概率第21讲
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
概率的进一步认识 单元综合检测(解析版)-九年级数学(北师大版)

第17讲概率的进一步认识单元综合检测一、单选题A.05a19二、填空题∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有∴两球恰好是一个黄球和一个红球的为:6 12=故答案为12.【点睛】此题考查了列表法或树状图法求概率.熟练掌握列表法或树状图法求概率是解题的关键.12.从1,2,4这三个数中任取两个数组成没有重复数字的两位数,【答案】1 3【分析】利用列举法进行求解即可.【解析】解:从1,2,4这三个数中任取两个数组成没有重复数字的两位数共有:等可能的结果,其中组成的两位数是奇数的有∴2163 P==;故答案为:1 3.【点睛】本题考查列举法求概率.准确的列举出所有等可能的结果,是解题的关键.13.如图,两个相同的可以自由转动的转盘A【答案】16【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解析】解:列表如下:21-3()2,3()1,3-0()2,0()1,0-2-()2,2-()1,2--共有4种等可能的结果,其中两只雏鸟都为雄鸟结果数为故两只雏鸟都为雄鸟的概率为故答案为:1 4.【点睛】本题考查了画树状图法求概率,熟练掌握树状图法以及概率公式是解答本题的关键.16.历史上数学家皮尔逊曾在实验中掷均匀的硬币图法适合两步或两步以上完成的事件.概率=所求情况数与总情况数之比.熟练掌握画树状图、灵活运用求概率的公式是解题关键.三、解答题B(1)转动转盘一次,转出黄色的概率是(2)转动转盘两次,如果一次转出红色,一次转出蓝色,那么就可以配成紫色.请利用列表或画树状图的方法,求转动转盘两次,可以配成紫色的概率.【答案】(1)1 3(2)29【分析】(1)首先判断出黄色扇形区域的圆心角为(2)根据题意列出表格得出所有等可能的情况数,找出转动转盘两次,可以配成紫色的情况数,然后根据概率公式即可得出答案.【解析】(1)解:∵红色扇形区域的圆心角为∴黄色扇形区域的圆心角为∴转动转盘一次,转出黄色的概率是故答案为:1 3;(2)解:∵红色和黄色扇形区域的圆心角都是∴两个蓝色扇形区域总的扇形的圆心角也是一共有9种等可能的情况,其中符合题意的有6种,P(他俩诵读两个不同材料)62 93 ==.共有12种等可能的结果数,其中取出的两个球上的汉字能组成所以取出的两个球上的汉字能组成“历城”的概率2 12 ==(1)现小明随机选择一个空座位坐下,直接写出选择(2)用画树状图或列表的方法,求小明和小军坐在相邻位置的概率.【答案】(1)1 4。
高中数学:第三章概率 小结 (21)

探究2 解与面积相关的几何概型问题的三个关键点. (1)根据题意确认是否是与面积有关的几何概型问题; (2)找出或构造出随机事件对应的几何图形,利用图形的几 何特征计算相关面积; (3)套用公式,从而求得随机事件的概率.
第25页
思考题2
(1)(高考真题·北京卷)设不等式组
0≤x≤2, 0≤y≤2
①求乘客到站候车时间大于10分钟的概率; ②求候车时间不超过10分钟的概率; ②求乘客到达车站立即上车的概率.
第12页
【思路】 分析概率模型 → 得其为几何概型 → 结果 【解析】 ①如下图所示,设相邻两班车的发出时间为 T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分 钟”为事件A.
【解析】 ∵区间[-1,2]的区间长度为3,随机数x的取值区
间[0,1]的区间长度为1,
∴由几何概型知x∈[0,1]的概率为13.
【答案】
1 3
第9页
(2)在等腰直角三角形ABC中,在斜边AB上任取一点M,求 AM的长大于AC的长的概率.
【思路】 点M随机地落在线段AB上,故试验所有点所在的 区域为线段AB,在AB上截取AC′=AC,则当点M位于线段BC′上 时,AM>AC.故“AM的长度大于AC的长度”的度量为BC′.
思考题1 某人向平面区域|x|+|y|≤ 2 内任意投掷一枚飞 镖,则飞镖恰好落在单位圆x2+y2=1内的概率为________.
第51页
【解析】 区域|x|+|y|≤ 2是边长为2的一个正方形区域(如 图),由图知所求概率为π4.
第44页
自助餐
第45页
与线性规划有关的几何概型问题 (仅供先学必修五的学校使用)
2021_2022学年新教材高中数学第10章概率10.1.4概率的基本性质课件新人教A版必修第二册

解决与古典概型交汇命题的问题时,把相关的知识转化为事 件,列举基本事件,求出基本事件和随机事件的个数,然后利用古 典概型的概率计算公式进行计算.
[跟进训练] 2.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单 位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为 “优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300) 时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥 挤”.该景区对6月份的游客数量作出如图的统计数据:
“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发
生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即
中国队夺得女子乒乓球单打冠军的概率为37+14=1298.]
4.若P(A∪B)=0.7,P(A)=0.4,P(B)=0.6,则P(A∩B) =________.
0.3 [因为P(A∪B)= P(A)+P(B)-P(A∩B), 所以P(A∩B)=P(A)+P(B)-P(A∪B)=0.4+0.6-0.7=0.3.]
()
(2)若P(A)+P(B)=1,则事件A与B为对立事件.
()
(3)某班统计同学们的数学测试成绩,事件“所有同学的成绩都
在60分以上”的对立事件为“所有同学的成绩都在60分以下”.
[答案] (1)× (2)× (3)×
()
2.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率
是0.2,若不出现平局,那么乙获胜的概率为( )
[解] 记“射击一次,命中k环”为事件Ak(k=7,8,9,10). (1)因为A9与A10互斥,所以P(A9∪A10)=P(A9)+P(A10)=0.28+ 0.32=0.60. (2)记“至少命中8环”为事件B,则B=A8+A9+A10,又A8, A9,A10两两互斥, 所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
2012数学强化讲义---张伟---概率

.
例22 某人向同一目标独立重复射击, 每次射击 命中目标的概率为p(0 < p < 1),则此人第4次 射击恰好第2次命中目标的概率为 ( A) 3 p(1− p)2. (B) 6 p(1− p)2. (C) 3 p2 (1− p)2. (D) 6 p2 (1− p)2.
例23 做一系列独立试验, 每次试验成功的概率 都是p, 试求下列事件的概率 : A ="4次失败在第3次成功之前"; B ="成功10次之前至多失败2次"; C ="现进行n次重复试验,已知试验没有 全部失败, 成功不止一次".
P(B | A) = 0.2,
则P( A) =
.
例9 设事件A, B同时发生时, 事件C一定发生, 则 ( A) P(C) ≤ P( A) + P(B) −1. (B) P(C) ≥ P( A) + P(B) −1. (C) P(C) = P( AB). (D) P(C) = P(A ∪ B).
例10
⎪⎩ 0
若x ∈[ 0, 1 ], 若x ∈[ 3, 6 ],
其他.
若使得P{X ≥ k}= 2 , 则k的取值
3
范围是 ______
例11
设随机变量X的密度函数为ϕ(x),且ϕ(−x) = ϕ(x).
F (x)是X的分布函数, 则对任意实数a, 有
∫ ∫ ( A) F (−a) = 1− aϕ(x)dx. (B) F (−a) = 1 − aϕ(x)dx.
例6 设F1(x)与F2 (x)为两个分布函数, 其相应的概率密度f1(x)与f2 (x) 是连续函数, 则必为概率密度的是
( A) f1(x) f2 (x)(B) 2 f2 (x)F1(x) (C) f1(x)F2 (x) (D) f1(x)F2 (x) + f2 (x)F1(x)
21事件的可能性

注意 判断一个事件属于哪类事件,要注意发生
的条件。
一定会发生的事件 叫必然事件
在一定条件下 可能会发生,也可 叫不确定事件或 能不发生的事件 随机事件 一定不会发生的事件叫不可能事件
举出现实生活你所知道的随机事件与必 然事件
例如,任意抛掷一枚硬币,“正面向上”是随 机事件,它可能发生,也可能不发生(出现“反 面向上”);
在一个箱子里放有1个白球和2 个红球,它们除颜色外都相同。
(3)从箱子里摸出1个球,放回, 摇均匀后再摸出1个球,这样先后 摸得的两球有几种不同的可能?
(4)从箱子里摸出1个球,不放回, 摇均匀后再摸出1个球,这样先后摸 得的两球有几种不同的可能?
作业题5
笼子里关着一只小松鼠(如图),笼子的主人决 定把小松鼠放归大自然,将笼子所有的门都打开。 松鼠要先经过第一道门(A , B ,或C),再经过 第二道门(D或E)才能出去。问松鼠走出笼子的路 线(经过的两道门)有多少种不同的可能?
在桌面上掷骰子
掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1 到6的点数(多重复几次).请考虑以下问题:掷一次骰子, 在骰子向上的一面上,
(1)可能出现哪些点数? 每次掷骰子的结果不一定相同,从1到6的 每一个点数都有可能出现,所有可能出现 的点数共有6种,但是事先不能预料掷一次 骰子会出现哪一种结果; (2)出现的点数大于0吗?
在8:00时拨打查号台(114),“线路接通” 是随机事件,它可能发生,也可能不发生(出现 “占线”等情况).
太阳从东方升起到西方落下,这是必然事件.
在一个箱子里放有1个白球和2个 红球,它们除颜色外其余都相同。
(1) 从箱子里摸出1个球,是 黑球。这属于哪类事件?摸出1 个球,是白球或者是红球,这属 于哪一类事件?
《概率论基础》(李贤平)第三版-课后答案
第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。
(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。
(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。
(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。
3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
25.2.1 概率及其意义 华师大版数学九年级上册课件
知识点 1 概率及其意义
知1-讲
1. 概率的定义:一个事件发生的可能性就叫做该事件的 概率.
2.概率公式:一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事件A包含其
要点中精的析m:种用结公果式.P那(A么)=事件m A. 求发概生率的值概的率试P(验A)特=点mn :.
解:根据题意可得:阴影部分面积为52=25,
总面积为(3+4)2=49,
∴P(飞在阴影区域的概率是
25
.
49
知1-讲
归纳
知1-讲
对于飞镖投射阴影区域这类题的解法:首先根据题 意把数量关系用“图形”面积表示出来,用数形结合思 想解答.用阴影区域表示所求事件A,然后计算阴影区 域的面积在总面积中所占的比例,这个比例即事件A发 生的概率.
m
2.
n0≤ ≤1.
3. 2. 概率的取值范围:0≤P(A)≤1.
4. 3.三种事件的概率:当A是必然事件时,P(A)=1;
5. 当A是不可能事件时,P(A)=0;
6.
当A是随机事件时,P(A)满足0<P(A)<1.
知2-讲
【例3】 班级里有20位女同学和22位男同学,班上每位同 学的名字都被分别写在一张小纸条上,放入 一 个盒中搅匀.如果老师随机地从盒中取出1张纸条, 那么抽到男同学名字的概率大还是抽到女同学名 字的 概率大?
20 22 21
21 21
所以抽到男同学名字的概率大.
知2-讲
(来自教材)
知2-讲
【例4】 甲袋中放着22个红球和8个黑球,乙袋中放着200个 红球、80个黑球和10个白球.三种球除了颜色以外没 有任何其他区别.两袋中的球都已经各自搅匀. 从袋 中任取1个球,如果你想取出1个黑球,选哪个袋成 功的机会大呢?
条件概率与事件独立性21页PPT
解 观察两个小孩性别的随机试验所构成的样本空间 ={(男, 男)、(男, 女)、(女, 男)、(女, 女)}. 则
A={(男,男), (男,女), (女,男)} 表示“两个小孩中至少有一个男孩”,
B={(女,女), (男,女), (女,男)} 表示“两个小孩中至少有一个女孩}”.
显然,P(A)=P(B)=3/4.现在B已经发生,排除了有两个男孩的
山东农业大学
概率论与数理统计
主讲人:程述汉 苏本堂
例4 今有一张足球票,n个人都想得到,故采用抽签的办法分 配这张票,试利用乘法公式说明每人得到足球票的概率都是 1/n.
解 将外形相同的个标签让个人依次抽取,事先将足球票放在
某标签中.记Ai={第i人抽到足球票} ,则 Ai A1L Ai1Ai .由公
山东农业大学
概率论与数理统计
主讲人:程述汉 苏本堂
1.4.2 事件的独立性
一、事件的独立性 一般地 P(A|B)≠P(A), 即B的发生,会对A的发生产生影响,但
在某些情况下有P(A|B)=P(A),如:
设盒中3个白球,2个红球,从中取球两次,每次一个,就 a)不
放回取样; b)放回取样; 求下列事件的概率:
P(A)=0.2, P(B)=0.18, P(AB)=0.12,
则 P(A| B) P(AB) 0.12 0.67, P(B) 0.18
P(B | A) P(AB) 0.12 0.60, P(A) 0.2
山东农业大学
二、乘法公式
概率论与数理统计
主讲人:程述汉 苏本堂
若P(B)>0, 则 P(AB) = P(B)·P(A |B)
定理1 若P(A1 A2… An-1)>0,则 P(A1 A2… An)= P(A1 ) P(A2| A1) P(A3| A1 A2) … P(An |A1 A2… An-1). 证 反复应用两个事件的乘法公式,得到
高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)
第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=.()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=.20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为:1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=; 所以X的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X <9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求: ()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===,36(300)0.490P X ===, 2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2() n ad bcK-=++++2)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=.(3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以2150(2540580)2003.175 2.706 301201054563K⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P .116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算) (2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9}, 2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7),故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-,又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=. ()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<,()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22,11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈. 因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX 附:6 2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=. (Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知~(100,0.6826)X B ,所以1000.682668.26EX =⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e
1
i 1
i=0,1,2,… j=0,1,2,…
P ( Z r ) P ( X i ,Y r i )
由卷积公式 r P ( Z r ) P ( X i ,Y r i )
e-1
i 0
i 0 r
i 1
i!
e-2
r
r2-i
(r - i)!
pq
n 1
有时,我们所求的只是一个函数 Y1= g1(X1,X2)的分布 . 一个办法是: 对任意 y, 找出{Y1≤ y}在(x1,x2)平面上 对应的区域{g1(X1,X2) ≤ y},记为D. 然后由 P{Y1 ≤ y}= f ( x1 , x2 )dx1dx2
D
求出Y1的分布. 教材上的例6就是一例,请自己看.
需要指出的是,当X1,…,Xn相互独立且 具有相同分布函数F(x)时, 常称 M=max(X1,…,Xn),N=min(X1,…,Xn)
为极值 . 由于一些灾害性的自然现象,如地震、 洪水等等都是极值,研究极值分布具有重要 的意义和实用价值.
下面我们再举一例,说明当X1,X2为离散 型r.v时,如何求Y=max(X1,X2)的分布.
特别,当X1,…,Xn相互独立且具有相 同分布函数F(x)时,有 FM(z)=[F(z)] n FN(z)=1-[1-F(z)] n
当X1,…,Xn相互独立且具有相同分布函数 F(x)时,有 FM(z)=[F(z)] n FN(z)=1-[1-F(z)] n 若X1,…,Xn是连续型随机变量,在求得 M=max(X1,…,Xn)和N=min(X1,…,Xn)的分布 函数后,不难求得M和N的密度函数. 留作课下练习.
由于M=max(X,Y)不大于z等价于X和Y都 分析: 不大于z,故有 P(M≤z)=P(X≤z,Y≤z) 又由于X和Y 相互独立,于是得到M=max(X,Y) 的分布函数为: FM(z)=P(M≤z) =P(X≤z,Y≤z) =P(X≤z)P(Y≤z)
即有
FM(z)= FX(z)FY(z)
类似地,可得N=min(X,Y)的分布函数是 FN(z)=P(N≤z) =1-P(N>z) =1-P(X>z,Y>z) =1- P(X>z)P(Y>z) 即有 FN(z)= 1-[1-FX(z)][1-FY(z)]
e
( 1 2 )
r!
r! i r -i i! (r - i)! 12 i 0
e
( 1 2 )
r!
(1 2 ) ,
r
r =0,1,…
即Z服从参数为 1 2 的泊松分布.
例3 设X和Y相互独立,X~B(n1,p),Y~B(n2,p),求 Z=X+Y 的分布.
一、连续型分布的情形
例4 设X和Y的联合密度为 f (x,y),求Z=X+Y的 密度. 解: Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f ( x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z} 是直线x+y =z 左下方的半平面|z|
将定理推广到n维随机变量,我们可求 得n维随机变量函数的分布,见教材124页.
休息片刻再继续
三、M=max(X,Y)及N=min(X,Y)的分布 设X,Y是两个相互独立的随机变量,它 们的分布函数分别为FX(x)和FY(y),我们来 求M=max(X,Y)及N=min(X,Y)的分布函数.
' Z
由X和Y的对称性, fZ (z)又可写成
fZ ( z ) F ( z ) f ( x, z x )dx
' Z
以上两式即是两个随机变量和 的概率密度的一般公式.
特别,当X和Y独立,设(X,Y)关于X,Y的边缘 密度分别为fX(x) , fY(y) , 则上述两式化为:
在第二章中,我们讨论了一 维随机变量函数的分布,现在我 们进一步讨论: 当随机变量X1, X2, …,Xn的联合分布 已知时,如何求出它们的函数 Yi=gi(X1, X2, …,Xn), i=1,2,…,m 的联合分布?
我们先讨论两个随机变量的函数的分布问 题,然后将其推广到多个随机变量的情形.
一、离散型分布的情形
若每一个问题都这样求,是很麻烦的. 下面我们介绍一个用来求随机向量(X,Y)的函 数的分布的定理 .
对二维情形,表述如下: 定理 设(X1,X2)是具有密度函数 f (x1,x2)的连
续型二维随机变量, 1. 设y1=g1(x1,x2), y2=g2 (x1,x2)是 2到自身的 一对一的映射, 即存在定义在该变换的值域上 的逆变换: x1=h1(y1, y2), x2=h2(y1, y2) 2.假定变换和它的逆都是连续的;
f Z ( z ) f X ( z y ) fY ( y )dy
f Z ( z ) f X ( x) fY ( z x )dx
这两个公式称为卷积公式 . 下面我们用卷积公式来求 Z=X+Y的概率密度
例5 若X和Y 独立,具有共同的概率密度
1, 0 x 1 f ( x) 求Z=X+Y的概率密度 . 0, 其它 解: 由卷积公式
我们给出不需要计算的另一种证法: 回忆第二章对服从二项分布的随机变量 所作的直观解释:
若X~ B(n1,p),则X 是在n1次独立重复试 验中事件A出现的次数,每次试验中A出现的 概率都为p.
同样,Y是在n2次独立重复试验中事件A出现 的次数,每次试验中A出现的概率为p.
故Z=X+Y 是在n1+n2次独立重复试验 中事件A出现的次数,每次试验中A出现 的概率为p,于是Z是以(n1+n2,p)为参 数的二项随机变量,即Z ~ B(n1+n2, p).
w(y1,y2)=|J | f(h1(y1,y2), h2(y1,y2)) (*)
例6 设(X1,X2)具有密度函数 f (x1,x2). 令 Y1= X1+X2,Y2= X1-X2 试用f 表示Y1和Y2的联合密度函数. 解: 令y1= x1+x2, y2= x1-x2,则逆变换为 y1 y2 x y1 y2 , x1 , 2 2 2 1/ 2 1/ 2 J ( y1 , y2 ) 1 / 2 0 1/ 2 1/ 2 故由(*)式,所求密度函数为 1 y1 y2 y1 y2 w( y1 , y2 ) f ( , ) 2 2 2
教材上例5 请自已看. 注意此例的结论:
若X和Y 独立,具有相同的分布N(0,1), 则Z=X+Y服从正态分布N(0,2).
2 若X和Y 独立, X ~ N ( 1, 12 ), Y ~ N ( 2 , 2 ), 结论又如何呢?
用类似的方法可以证明:
Z X Y ~ N ( 1 2 , )
hi 3. 假定偏导数 yi
( i=1,2, j=1,2 ) 存在且连续;
4.假定逆变换的雅可比行列式
h1 y1 J ( y1 , y2 ) h2 y1 h1 y2 0 h2 y2
即 J (y1,y2)对于在变换的值域中的(y1,y2)是不 为0的. 则Y1,Y2具有联合密度
z
交换积分次序
[ f ( u y, y)dy]du
FZ ( z ) [ f ( u y, y)dy]du
z
由概率密度与分布函数的关系, 即得Z=X+Y 的概率密度为:
fZ ( z ) F ( z ) f ( z y, y)dy
=a0br+a1br-1+…+arb0 r=0,1,2, …
例2 若X和Y相互独立,它们分别服从参数为 1, 2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布. 解:依题意
i! 2 j e 2 P (Y j ) j! 由卷积公式
r i 0
P ( X i)
为确定积分限,先找出使被积函数不为0的区域 0 x 1 0 x 1 也即 z 1 x z 0 z x 1 如图示: 于是 z dx z, 0 z 1 0 1 f Z ( z ) dx 2 z, 1 z 2 z 1 0, 其它
例1 若X、Y独立,P(X=k)=ak , k=0,1,2,…, P(Y=k)=bk , k=0,1,2,… ,求Z=X+Y的概率函数.
解:
P( Z r) P( X Y r)
P ( X i,Y r i )
i 0 r i 0 r
由独立性
此即离散 卷积公式
P ( X i ) P (Y r i )
例8 设随机变量X1,X2相互独立,并且有相同的几 何分布: P(Xi=k)=p(1-p)k-1 , k=1,2, … ( i =1,2) 求Y=max(X1,X2)的分布 . 解一: P(Y=n)= P(max(X1,X2)=n) 记1-p=q =P(X1=n, X2≤n)+P( X2 =n, X1 <n)
x y z
f ( x, y)dxdy
z y
化成累次积分,得
FZ ( z ) [
f ( x, y)dx ]dy
变量代换 固定z和y,对方括号内的积分作变量代换, 令x=u-y,得
FZ ( z ) [ f ( u y, y)du]dy
z
2 1 2 2
此结论可以推广到n个独立随机变量之 和的情形,请自行写出结论.
更一般地, 可以证明: 有限个独立正态变量的线性组合仍然 服从正态分布.