第八节多元函数的极值及其求法

合集下载

多元函数求极值(拉格朗日乘数法)-8页文档资料

多元函数求极值(拉格朗日乘数法)-8页文档资料

第八节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。

熟练使用拉格朗日乘数法求条件极值。

教学重点:多元函数极值的求法。

教学难点:利用拉格朗日乘数法求条件极值。

教学内容:一、 多元函数的极值及最大值、最小值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。

如果都适合不等式 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。

使函数取得极值的点称为极值点。

例1 函数2243y x z +=在点(0,0)处有极小值。

因为对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。

从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面2243y x z +=的顶点。

例2 函数22y x z +-=在点(0,0)处有极大值。

因为在点(0,0)处函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。

例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。

因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。

定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:证 不妨设),(y x f z =在点),(00y x 处有极大值。

依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有类似地可证从几何上看,这时如果曲面),(y x f z =在点),,(000z y x 处有切平面,则切平面成为平行于xOy 坐标面的平面00=-z z 。

多元函数极值

多元函数极值

提示: 当(x, y)=(0, 0)时, z=0, 而当(x, y)≠(0, 0) 时, z>0. 因此z=0是函数的极小值.
首页 上页 返回 下页 结束 铃
一,多元函数的极值及最大值,最小值
极值的定义 设函数z=f(x, y)在点(x0, y0)的某个邻域内有定义, 如果对 于该邻域内任何异于(x0, y0)的点(x, y), 都有 f(x, y)<f(x0, y0)(或f(x, y)>f(x0, y0)), 则称函数在点(x0, y0)有极大值(或极小值)f(x0, y0). 例2 函数z = x2 + y2 在 (0, 0)处有极大值 点 .
首页
上页
返回
下页
结束

二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 有时可以把条件极值问题化为无条件极值问题. 例如, 求V=xyz在条件2(xy+yz+xz)=a2下的最大值.
a2 2xy 由条件2(xy+ yz + xz)=a2 , 解得z = 得 , 于是 2(x+ y) xy a2 2xy V= ( ). 2 (x+ y) 这就把求条件极值问题转化成了求无条件极值问题.
首页 上页 返回 下页 结束 铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 (2)用拉格朗日乘数法 在多数情况下较难把条件极值转化为无条件极值, 需要 用一种求条件极值的专用方法, 这就是拉格朗日乘数法. 下面导出函数z=f(x, y)在条件(x, y)=0下取得的极值的必 要条件. 假定f(x, y)及(x, y)有各种所需要的条件.

多元函数求极值(拉格朗日乘数法)

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。

熟练使用拉格朗日乘数法求条件极值。

教学重点:多元函数极值的求法。

教学难点:利用拉格朗日乘数法求条件极值。

教学内容:一、 多元函数的极值及最大值、最小值定义 设函数在点的某个邻域内有定义,对于该邻域内),(y x f z =),(00y x 异于的点,如果都适合不等式),(00y x ,00(,)(,)f x y f x y <则称函数在点有极大值。

如果都适合不等式(,)f x y ),(00y x 00(,)f x y ,),(),(00y x f y x f >则称函数在点有极小值.极大值、极小值统称为极值。

(,)f x y ),(00y x ),(00y x f 使函数取得极值的点称为极值点。

例1 函数在点(0,0)处有极小值。

因为对于点(0,0)的2243y x z +=任一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。

从几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面的顶点。

2243y x z +=例2 函数在点(0,0)处有极大值。

因为在点(0,0)处22y x z +-=函数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负,点(0,0,0)是位于平面下方的锥面的顶点。

xOy 22y x z +-=例3 函数在点(0,0)处既不取得极大值也不取得极小值。

因为在xy z =点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。

定理1(必要条件) 设函数在点具有偏导数,且在点),(y x f z =),(00y x 处有极值,则它在该点的偏导数必然为零:),(00y x 0),(,0),(0000==y x f y x f y x 证 不妨设在点处有极大值。

(完整)第八节 多元函数的极值及其求法

(完整)第八节  多元函数的极值及其求法

第八节 多元函数的极值及其求法要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值. 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。

难点:求最值实际问题建立模型,充分性判别法的证明。

作业:习题8-8(71P )3,5,8,9,10问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题.一.多元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值.函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立.特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立. 这表明一元函数),(0y x f 在0x x =处取得极大值,因而必有 0),(00=y x f x .类似地可证 0),(00=y x f y . 几何解释若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不一定是极值点,如xy z =在)0,0(点. 怎样判别驻点是否是极值点呢?下面定理回答了这个问题. 定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论. 求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点),(),(),,(2211n n y x y x y x ⋯⋯;(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.例3.考察22y x z +-=是否有极值. 解 因为22yx x xz +-=∂∂,22yx y yz +=∂∂在0,0==y x 处导数不存在,但是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,所以函数在)0,0(点取得极大值.注意2.极值点也不一定是驻点,若对可导函数而言,怎样? 例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f yx ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ; 在点)2,1(处,0722<-=-B AC ,所以)2,1(f 不是极值; 在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,所以函数在点)2,3(-处有极大值为31)2,3(=-f .二.函数的最大值与最小值求最值方法:⑴ 将函数),(y x f 在区域D 内的全部极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值; ⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.实际问题求最值根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值.例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,分别为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y x u --=---=∂∂,)2(x y a x yu --=∂∂,解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3ay =.由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a最大.另外还可得出,若令y x a z --=,则33)3()3(z y x a xyz u ++=≤= 即 33zy x xyz ++≤.三个数的几何平均值不大于算术平均值.例5.由一宽为cm 24的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,问怎样折法才能使断面的面积最大?解 设折起来的边长为xcm ,倾斜角为α,那么梯形断面的下底长为x 224-,上底长为αcos 2224x x +-,高为αsin x ,则断面面积ααsin )224cos 2224(21x x x x A ⋅-++-=即ααααcos sin sin 2sin 2422x x x A +-=, D :120<<x ,02πα<≤,下面是求二元函数),(αx A 在区域D :120<<x ,02πα<≤上取得最大值的点),(αx .令 ⎩⎨⎧=-+-==+-=0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222αααααααααx x x A x x A x 由于0sin ≠α,0≠x 上式为2122cos 0(1)24cos 2cos (2cos 1)0(2)x x x x αααα-+=⎧⎨-+-=⎩将212cos x x α-=代入(2)式得8x =,再求出1cos 2α=,则有0603==πα,于是方程组的解是0603==πα,cm x 8=. 在考虑边界,当2πα=时,函数2224x x A -=为x 的一元函数,求最值点,由0424=-='x A x,得 6=x . 所以722sin 622sin 624)2,6(2=⨯-⨯=πππA , 833483cos 3sin 83sin 823sin 824)3,8(22≈=+⨯-⨯=πππππA .根据题意可知断面面积的最大值一定存在,并且在区域D :120<<x ,20πα<<内取得,通过计算得知2πα=时的函数值比060=α,cm x 8=时函数值为小,又函数在D 内只有一个驻点,因此可以断定,当cm x 8=,060=α时,就能使断面的面积最大.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;若求函数22y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有 00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ϕ≠.有隐函数存在定理可知,方程0),(=y x ϕ确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数 (,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道000000(,)(,)0x y x x x x dz dyf x y f x y dx dx ===+=,而方程0),(=y x ϕ所确定的隐函数的导数为0000(,)(,)x x x y x y dydxx y ϕϕ==-.将上式代入00000(,)(,)0x y x x dyf x y f x y dx =+=中,得00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=,因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩. 为了计算方便起见,我们令0000(,)(,)y y f x y x y λϕ=-,则上述必要条件变为0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩, 容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点. ⑴ 构成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数) ⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ得λ,,y x ,其中y x ,就是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定. 拉格朗日乘数法推广 求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组1212121200(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点.注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.例6。

高等数学 第九章 第八节 多元函数的极值及其求法

高等数学 第九章 第八节  多元函数的极值及其求法

25
例8 求函数 f ( x , y , z) ln x ln y 3ln z 在球面
x2 y2 z2 5r2 ( x 0 , y 0 , z 0) 上的最 大值。
第九章 第八节
26
内容小结
多元函数的极值 (取得极值的必要条件、充分条件) 多元函数的最值 拉格朗日乘数法
第九章 第八节
解得唯一驻点 (6 , 4 , 2),
故最大值为 umax 63 42 2 6912
第九章 第八节
21
例7
在第一卦限内作椭球面
x2 a2
y2 b2
z c
2 2
1 的切
平面,使切平面与三个坐标面所围成的四面体体
积最小,求切点坐标。
解 设 P( x0 , y0 , z0 ) 为椭球面上一点,
6
6 x0 y0z0
在条件
x02 a2
y02 b2
z02 c2
1 下求
V
的最小值点
令 u ln x0 ln y0 ln z0
G( x0 , y0 , z0 )
ln
x0
ln
y0
ln z0
(
x02 a2
y02 b2
z02 c2
1)

G
x0
0 , Gy0
0 , Gz0
0
x02 a2
y02 b2
A
zxx
|P
1 2
z
,
B
zxy
|P
0
,
C
zyy
|P
2
1
z
AC
B2
1 (2 z)2
0 (z
2)
所以函数在
P

9(8)多元函数的极值及其求法

9(8)多元函数的极值及其求法

函数的极大值与极小值统称为函数的 极值.
函数的极大值点与极小值点统称为函数的 极值点.
注 多元函数的极值也是局部的, 是与P0的邻域
内的值比较. 一般来说:极大值未必是函数的最大值. 极小值未必是函数的最小值.
有时, 极小值可能比极大值还大.
函数
存在极值, 在简单的情形下是 椭圆抛物面
容易判断的. 例 函数 z 3 x 2 4 y 2
例4 有一宽为 24cm 的长方形铁板 ,把它折起来做成 一个断面为等腰梯形的水槽, 问怎样折法才能使断面面 积最大. 解: 设折起来的边长为 x cm, 倾角为 , 则断面面积 1 为 ( 24 2 x 2 x cos ) x sin 2
24 x sin 2 x sin x cos sin ( D : 0 x 12 , 0 ) 2
点的偏导数必然为零: f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0. 证 不妨设 z f ( x, y )在点( x0 , y0 )处有极大值, 则对于( x0 , y0 )的某邻域内任意( x , y ) ( x0 , y0 ), 都有 f ( x , y ) f ( x0 , y0 ), 故当y y0 , x x0时,
第八节 多元函数的极值及其求法
一、多元函数的极值 二、最值应用问题
三、条件极值
一、多元函数的极值和最值
1.极大值和极小值的定义 一元函数的极值: 是在一点附近(区间) 将函数值比大小. 定义 设在点P0的某个去心邻域, f ( P ) f ( P0 ), 则称 点P0为函数的极大值点. f ( P0 )为极大值. 类似可定义极小值点和极小值.
其中 为某一常数, 可由

第八节 多元函数的极值及其求法

第八节 多元函数的极值及其求法
第八节 多元函数的极值及其求法
一、多元函数的极值
第九章
二、最值应用问题
三、条件极值
目录
上页
下页
返回
结束
一、 多元函数的极值
定义 设A是一个n n对称矩阵, 即aij a ji , i , j 1,2,..., n.
a11 a21 A a n1
n n i 1 j 1
0
0
得驻点 ( 3 2 , 3 2 )
根据实际问题可知最小值在定义域内应存在, 因此可 断定此唯一驻点就是最小值点. 即当长、宽均为 3 2
高为 3 23
2 2
3 2 时, 水箱所用材料最省.
目录 上页 下页 返回 结束
例4. 有一宽为 24cm 的长方形铁板 , 把它折起来做成 一个断面为等腰梯形的水槽, 问怎样折法才能使断面面 积最大. 解: 设折起来的边长为 x cm, 倾角为 , 则断面面积 1 为 ( 24 2 x 2 x cos ) x sin 2
x
目录
上页
下页
返回
结束
例1. 已知函数 则(
的某个邻域内连续, 且
A
)
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点.
(2003 考研)
提示: 由题设
目录
上页
下页
返回
结束
定理1 (必要条件) 函数 偏导数, 且在该点取得极值 , 则有
存在
( x0 , y 0 ) 0 f x ( x0 , y0 ) 0 , f y
因而f 在点P 0不取到极值.
目录 上页 下页 返回 结束
实用判定条件 :
若函数 z f ( x, y) 在点( x0 , y0 )的某邻域内 具有一阶和二阶连续偏导数, 且

学习_课件98多元函数的极值及其求法

学习_课件98多元函数的极值及其求法
第三步 定出AC B2 的符号,再判定是否是极值.
例4、 求 函 数f ( x, y) x2 y2 2x 1的 极 值. 例5、 求 函 数f ( x, y) x3 y3 3x2 3 y2 9x 的 极 值.
3、多元函数的最值 (1)无即约:束寻求 最目优标化函问数题的最大(小)值.
在条件 x02 a2

y02 b2

z02 c2
1下求 V 的最小值,
令 u ln x0 ln y0 ln z0 ,
G( x0 , y0 , z0 )

ln
x0

ln
y0

ln
z0


(
x02 a2

y02 b2

z02 c2

1) ,

G
x0

x02 a2
0,

体积最小,求切点坐标.
解 设P( x0 , y0 , z0 )为椭球面上一点,
令F ( x,
y,
z)

x2 a2

y2 b2

z2 c2

1,
则Fx |P
2 x0 , a2
Fy |P
2 y0 , b2
Fz |P
2z0 c2
过P( x0 , y0 , z0 )的切平面方程为
x0 a2
其中1,2均为常数,可由 偏导数为零及条件解出
x, y, z, t ,即得极值点的坐标.
例 7 将正数 12 分成三个正数x, y, z 之和 使得 u x3 y2z为最大.
解 令 F ( x, y, z) x3 y2z ( x y z 12),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八节 多元函数的极值及其求法要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。

重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。

难点:求最值实际问题建立模型,充分性判别法的证明。

作业:习题8-8(71P )3,5,8,9,10问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题.一.多元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值.函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例2.函数2243y x z +=在点)0,0(处有极小值.因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均有),(),(00y x f y x f <,),(),(00y x y x ≠成立.特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.这表明一元函数),(0y x f 在0x x =处取得极大值,因而必有0),(00=y x f x .类似地可证 0),(00=y x f y .几何解释若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不一定是极值点,如xy z =在)0,0(点.怎样判别驻点是否是极值点呢?下面定理回答了这个问题.定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论.求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点),(),(),,(2211n n y x y x y x ⋯⋯;(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.例3.考察22y x z +-=是否有极值.解 因为22y x x x z +-=∂∂,22y x y y z +=∂∂在0,0==y x 处导数不存在,但是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,所以函数在)0,0(点取得极大值.注意2.极值点也不一定是驻点,若对可导函数而言,怎样?例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ;在点)2,1(处,0722<-=-B AC ,所以)2,1(f 不是极值;在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,所以函数在点)2,3(-处有极大值为31)2,3(=-f .二.函数的最大值与最小值求最值方法:⑴ 将函数),(y x f 在区域D 内的全部极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值;⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.实际问题求最值根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值.例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,分别为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y xu --=---=∂∂,)2(x y a x y u --=∂∂, 解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a最大.另外还可得出,若令y x a z --=,则33)3()3(z y x a xyz u ++=≤= 即 33z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.例5.由一宽为cm 24的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,问怎样折法才能使断面的面积最大?解 设折起来的边长为xcm ,倾斜角为α,那么梯形断面的下底长为x 224-,上底长为αcos 2224x x +-,高为αsin x ,则断面面积ααsin )224cos 2224(21x x x x A ⋅-++-=即 ααααcos sin sin 2sin 2422x x x A +-=,D :120<<x ,02πα<≤,下面是求二元函数),(αx A 在区域 D :120<<x ,02πα<≤上取得最大值的点),(αx . 令 ⎩⎨⎧=-+-==+-=0)sin (cos cos 2cos 240cos sin 2sin 4sin 242222αααααααααx x x A x x A x由于0sin ≠α,0≠x 上式为2122cos 0(1)24cos 2cos (2cos 1)0(2)x x x x αααα-+=⎧⎨-+-=⎩将212cos x x α-=代入(2)式得8x =,再求出1cos 2α=,则有0603==πα,于是方程组的解是0603==πα,cm x 8=. 在考虑边界,当2πα=时,函数2224x x A -=为x 的一元函数,求最值点,由0424=-='x A x,得 6=x . 所以722sin 622sin 624)2,6(2=⨯-⨯=πππA ,833483cos 3sin 83sin 823sin 824)3,8(22≈=+⨯-⨯=πππππA . 根据题意可知断面面积的最大值一定存在,并且在区域D :120<<x ,20πα<<内取得,通过计算得知2πα=时的函数值比060=α,cm x 8=时函数值为小,又函数在D 内只有一个驻点,因此可以断定,当cm x 8=,060=α时,就能使断面的面积最大.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;若求函数22y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ϕ≠. 有隐函数存在定理可知,方程0),(=y x ϕ确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数(,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道000000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ϕ所确定的隐函数的导数为00000(,)(,)x x x y x y dydx x y ϕϕ==-. 将上式代入00000(,)(,)0x y x x dyf x y f x y dx =+=中,得00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=, 因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩.为了计算方便起见,我们令0000(,)(,)y y f x y x y λϕ=-,则上述必要条件变为0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩,容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点.⑴ 构成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数)⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ得λ,,y x ,其中y x ,就是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.拉格朗日乘数法推广求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组121212120000(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.例6.求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长分别为z y x ,,,则问题是在条件0222),,(2=-++=a xz yz xy z y x ϕ下,求函数xyz v = )0,0,0(>>>z y x 的最大值.构成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ,求函数F 对z y x ,,偏导数,使其为0,得到方程组 ⎪⎪⎩⎪⎪⎨⎧=-++=++=++=++02220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ)4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 zx y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,可得z y x ==,将其代入方程02222=-++a xz yz xy 中,得 a z y x 66===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积为3366a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点.解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)-距离为d =但是,如果考虑2d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ϕ=++-=.构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-.求函数F 对z y x ,,偏导数,使其为0,得到方程组 2222(3)202(1)202(1)204x x y y z z x y z λλλ-+=⎧⎪-+=⎪⎨++=⎪⎪++=⎩)4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三个方程联系起来,有311x y z x y z λ--+-===或311x y z--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得222(3)()4z z z -+-+=,求出z =,再代入到3,x z y z =-=-中,即可得 11x =,11y =,从而得两点(,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为,最远点为(.思考题1.若二元函数),(y x f z =在某区域内连续且有唯一的极值点,那么这个点就是函数在该区域上的最大值点或最小值点吗?2.利用拉格朗日乘数法求函数),,(z y x f u =在条件0),,(,0),,(==z y x z y x ψϕ下极值的方法是怎样的?。

相关文档
最新文档