电子测量实验..
电子测量实验报告

实验三 电压表测量一、 实验目的1.掌握典型电压波形对不同检波方式电压表的影响,学会正确解读和修正测试数据2.学习用电压表测量噪声电压的方法二、 实验条件1、数字合成函数信号发生器DFG30一台2、超高频数字毫伏表TH2270一台3、均值表ESCORT97/EDM89S 一台4、6 位数字电压表 一台5、模拟数字示波器HM1507-3一台三、 实验原理1.交流电压表的波形响应一交流电压UX 的大小,可用该电压的峰值、平均值和有效值表征。
交流电压的峰值:是指任意周期性交变电压u (t)在一周期内,电压所能达到的最大值。
交流电压的平均值:指交流电压经过理想检波器后的平均值,实际中,不特别注明,是指全波平均值。
数学表达为:dt t u T V T ⎰=0)(1 交流电压的有效值:指电压通过某纯组负载所产生的热量与一个支流电压在同一负载上产生的热量相等时,该直流电压的数值就是交流电压的有效值。
数学表示为:⎰=T dt t u TV 02)(1 电压表的示值除另有说明外,均按正弦有效值刻度,读数用α表示。
根据交流电压的三种特征,可用峰值、平均值和有效值检波电路将测试电压变成直流,按直流电压进行刻度,分别构成峰值平均值和有效值电压表。
由检波方式的不同,要正确解读表的显示值,需加以换算。
交流电压的波峰因数KF 定义为该电压的有效值与平均值之比:VV K f = 交流电压的波峰因数KP 定义为电压的波峰值与有效值之比:VV K p ˆ= 2.测试按图3-1进行21峰值表的检波探头如图3-2:用这种探头可检测10KHz 以上的交流电压。
四、 实验内容1.用峰值表TH2270测电压置信号源输出2V ,频率100KHz ,占空比50%,偏置为零的正弦、三角和方波,有效值即DFG30所显示峰值的换算数值,或由数字电压表测得,作2.用均值表测电压3.测试信号的波形,波峰因数4.数字电压表检测电压使信号输出幅值2V,偏置1V,频率10KHz,占空比50%的信号,用注:求相对误差时,以VDC+AC为参考值。
电子元件测量实验报告

电子元件测量实验报告引言电子元件测量是电子工程中非常重要的一项实验内容。
通过测量电子元件的电压、电流、电阻等特性参数,可以了解其工作状态和性能指标。
本实验旨在通过实际操作,掌握电子元件测量的方法和技巧,并理解各种测量仪器的工作原理。
实验目的本实验的主要目的是: 1. 熟悉常用的电子元件测量仪器,如电压表、电流表和万用表等; 2. 学习使用这些仪器进行直流电压、电流和电阻的测量; 3. 掌握使用示波器观察交流电信号的方法。
实验原理在进行电子元件测量之前,我们需要了解一些基本的电路原理。
1. 电压:电压是指电路两点之间的电势差,也可以理解为电荷在电路中的推动力。
电压通常用伏特(V)表示。
2. 电流:电流是指单位时间内通过导体横截面的电荷量,也可以理解为电荷在电路中的流动。
电流通常用安培(A)表示。
3. 电阻:电阻是指电路对电流流动的阻碍程度,也可以理解为导体对电流的阻力。
电阻通常用欧姆(Ω)表示。
实验步骤本实验分为以下几个步骤进行。
步骤一:直流电压的测量1.将电压表调至直流电压测量档位。
2.将电压表的正负极依次连接到待测电压的两个端点。
3.读取电压表上显示的数值,并记录下来。
步骤二:直流电流的测量1.将电流表调至直流电流测量档位。
2.将电流表的正负极依次连接到待测电流的两个端点。
3.读取电流表上显示的数值,并记录下来。
步骤三:电阻的测量1.将万用表调至电阻测量档位。
2.将待测电阻的两端分别连接到万用表的两个触头。
3.读取万用表上显示的数值,并记录下来。
步骤四:交流电信号的观察1.将示波器的探头连接到待测电路的输出端。
2.调节示波器的时间和电压基准,使波形清晰可见。
3.观察示波器上显示的波形,记录下来。
结果与分析根据实验步骤所得的数据,我们可以进行一些结果的分析和总结。
1. 直流电压的测量结果可以用来判断电路中不同位置的电势差,从而了解电压分布情况。
2. 直流电流的测量结果可以用来判断电路中不同位置的电流大小,从而了解元件的工作状态。
电子测量课实验报告

电子测量课实验报告引言电子测量是电子工程中非常重要的一个领域,它涉及到电流、电压、电阻、功率等各种电子参数的测量方法和技术。
对于电子工程师来说,掌握正确的测量方法和技巧是非常重要的,因为准确的电子测量结果是设计和实施电子系统的基础。
在本次实验中,我们将学习和掌握一些常见的电子测量实验,并验证其准确性和可靠性。
实验目的1. 了解电子测量的基本原理和方法;2. 掌握测量电流、电压和电阻的常用仪器和技巧;3. 验证电子测量的准确性和可靠性。
实验设备与仪器本次实验使用的设备和仪器有:- 示波器;- 万用表;- DC电源;- 电阻箱;- 电流源;- 电压源。
实验步骤与结果分析1. 电流测量我们首先进行了电流测量实验。
将电流源连接到待测电路中,在电流源输出恒定电流的情况下,使用万用表测量电流值。
根据测得的电流值和实际电流源输出的电流值进行对比分析,验证测量结果的准确性。
2. 电压测量接下来进行了电压测量实验。
将电压源连接到待测电路中,在电压源输出恒定电压的情况下,使用示波器和万用表分别测量电压波形和电压值。
通过比较示波器和万用表测量的电压波形和电压值,验证不同测量方法的可靠性和一致性。
3. 电阻测量最后进行了电阻测量实验。
通过使用电阻箱连接待测电阻,并使用万用表测量电阻值。
将测得的电阻值与实际电阻箱设置的电阻值进行比较,验证测量结果的准确性和精度。
结论通过本次实验,我们学习和掌握了一些常见的电子测量方法和技巧,并验证了测量结果的准确性和可靠性。
电子测量对于电子工程师来说是非常重要的,它为我们提供了准确的电子系统设计和实施的基础。
在今后的学习和工作中,我们将运用所学的电子测量知识,准确地测量和分析各种电子参数,为电子系统的设计和优化提供支持和指导。
电子测量实验报告

电子测量实验报告
本实验旨在通过使用多种电子仪器,对不同电路的电压、电流、电阻等参数进行测量。
下面是本实验的实验流程、实验仪器和实验结果的详细说明。
一、实验流程
本实验的实验流程如下:
1. 根据实验要求,选择合适的测量仪器和电路。
2. 连接电路,确保电路连接正确、无短路和开路。
3. 通过万用表或数字万能表测量电路中的电压、电流等参数。
4. 记录测量数据,并计算出电阻、电功率等参数。
5. 分析数据,检查实验结果的准确性和可靠性。
二、实验仪器
本实验使用的主要仪器如下:
1. 万用表/数字万用表:用于测量电路中的电量参数,如电压、电流等。
2. 示波器:用于显示电路中的变化趋势,如电流、电信号等。
3. 电源:提供电路所需的电能。
4. 电阻箱:用于产生不同的电阻值以调整电路。
三、实验结果
本实验通过测量不同电路中的电量参数,得出以下结果:
1. 测量直流电路中的电压、电流、电阻等参数。
2. 测量交流电路中的电压、电流、电容等参数。
3. 测量滤波电路中的电压、电流、电容等参数。
通过对以上数据的分析,可以得到每个电路的理论计算值和实验测量值的比较,从而评估实验结果的准确性和可靠性。
四、实验总结
本实验通过使用多种电子仪器,对不同电路的电量参数进行测量,加深了对电子学原理的理解。
在实验过程中,我们注意到仪器的使用方法和电路的连接方式对实验结果的影响,提高了我们的实验技能和注意力。
最终,我们得到了准确可靠的实验结果,为我们的学习和应用奠定了基础。
电子测量实验报告_电阻

一、实验目的1. 熟悉电子测量仪器的使用方法;2. 掌握电阻的测量原理和方法;3. 提高实验操作技能和数据处理能力。
二、实验原理电阻是电路中的一种基本元件,用于限制电流的流动。
电阻的测量可以通过多种方法实现,本实验采用伏安法测量电阻。
伏安法是通过测量电阻两端的电压和通过电阻的电流,根据欧姆定律(U=IR)计算电阻值。
三、实验仪器与设备1. 指针式万用表2. 可调直流电源3. 电阻箱4. 电阻5. 滑动变阻器6. 开关7. 导线若干四、实验步骤1. 将电阻、滑动变阻器、开关和导线按照电路图连接好;2. 将万用表选择到电压挡,调整直流电源的输出电压,使电阻两端的电压在合适的范围内;3. 闭合开关,读取电阻两端的电压值U;4. 将万用表选择到电流挡,调整滑动变阻器,使通过电阻的电流在合适的范围内;5. 读取通过电阻的电流值I;6. 重复步骤3和4,至少测量3次,记录数据;7. 根据欧姆定律,计算电阻的平均值。
五、实验数据及处理1. 电压U(V):1.23、1.25、1.272. 电流I(A):0.25、0.26、0.273. 电阻R(Ω)=U/I- 第一次测量:R1 = 1.23V / 0.25A = 4.92Ω- 第二次测量:R2 = 1.25V / 0.26A = 4.81Ω- 第三次测量:R3 = 1.27V / 0.27A = 4.71Ω4. 电阻平均值:R = (R1 + R2 + R3) / 3 = 4.83Ω六、实验结果与分析通过实验测量,得到电阻的平均值为4.83Ω。
实验结果表明,伏安法可以有效地测量电阻值。
在实验过程中,电压和电流的测量值存在一定的误差,这是由于测量仪器的精度和实验操作的不准确性所导致的。
为了提高测量精度,可以采取以下措施:1. 使用高精度的万用表和直流电源;2. 仔细操作,确保电路连接正确;3. 多次测量取平均值,以减小误差。
七、实验总结本次实验通过伏安法测量电阻,掌握了电阻的测量原理和方法,提高了实验操作技能和数据处理能力。
电子测量实验报告

电子测量实验报告电子测量实验报告实验目的:本实验旨在学习和掌握基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。
实验仪器:数字电压表(DMM)、示波器(OSC)和信号发生器(SG)。
实验原理:1. 数字电压表:用于测量电路中的电压值,采用数码显示,具有较高的精度和稳定性。
在电路中需要将表针式电压表或模拟电压表替换为数字电压表,以便更准确地测量电路中的电压。
2. 示波器:用于显示电压随时间的变化情况,具有测量信号幅度、频率、相位等特性的功能。
示波器内置了扫描信号发生器和偏移电压源,可以在显示屏上显示出电压随时间的波形图。
3. 信号发生器:用于产生各种稳定的信号源,包括正弦波、方波、脉冲等。
可以通过调节信号发生器的频率和幅度来产生所需的信号。
实验步骤:1. 将数字电压表连接到待测电路的电压接线点,将测量量程调整到合适的范围,读取并记录测量结果。
2. 将示波器连接到待测电路的电压接线点,调整示波器的时间和电压量程,观察并记录电压随时间的波形图。
3. 将信号发生器连接到待测电路的输入端,调节信号发生器的频率和幅度,观察并记录输出信号的波形和频率。
实验结果:1. 使用数字电压表测量待测电路的电压,记录并比较了不同量程下的测量结果。
2. 使用示波器观察了待测电路在不同时间段内电压的波形变化,分析并记录了示波器上显示的波形图。
3. 使用信号发生器产生了不同频率和幅度的信号,并观察了待测电路对信号的响应情况,记录并分析了输出信号的波形和频率。
实验结论:通过本实验的操作,我们学习并掌握了基本的电子测量技术和仪器的使用方法,包括数字电压表、示波器和信号发生器等。
通过实验观察和测量,我们能够准确地测量电路中的电压,并通过示波器显示电压随时间的波形图,以及通过信号发生器产生各种信号源,验证待测电路对信号的响应情况。
实训电子测量仪器实验报告

#### 一、实验目的本次实训旨在通过实际操作,加深对电子测量仪器的基本原理、操作方法和应用范围的理解。
通过本次实验,我们希望能够:1. 掌握电子测量仪器的基本操作步骤。
2. 熟悉不同类型电子测量仪器的使用方法。
3. 了解电子测量仪器在工程实践中的应用。
4. 提高实验技能和数据分析能力。
#### 二、实验原理电子测量仪器是用于测量电子电路参数的设备,主要包括示波器、万用表、信号发生器等。
以下是几种常用电子测量仪器的原理概述:1. 示波器:利用电子束扫描荧光屏上的亮点,以显示信号的波形。
示波器可以测量电压、频率、相位等参数。
2. 万用表:用于测量电压、电流、电阻等基本电学参数。
万用表分为模拟和数字两种,数字万用表具有更高的精度和便捷性。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等,以便于进行电路测试和调试。
#### 三、实验仪器与设备1. 示波器2. 万用表3. 信号发生器4. 电阻、电容、电感等电子元件5. 电路板、连接线等实验器材#### 四、实验内容与步骤1. 示波器使用- 连接示波器与电路板,观察信号波形。
- 测量信号的电压、频率、相位等参数。
- 比较不同信号波形的特点。
2. 万用表使用- 使用万用表测量电阻、电容、电压、电流等参数。
- 比较模拟和数字万用表的测量结果。
- 分析测量误差。
3. 信号发生器使用- 使用信号发生器产生不同类型的信号。
- 将信号输入电路,观察电路响应。
- 分析信号对电路的影响。
4. 综合实验- 设计一个简单的电子电路,使用示波器、万用表、信号发生器等仪器进行测试和调试。
- 分析实验结果,优化电路设计。
#### 五、实验数据与结果分析1. 示波器测量结果- 信号A:频率为1kHz,电压峰峰值为5V。
- 信号B:频率为2kHz,电压峰峰值为10V。
2. 万用表测量结果- 电阻R1:100Ω,测量误差为±5%。
- 电容C1:1000μF,测量误差为±10%。
电子测量 实验报告

电子测量实验报告实验报告:电子测量引言:电子测量是电子学中非常重要的一部分,通过电子测量,可以对电流、电压、电阻、电感、电容和功率等参数进行准确的测量和分析。
本实验旨在通过实际操作,了解并掌握一些基本的电子测量方法和仪器的使用。
实验目的:1. 了解常见的电子测量仪器,例如数字万用表、示波器和信号发生器等。
2. 掌握测量直流电流、直流电压、交流电压、交流电流、电阻、电容和电感的方法和技巧。
3. 学习使用示波器测量电压、频率和相位差等信号参数。
实验步骤和结果:1. 实验一:测量直流电流和直流电压a. 将数字万用表的选择旋钮拨到直流电流测量档位,并连接正确的电路。
b. 通过电源控制直流电流的大小,观察数字万用表的读数并记录。
c. 将数字万用表的选择旋钮拨到直流电压测量档位,连接正确的电路并测量直流电压。
2. 实验二:测量交流电压和交流电流a. 使用示波器测量交流电压和交流电流。
b. 设置示波器的时间和幅度尺度,观察波形,并测量其峰值和有效值。
3. 实验三:测量电阻、电容和电感a. 使用数字万用表测量电阻,并计算真值和误差。
b. 使用数字万用表测量电容,并记录相应的读数。
c. 使用示波器和信号发生器测量电感的感抗和品质因数。
讨论与分析:通过以上实验,我们可以得到以下的结论和分析:1. 电子测量仪器的使用:通过实验,我们了解了常见的电子测量仪器的使用方法,例如数字万用表、示波器和信号发生器。
这些仪器能够提供准确的测量结果,为电子工程师的工作提供了很大的帮助。
2. 直流电流和直流电压的测量:通过实验一,我们学会了使用数字万用表来测量直流电流和直流电压。
我们可以通过调节电源的电压和连接正确的电路来测量不同的电流和电压值。
3. 交流电压和交流电流的测量:实验二中,我们使用示波器来测量交流电压和交流电流。
通过观察波形,并测量其峰值和有效值,我们可以了解信号的振幅和频率等特性。
4. 电阻、电容和电感的测量:实验三中,我们使用数字万用表测量电阻和电容,并计算出真值和误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子测量实验..————————————————————————————————作者:————————————————————————————————日期:实验一示波器的使用一、实验目的1. 熟悉低频信号发生器、脉冲信号发生器各旋钮、开关的作用及其使用方法。
2. 初步掌握用示波器观察电信号波形,定量测出正弦信号和脉冲信号的波形参数。
3. 初步掌握示波器、信号发生器的使用。
二、实验说明1. 正弦交流信号和方波脉冲信号是常用的电激励信号,可分别由低频信号发生器和脉冲信号发生器提供。
正弦信号的波形参数是幅值U m、周期T(或频率f)和初相;脉冲信号的波形参数是幅值U m、周期T及脉宽t k。
本实验装置能提供频率范围为20Hz~50KHz的正弦波及方波,并有6位LED数码管显示信号的频率。
正弦波的幅度值在0~5V之间连续可调,方波的幅度为1~3.8V可调。
2. 电子示波器是一种信号图形观测仪器,可测出电信号的波形参数。
从荧光屏的Y轴刻度尺并结合其量程分档选择开关(Y轴输入电压灵敏度V/div分档选择开关)读得电信号的幅值;从荧光屏的X 轴刻度尺并结合其量程分档(时间扫描速度t /div分档)选择开关,读得电信号的周期、脉宽、相位差等参数。
为了完成对各种不同波形、不同要求的观察和测量,它还有一些其它的调节和控制旋钮,希望在实验中加以摸索和掌握。
一台双踪示波器可以同时观察和测量两个信号的波形和参数。
三、实验设备序号名称型号与规格数量备注1 双踪示波器 12 低频、脉冲信号发生器 1 DG033 交流毫伏表0~600V 1 D834 频率计 1 DG03四、实验内容1. 双踪示波器的自检将示波器面板部分的“标准信号”插口,通过示波器专用同轴电缆接至双踪示波器的Y 轴输入插口Y A或Y B端,然后开启示波器电源,指示灯亮。
稍后,协调地调节示波器面板上的“辉度”、“聚焦”、“辅助聚焦”、“X轴位移”、“Y轴位移”等旋钮,使在荧光屏的中心部分显示出线条细而清晰、亮度适中的方波波形;通过选择幅度和扫描速度,并将它们的微调旋钮旋至“校准”位置,从荧光屏上读出该“标准信号”的幅值与频率,并与标称值(1V,1KHz)作比较,如相差较大,请指导老师给予校准。
2. 正弦波信号的观测(1) 将示波器的幅度和扫描速度微调旋钮旋至“校准”位置。
(2) 通过电缆线,将信号发生器的正弦波输出口与示波器的Y A插座相连。
(3) 接通信号发生器的电源,选择正弦波输出。
通过相应调节,使输出频率分别为50Hz,1.5KHz和20KHz(由频率计读出);再使输出幅值分别为有效值0.1V,1V,3V(由交流毫伏表读得)。
调节示波器Y轴和X轴的偏转灵敏度至合适的位置,从荧光屏上读得幅值及周期,记入表中。
频率计读数所测项目正弦波信号频率的测定50H Z 1500H Z20000H Z示波器“t/div”旋钮位置一个周期占有的格数信号周期(s)计算所得频率(H Z)交流毫伏表读数所测项目正弦波信号幅值的测定0.1V1V 3V示波器“V/div”位置峰—峰值波形格数峰—峰值计算所得有效值3. 方波脉冲信号的观察和测定(1) 将电缆插头换接在脉冲信号的输出插口上,选择方波信号输出。
(2) 调节方波的输出幅度为3. 0V P-P(用示波器测定),分别观测100Hz,3KHz和30KHz 方波信号的波形参数。
(3) 使信号频率保持在3KHz,选择不同的幅度及脉宽,观测波形参数的变化。
五、实验注意事项1. 示波器的辉度不要过亮。
2. 调节仪器旋钮时,动作不要过快、过猛。
3. 调节示波器时,要注意触发开关和电平调节旋钮的配合使用,以使显示的波形稳定。
4. 作定量测定时,“t/div”和“V/div”的微调旋钮应旋置“标准”位置。
5. 为防止外界干扰,信号发生器的接地端与示波器的接地端要相连(称共地)。
6. 不同品牌的示波器,各旋钮、功能的标注不尽相同,实验前请详细阅读所用示波器的说明书。
7.实验前应认真阅读信号发生器的使用说明书。
六、预习思考题1. 示波器面板上“t/div”和“V/div”的含义是什么?2. 观察本机“标准信号”时,要在荧光屏上得到两个周期的稳定波形,而幅度要求为五格,试问Y轴电压灵敏度应置于哪一档位置?“t/div”又应置于哪一档位置?3. 应用双踪示波器观察到如图12-1所示的两个波形,Y A和Y B轴的“V/div”的指示均为0.5V,“t/div”指示为20μS,试写出这两个波形信号的波形参数。
七、实验报告1. 整理实验中显示的各种波形,绘制有代表性的波形。
2. 总结实验中所用仪器的使用方法及观测电信号的方法。
3. 如用示波器观察正弦信号时,荧光屏上出现图12-2所示的几种情况时,试说明测试系统中哪些旋钮的位置不对?应如何调节?4. 心得体会及其它。
图12-1图12-2实验二函数信号发生器的调试一、实验目的1.了解单片多功能集成电路函数信号发生器的功能及特点。
2.会用示波器测量波形的各种参数。
3.掌握正弦波失真调节、频率调节和幅度调节的方法。
二、实验仪器1.双踪示波器2.频率计三、实验原理图1-1 函数信号发生器1.ICL8038是单片集成函数信号发生器,其内部框图如图1-2所示。
它由恒流源I1和I2、电压比较器A和B、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容C由两个恒流源充电和放电,电压比较器A、B的阈值分别为电源电压(指U CC+U EE)的2/3和1/3。
恒流源I1和I2的大小可通过外接电阻调节,但必须I2>I1。
当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压UC随时间线性上升,当U C达到电源电压的2/3时,电压比较器A的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设I2=2I1),恒流源I2将电流2I1加到C上反充电,相当于C由一个净电流I放电,C两端的电压UC又转为直线下降。
当它下降到电源电压的1/3时,电压比较器B的输出电压发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I2断开,I1再给C充电,…如此周而复始,产生振荡。
若调整电路,使I2=2I1,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。
C上的电压UC,上升与下降时间相等,为三角波,经电压跟随器从管脚③输出三角波信号。
将三角波变成正弦波是经过一个非线性的变换网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从管脚②输出,而尖端存在一点失真。
图1-2 ICL8038原理框图2.ICL8038管脚功能图图1-3 ICL8038管脚图四、实验内容PTP7和PTP8用作扩展外接电容用,电容越小,频率越大,PS1、PS2、PS3对应值为1000P、0.01µf、0.1µf。
1.参考实验原理图1-1,对照实验箱集成函数信号发生器实际电路部分,连接好跳线PS3,正确连接电路电源线+12V和-12V(从电源部分±12V插孔用连接线接入,千万不要接反,否则损坏集成芯片),打开直流开关通电。
2.连接好跳线PS4,用示波器观察OUT为方波波形,调节电位器PRW2,测出方波的占空比(单位周期内高电平所占整个周期的比例)范围情况,调节电位器PRW1,测出方波的频率(示波器在扫描速率为1mS档的情况下,一个周期的方波占一个格子为1KHz,也可用频率计直接测出)范围情况;调节电位器PRW5,测出方波的幅值(峰峰值)范围情况,并都列表记录之。
3.连接好跳线PS4,调节电位器PRW2,使方波的占空比为50%;调节电位器PRW1,使方波的频率为1KHz;调节电位器PRW5,使方波的幅值为5V(峰峰值),把PS4换为PS5,用示波器观察OUT为三角波波形,调节电位器PRW1,测出三角波的频率范围情况,调节电位器PRW5,测出三角波的幅值(峰峰值)范围情况,并都列表记录之。
另外调节电位器PRW2,观察三角波变为锯齿波(占空比不为50%)的情况。
4.连接好跳线PS4,调节电位器PRW2,使方波的占空比为50%;调节电位器PRW1,使方波的频率为1KHz;调节电位器PRW5,使方波的幅值为5V(峰峰值),把PS4换为PS6,用示波器观察OUT为正弦波波形,若有明显失真,反复调节PRW3、PRW4,使正弦波无明显的失真(一旦调好就不要再动PRW3、PRW4),调节电位器PRW1,测出正弦波的频率范围情况,调节电位器PRW5,测出正弦波的幅值(峰峰值)范围情况,并都列表记录之。
5.在断开电源情况下,分别取PS1和PS2连接,重复上述步骤。
说明一下:PS1、PS2、PS3相对应的电容值越小,输出频率越大,且不同的电容所对的频率段不同,每个频率段所包括的频率范围不同,故上述所有步骤所给的1KHz的频率值不是很恰当,仅作为实验参考值。
测量各种波形的频率、占空比、幅度要保证波形不是很明显失真,且在有效范围内,如调节PRW5阻值很小时,无论怎么调节PRW1、PRW2、PRW3、PRW4电位器仍无法有波形出现。
原理图中还有一个一级无源低通滤波电路,PTP3插孔处可以引入电容,通过并入电容改变截止频率,此滤波电路可以对正弦波起一定的滤波作用(由于无源滤波电路存在负载效应,效果不是很好,此引入滤波电路,抛砖引玉,具体滤波器的设计参考后续实验内容),有兴趣的同学可以接入调试一下,不做要求,方法:断开PS4、PS5、PS6的连接,接入PS7、PS8,调节一个无明显失真的正弦波即可。
实验三 电子信号的测量(晶体管共射极单管放大器)一、实验目的1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响。
2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验仪器1. 双踪示波器 2. 万用表 3. 交流毫伏表 4. 信号发生器三、实验原理图2-1 共射极单管放大器实验电路图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B2和R B1组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U 0,从而实现了电压放大。
在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算,U CC 为供电电源,此为+12V 。
CC B B B B U R R R U 211+≈(2-1)C EBEB E I R U U I ≈-=(2-2))(E C C CC CE R R I U U +-= (2-3)电压放大倍数beL C V r R R A β-= (2-4)输入电阻 be B B i r R R R 21= (2-5) 输出电阻 C R R ≈0 (2-6) 放大器静态工作点的测量与调试1) 静态工作点的测量测量放大器的静态工作点,应在输入信号U i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。