平分线定理得),令BF DFλ=,则BF FD λ=,设()00,D x y ,则有2203424x y +=,又直线l 的斜率0k >,则()0001,B B x x x y y λλλ⎧=+-⎪∈-⎨=-⎪⎩代入2234240x y +-=得:)22200314240x y λλλ⎤+-+-=⎦,即()()01530x λλ+-=,10,,13λλ⎛⎫>∴=⎪⎝⎭.②由(1)知,SB TB BF SDTDDF==,由阿波罗尼斯圆定义知,,,S T F 在以,B D 为定点的阿波罗尼斯圆上,设该圆圆心为1C ,半径为r ,与直线l 的另一个交点为N ,则有BF NB DFND=,即22BF r BF DFr DF-=+,解得:111r BF DF=-.又1281ππ8C S r ==圆,故119r BF DF =∴-=又012DF x ==,0000052111112111933222BF DF DF DF x x x λ--∴-=-===⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.解得:00,,242x y k =-=-∴=∴直线l的方程为22y x =-.。
北京市朝阳区2024届高三上学期期末数学试题

北京市朝阳区2024届高三上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
A .
2
2
7.设函数()m
f x x x =+
-内有且仅有一个零点”的(A .充分而不必要条件C .充分必要条件
二、填空题
三、解答题
(1)求证://DE 平面PBC ;
(2)已知2AB BC ==,PB =一个作为已知,使四棱锥P 条件①:22AP =;条件②:值为
155
.注:如果选择的条件不符合要求,第(别解答,按第一个解答计分18.某学校开展健步走活动,要求学校教职员工上传息.教师甲、乙这七天的步数情况如图
(1)从11月4日至11月10日中随机选取一天,求这一天甲比乙的步数多的概率;
(2)从11月4日至11月10日中随机选取三天,记乙的步数不少于
求X的分布列及数学期望;
(3)根据11月4日至11月10日某一天的数据制作的全校
布直方图如图2所示.已知这一天甲与乙的步数在全校
名分别为第501名和第221名,判断这是哪一天的数据。
福建省高中名校2024学年高三年级第一学期期末数学试卷(附答案)

福建省高中名校2024学年高三年级第一学期期末试卷数 学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2i1i z =+,则z z -=( )A 2B. 2i -C. 2-D. 2i2. 已知集合{}2680A x x x =-+>,{}30B x x =-<,则A B = ( ) A. (2,3)B. (3),-∞C. (,2)-∞D. (4,)+∞3. 已知向量(3,5)a =r,(1,21)b m m =-+,若//a b,则m =( )A. 8B.8- C. 213-D. 87-4. 已知0.3log 2a =,0.23b =,0.30.2c =,则( ) A. b c a >>B. b a c >>C. c b a >>D. c a b >>5. 已知函数()ππcos 44f x x x ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,要得到函数2()sin 22cos 1g x x x =-+的图象,只需将()f x 的图象( ) A. 向左平移π8个单位长度 B. 向左平移3π4个单位长度 C. 向右平移3π4个单位长度D. 向右平移3π8个单位长度6. 抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上的点,O 为坐标原点,若OFM △的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =( )A 4B. 8C. 6D. 107. 已知ABC 是边长为8的正三角形,D 是AC 的中点,沿BD 将BCD △折起使得二面角A BD C --为π3,则三棱锥C ABD -外接球的表面积为( ) A. 52π B. 52π3 C. 208π3D.103π38. 在数列{}n a 中,11a =,且1n n a a n +=,当2n ≥时,1231112n n na a a a a λ++++≤+- ,则实数λ的..取值范围为( )A. (,1]-∞B. [1,)+∞C. (0,1]D. (,4]-∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列结论正确的是( ) A. 若0a b <<,则22a ab b >> B. 若x ∈R ,则22122x x +++最小值为2 C. 若2a b +=,则22a b +的最大值为2 D. 若(0,2)x ∈,则1122x x+≥- 10. 《黄帝内经》中的十二时辰养生法认为:子时(23点到次日凌晨1点)的睡眠对一天至关重要.相关数据表明,入睡时间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群体和晚睡群体的睡眠指数各取10个.如下表:编号 1 2 3 4 5 6 7 8 9 10 早睡群体睡眠指数 65 68 75 85 85 85 88 92 9295 晚睡群体睡眠指数35405555556668748290根据样本数据,下列说法正确的是( )A. 早睡群体的睡眠指数一定比晚睡群体的睡眠指数高B. 早睡群体的睡眠指数的众数为85C. 晚睡群体的睡眠指数的第60百分位数为66D. 早睡群体的睡眠指数的方差比晚睡群体的睡眠指数的方差小 11. 已知点()0,5A,()5,0B -,动点P 在圆C :()()22348x y ++-=上,则( )A. 直线AB 截圆C 所得的弦长为B. PAB 的面积的最大值为15C. 满足到直线AB 的P 点位置共有3个D. PA PB ⋅的取值范围为22⎡---+⎣12. 已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则( )的A. (1)(3)2f f +=B. (2023)(2025)(2024)f f f +=C. (2023)f 是(2022)f 与(2024)f 等差中项D.20241()2024i f i ==∑三、填空题:本题共4小题,每小题5分,共20分.13. 若函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴,则=a _________. 14. 如图,在长方体1111ABCD A B C D -中,8AB =,6AD =,异面直线BD 与1AC所成角的余弦值为10,则1CC =_________.15. 某美食套餐中,除必选菜品以外,另有四款凉菜及四款饮品可供选择,其中凉菜可四选二,不可同款,饮品选择两杯,可以同款,则该套餐的供餐方案共有_________种.16. 法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b+=>>的蒙日圆为22273x y b +=,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和n S 满足210n n S a +-=. (1)求{}n a 的通项公式;(2)设27log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 18. 已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量M (单位:g )服从正态分布()2250,N σ,且(248)0.1P M <=.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于248g 的概率;(2)若从公司销售的牛肉干中随机选取K (K 为正整数)包,记质量在248g ~252g 内的包数为X ,且的()320D X >,求K 的最小值.19. 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭. (1)求角A ;(2)作角A 的平分线与BC 交于点D ,且AD =,求b c +.20. 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PO ⊥平面ABCD ,垂足为O ,E 为PC 的中点,//OE 平面PAD .(1)证明:PC PD =;(2)若24==A D A B ,OC OD ⊥,PC 与平面ABCD 所成的角为60°,求平面PBC 与平面PCD 夹角的余弦值.21. 已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为6,且其焦点到渐近线的距离为1.(1)求C 的方程;(2)若动直线l 与C 恰有1个公共点,且与C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.22. 已知函数ln ()x af x x+=,[1,)x ∈+∞. (1)讨论()f x 的单调性.(2)是否存在两个正整数1x ,2x ,使得当12x x >时,()12121212x x x x x x x x -=?若存在,求出所有满足条件1x ,2x 的值;若不存在,请说明理由.的答案解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2i1i z =+,则z z -=( )A. 2B. 2i -C. 2-D. 2i【答案】D 【答案解析】【详细分析】根据条件,利用复数的运算即可求出结果. 【答案详解】因为2i 2i(1i)1i 1i (1i)(1i)z -===+++-,所以1i z =-,故2i z z -=, 故选:D.2. 已知集合{}2680A x x x =-+>,{}30B x x =-<,则A B = ( ) A. (2,3)B. (3),-∞C. (,2)-∞D.(4,)+∞【答案】C 【答案解析】【详细分析】解一元二次不等式化简集合A ,结合交集的概念即可得解.【答案详解】因为{4A x x =>或}2x <,{}3B x x =<,所以{}2A B x x ⋂=<. 故选:C.3. 已知向量(3,5)a =r ,(1,21)b m m =-+ ,若//a b ,则m =( )A. 8B.8- C. 213-D. 87-【答案】B 【答案解析】【详细分析】由平面向量平行的充要条件即可得解.【答案详解】因为//a b ,所以3(21)5(1)m m +=-,所以8m =-.故选:B.4. 已知0.3log 2a =,0.23b =,0.30.2c =,则( ) A. b c a >>B. b a c >>C. c b a >>D.c a b >>【答案】A 【答案解析】【详细分析】引入中间量,利用函数的单调性,进行大小的比较.【答案详解】因为0.30.3log 2log 10a =<=,0.20331b =>=,0.30.2(0,1)=∈c ,所以b c a >>.故选:A5. 已知函数()ππcos 44f x x x ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,要得到函数2()sin 22cos 1g x x x =-+的图象,只需将()f x 的图象( )A. 向左平移π8个单位长度 B. 向左平移3π4个单位长度 C. 向右平移3π4个单位长度D. 向右平移3π8个单位长度【答案】D 【答案解析】【详细分析】先把()f x ,()g x 的答案解析式都化成()sin y A x ωϕ=+或()cos y A x ωϕ=+的形式,再用图象的平移解决问题.【答案详解】()πππππcos sin 2244442f x x x x x x x⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-=++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()2π3πsin 22cos 1sin 2cos 22244g x x x x x x x ⎛⎫⎛⎫=-+=-=-=- ⎪ ⎪⎝⎭⎝⎭,故将()f x 的图象向右平移38π个单位长度可得3π3π2284y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,即为()g x 的图象. 故选:C6. 抛物线2:2(0)C y px p =>的焦点为F ,M 是抛物线C 上的点,O 为坐标原点,若OFM △的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =( ) A. 4 B. 8C. 6D. 10【答案】B 【答案解析】【详细分析】综合应用三角形外接圆的性质和抛物线的性质即得答案. 【答案详解】因为OFM △的外接圆与抛物线C 的准线相切, 所以OFM △的外接圆的圆心到准线的距离等于圆的半径. 因为圆的面积为36π,所以圆的半径为6, 又因为圆心在OF 的垂直平分线上,||2pOF =, 所以OFM △的外接圆的圆心到准线的距离624p p+=,可得8p =.故选:B.7. 已知ABC 是边长为8的正三角形,D 是AC 的中点,沿BD 将BCD △折起使得二面角A BD C --为π3,则三棱锥C ABD -外接球的表面积为( ) A. 52πB. 52π3 C. 208π3D.103π3【答案解析】【详细分析】根据给定条件,结合球的截面圆性质确定球心位置,再求出球半径即得. 【答案详解】在三棱锥C ABD -中,,,,,BD AD BD CD AD CD D AD CD ⊥⊥=⊂ 平面ACD ,由二面角A BD C --为π3,4AD CD ==,得ACD 是正三角形,令其外接圆圆心为O ',则2πsin 333O D AD '==,令三棱锥C ABD -外接球的球心为O ,球半径为R , 则OO '⊥平面ACD ,即有//OO BD ',显然球心O 在线段BD 的中垂面上,令线段BD 的中垂面交BD 于E ,则OE BD ⊥,显然O D BD '⊥,于是//OE O D ',四边形OEDO '是平行四边形,且是矩形,而12==DE BD22222252(33R OD OE DE ==+=+=, 所以三棱锥C ABD -外接球的表面积22084ππ3S R ==. 故选:C8. 在数列{}n a 中,11a =,且1n n a a n +=,当2n ≥时,1231112n n na a a a a λ++++≤+- ,则实数λ的取值范围为( ) A. (,1]-∞B. [1,)+∞C. (0,1]D.(,4]-∞【答案解析】【详细分析】先根据递推关系得到111n n na a a +-=-,把条件转化为22λ≤,从而可得答案. 【答案详解】因为1n n a a n +=,11a =,所以21a =,且当2n ≥时,11n n a a n -=-, 所以111n n n n a a a a +--=,所以111n n na a a +-=-, 所以3142531123111n n na a a a a a a a a a a +-+++=-+-+-++-= 12112n n n n a a a a a a ++--++=+-.因为1231112n n na a a a a λ++++≤+- , 所以1122n n n n a a a a λ+++-≤+-,所以22λ≤,故1λ≤. 故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列结论正确的是( ) A. 若0a b <<,则22a ab b >> B. 若x ∈R ,则22122x x +++的最小值为2 C. 若2a b +=,则22a b +最大值为2 D. 若(0,2)x ∈,则1122x x+≥- 【答案】AD 【答案解析】【详细分析】利用作差法比较大小判断A ,利用基本(均值)不等式判断BCD ,要注意“一正二定三相等”.【答案详解】因为2()0a ab a a b -=->,所以2a ab >, 的因为2()0=->-b a b ab b ,所以2ab b >,所以22a ab b >>,故A 正确; 因为221222x x ++≥+的等号成立条件22122x x +=+不成立,所以B 错误; 因为222122a b a b ++⎛⎫≥= ⎪⎝⎭,所以222a b +≥,故C 错误;因为11111121(2)2(22)2222222xx x x x x x x x x -⎛⎫⎛⎫+=+-+=++≥+= ⎪ ⎪---⎝⎭⎝⎭,当且仅当112x x=-,即1x =时,等号成立,所以D 正确. 故选:AD10. 《黄帝内经》中的十二时辰养生法认为:子时(23点到次日凌晨1点)的睡眠对一天至关重要.相关数据表明,入睡时间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群体和晚睡群体的睡眠指数各取10个.如下表:编号 1 2 3 4 5 6 7 8 9 10 早睡群体睡眠指数 65 68 75 85 85 85 88 92 92 95 晚睡群体睡眠指数35405555556668748290根据样本数据,下列说法正确的是( )A. 早睡群体的睡眠指数一定比晚睡群体的睡眠指数高B. 早睡群体的睡眠指数的众数为85C. 晚睡群体的睡眠指数的第60百分位数为66D. 早睡群体的睡眠指数的方差比晚睡群体的睡眠指数的方差小 【答案】BD 【答案解析】【详细分析】由样本数据可判断A ;样本数据的集中程度可判断D ;由众数的概念可判断B ;由百分位数的概念可判断C.【答案详解】因为早睡群体的睡眠指数不一定比晚睡群体的睡眠指数高,所以A 错误; 因为早睡群体的睡眠指数的10个样本数据中85出现次数最多,所以B 正确;因为晚睡群体的睡眠指数的第60百分位数为6668672+=,所以C 错误; 由样本数据可知,早睡群体的睡眠指数相对比较稳定,所以方差小,故D 正确. 故选:BD. 11. 已知点()0,5A,()5,0B -,动点P 在圆C :()()22348x y ++-=上,则( )A. 直线AB 截圆C所得的弦长为 B. PAB 的面积的最大值为15C. 满足到直线AB的P 点位置共有3个 D. PA PB ⋅的取值范围为22⎡---+⎣【答案】BCD 【答案解析】【详细分析】根据点到直线的距离公式,结合勾股定理即可求解弦长判断A ,根据三角形的面积公式,结合圆的性质即可求解B ,根据圆上的点到直线的距离的范围,即可求解C ,根据向量的数量积的运算量,结合坐标运算即可求解D.【答案详解】对于A ,因为()0,5A ,()5,0B -,所以直线AB 的方程为50x y -+=,圆心()3,4C -到直线AB 的距离为d ==,又因为圆C 的半径r =所以直线AB 截圆C所得的弦长为2=A 错误.对于B,易知AB =PAB 的面积最大,只需点P 到直线AB 的距离最大,而点P到直线AB的距离的最大值为r d +==, 所以PAB的面积的最大值为1152⨯=,B 正确. 对于C ,当点P 在直线AB 上方时,点P到直线AB 的距离的范围是(0,r +,即(,由对称性可知,此时满足到直线AB 的P 点位置有2个.当点P 在直线AB 下方时,点P到直线AB 的距离的范围是(0,r,即(,此时满足到直线AB的P 点位置只有1个.综上所述,满足到直线AB的P 点位置共有3个,C 正确.对于D ,由题意知()()()2PA PB PC CA PC CB PC PC CA CB CA CB ⋅=+⋅+=+⋅++⋅.又因为()0,5A ,()5,0B -,()3,4C -,所以()3,1CA = ,()2,4CB =--, 故()()321410CA CB ⋅=⨯-+⨯-=- ,()1,3CA CB +=-.设点()00,D x y 满足CA CB CD +=,则()003,4CD x y =+- ,故0031,43,x y +=⎧⎨-=-⎩解得002,1,x y =-⎧⎨=⎩即()2,1D -,CD =所以()28cos ,10PA PB PC PC CA CB CA CB PC CD PC CD ⋅=+⋅++⋅=+⋅⋅-2,2,PC CD PC CD =-+=-+ .又因为,PC CD ⎡∈-⎣,所以2,22PC CD ⎡-+∈---+⎣ ,即PA PB ⋅取值范围为[2--,2-+,D 正确.故选:BCD12. 已知定义在R 上的函数()f x 满足(2)()(2026)f x f x f ++=,且(1)1f x +-是奇函数.则( )A. (1)(3)2f f +=B. (2023)(2025)(2024)f f f +=的C. (2023)f 是(2022)f 与(2024)f 的等差中项D.20241()2024i f i ==∑【答案】ACD 【答案解析】【详细分析】由(2)()(2026)f x f x f ++=,可推出()f x 的周期为4,由(1)1f x +-是奇函数可推出(1)1f =,通过赋值及函数的周期性可逐个判断各个选项. 【答案详解】因为(2)()(2026)f x f x f ++=, 所以(4)(2)(2026)f x f x f +++=, 两式相减得(4)()f x f x +=, 所以()f x 的周期为4. 因为(1)1f x +-是奇函数,所以(1)1(1)1f x f x -+-=-++,所以(1)(1)2f x f x -+++=, 即()(2)2f x f x -++=, 令=1x -,得(1)1f =.因为(2)()(2026)(2)f x f x f f ++==, 令2x =,得(4)(2)(2)f f f +=, 所以(4)0f =,即(0)0f =. 因为()(2)2f x f x -++=, 令0x =,得(0)(2)2f f +=, 所以(2)2f =,所以(2)()2f x f x ++=, 所以(3)(1)2f f +=,故A 正确. 因为()(2)2f x f x -++=,所以(1)(3)2f f -+=,即(3)(3)2f f +=,所以(3)1f =.因为(2023)(2025)(3)(1)2f f f f +=+=,(2024)(0)0f f ==,所以B 错误. 因为(2022)(2024)(2)(0)2f f f f +=+=,(2023)(3)1f f ==, 所以(2022)(2024)2(2023)f f f +=,所以(2023)f 是(2022)f 与(2024)f 的等差中项,故C 正确.因为(1)(2)(3)(4)f f f f +++()(1)(3)(2)(4)f f f f =+++2204=++=,所以20241()506[(1)(2)(3)(4)]50642024i f i f f f f ==+++=⨯=∑,故D 正确故选:ACD【点评】关键点评:本题的关键是通过其奇偶性得到其周期性,再结合等差中项的含义以及赋值法一一详细分析选项即可.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴,则=a _________. 【答案】2- 【答案解析】【详细分析】求出函数的导数,根据导数的几何意义,即可求得答案. 【答案详解】由题意得()2e x f x x a '=--, 由函数21()2e 2x f x x x a =--的图象在点(0,(0))f 处的切线平行于x 轴, 可得(0)20f a '=--=,得2a =-, 故答案为:-214. 如图,在长方体1111ABCD A B C D -中,8AB =,6AD =,异面直线BD 与1AC 所成角的余弦值为10,则1CC =_________. .【答案】【答案解析】【详细分析】利用直线的平移,把两条异面直线所成的角转化为平面角,再解三角形求角. 【答案详解】连接AC ,交DB 于点O ,取1CC 的中点E ,连接OE ,BE . 因为1//AC OE ,所以BD 与1AC 所成的角为∠BOE (或其补角). 令EC x =,在BEO △中,由8AB =,6AD =,得5OB =.又OE =,BE =cos 10BOE ∠=, 由余弦定理得22222225536210x x OE OB BE OE OB ++-++-==⋅,解得x =1CC =.故答案为:15. 某美食套餐中,除必选菜品以外,另有四款凉菜及四款饮品可供选择,其中凉菜可四选二,不可同款,饮品选择两杯,可以同款,则该套餐的供餐方案共有_________种. 【答案】60 【答案解析】【详细分析】先选菜品,再选饮品,结合分步计数原理可得答案.【答案详解】由题意可知凉菜选择方案共有24C 6=种,饮品选择方案共有2144C C10+=种,因此该套餐的供餐方案共有61060⨯=种. 故答案为:6016. 法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b+=>>的蒙日圆为22273x y b +=,则C 的离心率为_________. 【答案】12##0.5 【答案解析】【详细分析】根据蒙日圆的定义得出点(,)a b 一定在其蒙日圆上,从而可得离心率. 【答案详解】由题意可知点(,)a b 一定在其蒙日圆上,所以22273a b b +=, 所以234b a ⎛⎫= ⎪⎝⎭,故椭圆C的离心率为12c e a ===. 故答案为:12四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和n S 满足210n n S a +-=. (1)求{}n a 的通项公式; (2)设27log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)13nn a ⎛⎫= ⎪⎝⎭(2)91n nT n =+ 【答案解析】【详细分析】(1)根据条件,利用n a 与n S 间的关系,得到13n n a a -=,从而得出数列{}n a 为等比数列,即可求出结果;(2)由(1)得出3n nb =-,从而得出111191n n b b n n +⎛⎫=- ⎪+⎝⎭,再利用裂项相消法即可求出结果.【小问1答案详解】因为210n n S a +-=,所以当1n =时,113a =, 当2n ≥时,11210n n S a --+-=,两式相减得13n n a a -=,又1103=≠a , 所以数列{}n a 是以13为首项,13为公比的等比数列, 则1111333n nn a -⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭. 【小问2答案详解】因为27271log log (33nn n n b a ===-, 所以119119(1)1n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 所以1111111119991122334111n n T n n n n ⎛⎫⎛⎫=-+-+-++-=-=⎪ ⎪+++⎝⎭⎝⎭ . 18. 已知某公司生产的风干牛肉干是按包销售的,每包牛肉干的质量M (单位:g )服从正态分布()2250,N σ,且(248)0.1P M <=.(1)若从公司销售的牛肉干中随机选取3包,求这3包中恰有2包质量不小于248g 的概率; (2)若从公司销售的牛肉干中随机选取K (K 为正整数)包,记质量在248g ~252g 内的包数为X ,且()320D X >,求K 的最小值. 【答案】(1)0.243 (2)2001 【答案解析】【详细分析】(1)根据正态分布的性质求出(248)P M ≥的值,再结合二项分布的概率计算,即可得答案;(2)根据正态分布的对称性求出(248252)P M <<的值,确定~(,0.8)X B K ,结合正态分布的方差公式,列出不等式,即可求得答案. 【小问1答案详解】由题意知每包牛肉干的质量M (单位:g)服从正态分布()2250,N σ,且(248)0.1P M <=, 所以(248)10.10.9P M ≥=-=,则这3包中恰有2包质量不小于248g 的概率为223C 0.90.10.243⨯⨯=.【小问2答案详解】因为(248)0.1P M <=,所以(248252)(0.50.1)20.8P M <<=-⨯=, 依题意可得~(,0.8)X B K ,所以()0.8(10.8)0.16D X K K =⨯⨯-=, 因为()320D X >,所以0.16320,2000K K >>, 又K 为正整数,所以K 的最小值为2001.19. 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭. (1)求角A ;(2)作角A 的平分线与BC 交于点D,且AD =,求b c +.【答案】(1)π3(2)6 【答案解析】【详细分析】(1)由正弦定理边角互化,化简后利用正切值求角即得;(2)充分利用三角形的角平分线将三角形面积进行分割化简得b c cb +=,再运用余弦定理解方程即得. 【小问1答案详解】 因πsin sin 3a B b A ⎛⎫=+⎪⎝⎭,由正弦定理可得:1sin sin cos sin sin 022B A A A B ⎛⎫+-= ⎪ ⎪⎝⎭,即1sin cos sin 022B A A ⎛⎫-= ⎪ ⎪⎝⎭.因(0,π)B ∈,故sin 0B ≠,则有1cos sin 22A A =,即tan A =, 因(0,π)A ∈,故π3A =. 【小问2答案详解】因为AD 为角平分线,所以DAB DAC ABC S S S += , 所以111sin sin sin 222AB AD DAB AC AD DAC AB AC BAC ⋅∠+⋅∠=⋅∠. 因π3BAC ∠=,6πDAB DAC ∠=∠=,AD =,则444AB AC AB AC +=⋅, 即AB AC AB AC +=⋅,所以b c cb +=. 又由余弦定理可得:2222π2cos()33a b c bc b c bc =+-=+-,把a =,b c cb +=分别代入化简得:2()3()180b c b c +-+-=, 解得:6b c +=或3b c +=-(舍去),所以6b c +=.20. 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PO ⊥平面ABCD ,垂足为O ,E 为PC 的中点,//OE 平面PAD .(1)证明:PC PD =;(2)若24==A D A B ,OC OD ⊥,PC 与平面ABCD 所成的角为60°,求平面PBC 与平面PCD 夹角的余弦值. 【答案】(1)证明见答案解析(2)17. 【答案解析】【详细分析】(1)根据线线平行可得面面平行,进而根据面面平行的性质可得//OF AD ,线线垂直可求证线面垂直,进而根据线面垂直的性质即可求证, (2)建立空间直角坐标系,利用法向量的夹角即可求解. 【小问1答案详解】证明:取CD 的中点F ,连接EF ,PF ,OF ,因为E 为PC 的中点,所以//EF PD . 又EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面APD . 因为//OE 平面PAD ,OE EF E = ,,OE EF ⊂平面OEF , 所以平面//OEF 平面PAD .因为平面ABCD ⋂平面OEF OF =,平面ABCD ⋂平面PAD AD =,所以//OF AD . 因为AD CD ⊥,所以OF CD ⊥.由PO ⊥平面ABCD ,CD ⊂平面ABCD ,可得PO CD ⊥.又PO OF O ⋂=,,PO OF ⊂平面POF ,所以CD ⊥平面POF ,PF ⊂平面POF , 从而PF CD ⊥.因为PF 是CD 的中垂线,所以PC PD =.【小问2答案详解】因为PO ⊥平面ABCD ,所以PC 与平面ABCD 所成的角为60PCO ∠=︒, 又OC OD ⊥,OC OD =,2AB CD ==,所以OC OD PO ====.作OG BC ⊥,垂足为G ,分别以OG,OF ,OP 的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,则()1,1,0D -,()1,3,0B -,()1,1,0C,(P ,()0,4,0BC =,(1,1,PC = ,()2,0,0DC =uuu r .设平面PBC 的法向量为()111,,m x y z =,则111140,0,m BC y m PC x y ⎧⋅==⎪⎨⋅=+=⎪⎩ 令11z =,得)m = .设平面PCD 的法向量为()222,,x n y z =,则222220,0,n DC x n PC x y ⎧⋅==⎪⎨⋅=+-=⎪⎩令2y =,得()n = .所以1cos ,7m n m n n m ⋅===,即平面PBC 与平面PCD 夹角的余弦值为17.21. 已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为6,且其焦点到渐近线的距离为1.(1)求C 的方程;(2)若动直线l 与C 恰有1个公共点,且与C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.【答案】(1)2216x y -=(2)证明见答案解析 【答案解析】【详细分析】(1)由点到直线的距离公式、离心率公式以及平方关系再结合已知即可求解. (2)当直线l 的斜率存在时,不妨设:l y kx m =+,且6k ≠±.动直线l 与C 相切可得Δ0=即2261k m =+,再由弦长公式、点到直线的距离公式表示出三角形面积,结合2261k m =+即可得解.【小问1答案详解】设右焦点为(),0F c ,一条渐近线方程为0bx ay -=,1b ==.因为222,6c e c a b a ===+,所以a c ==. 故C 的方程为2216x y -=.【小问2答案详解】当直线l 的斜率不存在时,l的方程为x =,此时12,22OPQ PQ S ==⨯= . 当直线l 的斜率存在时,不妨设:l y kx m =+,且6k ≠±. 联立方程组22,1,6y kx m x y =+⎧⎪⎨-=⎪⎩得()2221612660k x mkx m ----=. 由()()2222Δ144416660m k km=+-+=,得2261k m =+.联立方程组6y kx m y x =+⎧⎪⎨=⎪⎩,得x =. 不妨设l与,66y x y x ==-的交点分别为,P Q,则P x =同理可求Q x =P Q PQ x =-=因为原点O 到l的距离d =,所以221216OPQS PQ d k=⋅=- . 因为2261k m =+,所以OPQ S =.故OPQ △.22 已知函数ln ()x af x x+=,[1,)x ∈+∞. (1)讨论()f x 的单调性.(2)是否存在两个正整数1x ,2x ,使得当12x x >时,()12121212x x x x x x x x -=?若存在,求出所有满足条件的1x ,2x 的值;若不存在,请说明理由. 【答案】(1)答案见答案解析 (2)14x =,22x = 【答案解析】【详细分析】(1)求得()f x ',分 1a ≥,1a <讨论()f x 的单调性. (2)将问题转化为()121212ln ln ln x x x x x x -=+,根据ln ()x f x x=的值域确定122x x -=,分别就13,4,x =⋅⋅⋅详细分析是否满足题意. 【小问1答案详解】21ln ()a xf x x'--=, 当1a ≥时,()0f x '≤,()f x 在[1,)+∞上单调递减. 当1a <时,令()0f x '=,得1e a x -=.)11,e a x -⎡∈⎣,()0f x '>,则()f x 在)11,e a-⎡⎣上单调递增, ()1e ,a x ∞-∈+,()0f x '<,则()f x 在()1e ,a ∞-+上单调递减.【小问2答案详解】由(1)知,令0a =,得ln ()xf x x=在[1,e)上单调递增,在(e,)+∞上单调递减,则11()(e)e 2f x f ≤=<. 因为121x x >≥,所以()12211212x x x x x x x x -=,即()12122112ln ln ln x x x x x x x x -=+, 即()121212ln ln ln x x x x x x -=+, .因为1x ,2x 为正整数,所以121x x -≥.当121x x -=时,21121x xx x =,因为21x ≥,12x ≥,所以21121x x x x >,这与21121x xx x =矛盾,不符合题意.当121x x ->时,因11ln 12x x <,22ln 12x x <,所以()121212ln ln ln 1x x x x x x -=+<, 所以12e x x -<,得122x x -=,即1212ln ln ln 2x x x x =+. 经检验,当21x =,13x =时,不符合题意, 当22x =,14x =时,符合题意,当23x =,15=x 时,因为53153037532763528<==⨯,所以ln3ln5ln 235+<, 当24x ≥时,11ln ln 6ln565x x ≤<,22ln ln 4ln343x x ≤<, 所以1212ln ln ln5ln3ln 253x x x x +<+<. 综上,仅存在14x =,22x =满足条件.【点评】关键点评:本题关键点在于根据ln ()xf x x =的值域确定12x x -的范围,再根据12,x x 为正整数得122x x -=,从而就12,x x 的取值讨论即可为。
天津市部分区2023-2024学年高三上学期期末练习数学试题

天津市部分区2023~2024学年度第一学期期末练习高三数学本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
祝各位考生考试顺利!第I 卷(共45分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共9小题,每小题5分,共45分。
参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+ .·如果事件A ,B 相互独立,那么()()()P AB P A P B =.·棱锥的体积公式13V Sh =h ,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}0,1,2,3,4,5U =,集合{}1,2,4A =,{}2,5B =,则()U A B = ð()A.{}1,2,4,5 B.{}2 C.{}0,3 D.{}0,2,3,52.设x ∈R ,则“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知0.14a =,0.312b -⎛⎫= ⎪⎝⎭,4log 3c =,则a ,b ,c 的大小关系为()A.c b a << B.a c b << C.c a b << D.b c a<<4.已知函数()f x 在[]4,4-上的大致图象如图所示,则()f x 的解析式可能为()A.()cos2x f x x π=⋅ B.()cos 2x f x x π=⋅C.()sin 2x f x x π=⋅ D.()sin 2xf x x π=⋅5.已知等比数列{}n a 的前n 项和是n S ,且12a =,32618a a =-,则5S =()A.30B.80C.240D.2426.从4名女生、6名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为()A.1440 B.120 C.60 D.247.将函数()sin 2f x x =的图象向左平移6π个单位长度,得到函数()g x 的图象,则()g x 所具有的性质是()A.图象关于直线6x π=对称B.图象关于点5,012π⎛⎫ ⎪⎝⎭成中心对称C.()g x 的一个单调递增区间为,123ππ⎡⎤⎢⎥⎣⎦D.曲线()y g x =与直线2y =的所有交点中,相邻交点距离的最小值为6π8.已知三棱锥S ABC -中,2SAB ABC π∠=∠=,2SB =,SC =,1AB =,3BC =,则三棱锥S ABC -的体积是()A.2 C.2 D.9.双曲线C :()222210,0x y a b a b-=>>的离心率为52,实轴长为4,C 的两个焦点为1F ,2F .设O 为坐标原点,若点P 在C 上,且123cos 4F PF ∠=-,则OP =()A.2 C. D.第Ⅱ卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上。
安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案

六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。
北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2019·汕头模拟) 已知集合,则()
A .
B .
C .
D .
2. (2分) (2019高二下·平罗月考) 下列函数为同一函数的是()
A . y=lg x2和y=2lg x
B . y=x0和y=1
C . y=和y=x+1
D . y=x2-2x和y=t2-2t
3. (2分) (2019高一上·嘉兴月考) 已知函数在区间[-1,2]上的最大值为2,则的值等于()
A . 2或3
B . -1或3
C . 1
D . 3
4. (2分)已知函数f(x)的定义域为R,满足,且当时,,则
等于()
A . -0.5
B . 0.5
C . -1.5
D . 1.5
5. (2分) (2017高一下·承德期末) 直线(2a+5)x﹣y+4=0与2x+(a﹣2)y﹣1=0互相垂直,则a的值是()
A . ﹣4
B . 4
C . 3
D . ﹣3
6. (2分)已知数列中,,则此数列是()
A . 递增数列
B . 递减数列
C . 摆动数列
D . 常数列
7. (2分)(2017·赣州模拟) 在△ABC中,D、E是BC边上两点,BD、BA、BC构成以2为公比的等比数列,BD=6,∠AEB=2∠BAD,AE=9,则三角形ADE的面积为()
A . 31.2
B . 32.4
C . 33.6
D . 34.8
8. (2分) (2019高三上·吉林月考) 已知中,角的对边分别为,,,
,则外接圆的面积为()
A .
B .
C .
D .
9. (2分)某工厂年产量第二年增长率为a,第三年增长率为b,则这两年平均增长率x满足()
A . =
B .
C . <
D . x
10. (2分)焦点坐标是(-2,0),(2,0),且虚轴长为2的双曲线的方程是()
A .
B .
C .
D .
11. (2分)已知数列{an}的首项a1=2,且an+1=2an+1,(n≥1,n∈N+),则a5=()
A . 7
B . 15
C . 30
D . 47
12. (2分)如图,在三棱锥P-ABC中,已知PC⊥BC,PC⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是()
A . 平面EFG∥平面PBC
B . 平面EFG⊥平面ABC
C . ∠BPC是直线EF与直线PC所成的角
D . ∠FEG是平面PAB与平面ABC所成二面角的平面角
二、填空题 (共8题;共26分)
13. (10分)已知函数f(x)=4x﹣2•2x+1﹣6,其中x∈[0,3].
(1)求函数f(x)的最大值和最小值;
(2)若实数a满足f(x)﹣a•2x≥0恒成立,求a的取值范围.
14. (1分) (2017高一上·和平期末) 已知向量 =(﹣1,2), =(2,﹣3),若向量λ + 与向量 =(﹣4,7)共线,则λ的值为________.
15. (10分) (2019高一上·田阳月考) 计算:
(1)
(2)
16. (1分)在等比数列{an}中,已知a1=5,a8•a10=100,那么a17=________.
17. (1分)(2019·黄浦模拟) 若球主视图的面积为,则该球的体积等于________
18. (1分) (2017高二上·江苏月考) 已知椭圆的一个顶点为,离心率
,直线交椭圆于两点,如果的重心恰好为椭圆的右焦点,直线方程为________.
19. (1分) (2017高一下·鸡西期末) 在正方体中(如图),已知点在直线上运动,则下列四个命题:
①三棱锥的体积不变;
②直线与平面所成的角的大小不变;
③二面角的大小不变;
④ 是平面上到点和距离相等的点,则点的轨迹是直线
其中真命题的编号是________.(写出所有真命题的编号)
20. (1分) (2015高一下·普宁期中) 抛物线y2=12x上一点M到抛物线焦点的距离为9,则点M到x轴的距离为________
三、解答解 (共4题;共30分)
21. (5分) (2017高一下·滨海期末) 在△ABC中,a,b,c分别为角A,B,C所对的边.已知sinC= sinB,c=2,cosA= .
(Ⅰ)求a的值;
(Ⅱ)求sin(2A﹣)的值.
22. (10分) (2018高一下·百色期末) 已知为等差数列的前项和,已知 .
(1)求数列的通项公式和前项和;
(2)是否存在,使成等差数列,若存在,求出,若不存在,说明理由.
23. (10分)(2017高一下·长春期末) 已知分别为三个内角的对边,
.
(1)求A;
(2)若,求的面积.
24. (5分)(2018·荆州模拟) 在四棱锥中,,,
,是以为斜边的等腰直角三角形,平面平面 .
(Ⅰ)证明:;
(Ⅱ)若点在线段上,且,求三棱锥的体积.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共8题;共26分)
13-1、
13-2、14-1、15-1、15-2、16-1、17-1、18-1、19-1、
20-1、
三、解答解 (共4题;共30分) 21-1、
22-1、
22-2、
23-1、23-2、
24-1、
第11 页共11 页。