19681_图形认识初步(一)

合集下载

图形认识初步课件

图形认识初步课件

角的特殊关系
1、∠1与∠2互余,∠1是∠2的余角, ∠2是∠1的余角. ∠1+∠2=90 ° 2、∠1与∠2互补,∠1是∠2的补角, ∠2是∠1的补角. ∠1+∠2=180 ° 1)两个角成对出现 2)只考虑数量关系,与位置无关. 结论: 同角(等角)的余角(补角)相等
注意!
方位角:
1、方位角是以正南、正北方向 为基准,描述物体的运动方向。 2、北偏东45 °通常叫做东北方 西 向,北偏西45 °通常叫做西北 方向,南偏东45 °通常叫做东 南方向,南偏西45 °通常叫做 西南方向。 3、方位角在航行、测绘等实际 生活中的应用十分广泛。
问题2:你能举出一些在日常生活中形状与上述几何体类似的物体吗?
问题3:你能把下列几何图形分成两类吗?并要说出理由 .
(1)
(2)
(3)
(4)
(5)
(6)
立体图形: 各个部分不在同一个平面内. (1), (2)
几何图形: 平面图形: 各个部分都在同一个平面内. (3),(4),(5),(6)
从上面看 俯视图 从左边看


O 60° A

练习、在右图中画出表示下列方向的射线: (1)北偏西30 °(2)北偏东50 ° (3)西南方向
·
B
a
·
2.平原上有A、B、C、D四个村庄,如图所示, 为解决当地缺水问题,政府准备投资修建一 个蓄水池,不考虑其他因素,请你画图确定蓄 水池H的位置,使它与四个村庄的距离之和 最小.
·· ··
A B C D
(3).如图所示,洋河酒厂有三个住宅区A、 B、C各分别住有职工30人、15人、10 人,且这三个区在酒家大道上(A、B、C) 三点共线,已知AB=100米,BC=200米. 为了方便职工上下班,该厂的接送车打 算在此间只设一个停靠点,为使所有的 人步行到停靠点的路程之和最小,那么 该停靠点的位置应设在_____区.

图形的认识初步

图形的认识初步

图形的认识初步(1)教学反思《全日制义务教育数学课程标准》指出:“有效的数学学习活动不能单纯的依赖模仿与记忆,学生的数学学习活动应当是一个生动活泼的、主动和富有个性的过程”;“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。

教师应激发学生学习的积极性,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。

”本节课正是基于这样的指导思想来设计的。

一、反思成功之处从生活实例入手,提高学生的学习兴趣。

心理学研究表明:“情感是人对客观事物是否符合人的需要而产生的体验,它是受到外部环境的刺激而产生的一种心理状态或心理反映。

要让学生主动参与学习的全过程,首先要调动学生的学习兴趣,因为兴趣可以引发学生学习数学的动机。

”本节课是七年级几何的第一堂课,小学几何知识是相对零散的,不系统的,初中几何比小学数学相对系统了,加深了、拓展了,也更丰富了。

因此,不但要引导学生顺利过渡到初中学习当中,同时还要让学生认识到数学在实际生活中的作用,让他们初步体会几何的美,提升他们学习几何的兴趣。

在《图形的初步认识》的导入新课时,以奥运村、金字塔、美国五角大楼、白宫等图片刺激学生的视觉引入新课,让学生以轻松的心态进入几何世界。

同时,通过展示自己所带的物体并观察立体图形的特征进行分类,激发学习的兴趣,有助于消除几何图形的神秘形象。

尝试应用环节的动手制作,把学生的情绪推向高潮,充分激发了学生的热情,使学生在做中学、乐中悟。

充分体现了“以学生为主体”的教学理念。

“自主探究、合作交流、质疑问难”是当今数学课堂教学中比较时髦的词眼,是秉承“以学生为主体,让学生成为课堂的主人,成为学习过程的主人”的教学理念。

本节课教学目标是要求学生能识别一些简单的几何体,而识别的方法当然是要学会辨别图形的特征,能够用自己的语言去描绘图形的特征。

所以本节课的一个重点,也是难点就是如何将立体图形进行分类,它成为这堂课能否成功的一个关键因素。

图形的初步认识ppt1 华东师大版

图形的初步认识ppt1 华东师大版


28、有时候,生活不免走向低谷,才能迎接你的下一个高点。

29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。

30、经验是由痛苦中粹取出来的。

31、绳锯木断,水滴石穿。

32、肯承认错误则错已改了一半。

33、快乐不是因为拥有的多而是计较的少。

34、好方法事半功倍,好习惯受益终身。

35、生命可以不轰轰烈烈,但应掷地有声。

74、先知三日,富贵十年。付诸行动,你就会得到力量。

75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。

76、好习惯成就一生,坏习惯毁人前程。

77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。

78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。

79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。

80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

54、最伟大的思想和行动往往需要最微不足道的开始。

55、不积小流无以成江海,不积跬步无以至千里。

56、远大抱负始于高中,辉煌人生起于今日。

57、理想的路总是为有信心的人预备着。

58、抱最大的希望,为最大的努力,做最坏的打算。

59、世上除了生死,都是小事。从今天开始,每天微笑吧。

60、一勤天下无难事,一懒天下皆难事。
你是这样想的吗?
足球能得到球体.
通过对你周边物体的观察、想象,归纳一下 我们常见的几何体有哪些?

第四章 图形认识初步 全章课件-1

第四章 图形认识初步 全章课件-1

85
o
2
需要更完整的资源请到 新世纪教 育网 -
85
o
填空:
我学习我快乐!
1)已知∠1+∠2=90°则 ∠1 、 余角 ∠2互为______.
2) ∠B=120 则∠B的补角是____. 60°

3)已知∠A=50°,则∠A的余角是
40 ° ___ 补角是 ___° ,补角与余角的差是 130 ___. 90°
需要更完整的资源请到 新世纪教 育网 -
170o
1
850
需要更完整的资源请到 新世纪教 育网 -
1
850
需要更完整的资源请到 新世纪教 育网 -
2
需要更完整的资源请到 新世纪教 育网 -
2
4
需要更完整的资源请到 新世纪教 育网 -
1
3
例1 如图∠1 与∠2互补,∠3 与 ∠4互补 ,如果∠1=∠3那 么∠2与∠4相等吗?为什么?
2
4
需要更完整的资源请到 新世纪教 育网 -
1
3
例1 如图∠1 与∠2互补,∠3 与 ∠4互补 ,如果∠1=∠3那 么∠2与∠4相等吗?为什么?
1
2
3
需要更完整的资源请到 新世纪教 育网 -
4
变式练习一
如图∠1 与∠2互余,∠3 与∠4互 余 ,如果∠1=∠3那么∠2与∠4 相等吗?为什么?
2 1
需要更完整的资源请到 新世纪教 育网 -
2
1
需要更完整的资源请到 新世纪教 育网 -
2 1
需要更完整的资源请到 新世纪教 育网 -
图中给出的各角,那些互为余角?
10o
30o
50

图形的初步认识课件

图形的初步认识课件

分解图形
定义
01
分解图形是指将一个复杂图形拆分成若干个简单图形的操作过
程。
特点
02
分解图形可以帮助我们更好地理解图形的构成和性质,同时也
有助于解决一些几何问题。
例子
03
一个复杂的几何图形可以通过分解成若干个三角形、矩形、圆
形等简单图形来求解其面积、周长等几何量。
06
图形在实际生活中的应用
建筑设计
实例
在平面内,一个点可以按某一比例放大或缩小; 一个正方形可以按比例放大或缩小。
05
图形的组合与分解
组合图形
定义
组合图形是由两个或多个简单图形通过一定的规则组合在一起形 成的复杂图形。
特点
组合图形具有整体性和部分性,其性质和特征既受各组成图形的影 响,又表现出自身的独特性质。
例子
常见的组合图形有矩形、三角形、圆形等,它们可以通过平移、旋 转、对称等方式进行组合。
特点
图形在旋转过程中,其内部任意 两点间的距离保持不变,但与旋 转的角度和旋转中心的位置有关。
实例
在平面内,一个点可以绕某一点 进行旋转;一个圆可以绕圆心进
行旋转。
缩放
缩放
将图形按一定的比例放大或缩小,但不改变图形 的形状。
特点
图形在缩放过程中,其内部任意两点间的距离按 比例变化,与缩放的比例因子有关。
建筑设计是图形应用的重要领域之一,建筑师通过运用各种图形元素, 如线条、形状、色彩和纹理等,来创造具有功能性和美感的建筑作品。
在建筑设计过程中,建筑师需要综合考虑建筑的使用功能、结构要求和 审美需求等因素,运用图形的组合和变化来满足这些要求。
建筑设计中的图形应用不仅包括二维图形,如平面图、立面图和剖面图 等,还包括三维图形,如效果图和模型等。这些图形能够帮助建筑师更 好地表达设计意图和与客户的沟通。

图形认识初步知识点概括

图形认识初步知识点概括

图形认识初步一.几何图形有长方体、圆柱、直线、三角形、圆、球、圆锥、棱锥……等等.这是一个长方体的纸盒,它有两个面是正方形,其余各面是长方形.从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?长方体、圆柱、圆锥、球、圆、线段、点、三角形、四边形等,都是从形形色色的物体外形中得出的.我们把这些图形称为几何图形.立体图形:长方体、正方体、球、圆柱、圆锥等它们的各部分不都在同一平面内,它们是立体图形. 平面图形:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形. 立体图形与平面图形的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.如长方体的侧面是长方形.⎧→⎨⎩平面图形小结:观察物体外形几何图形立体图形1.从不同方向看立体图形对于一些立体图形,我们常常把它们转化为平面图形来研究. 从正面看到的平面图形叫主视图,从左面看到的平面图形叫左视图,从上面看到的平面图形叫俯视图.2.立体图形的展开有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.圆柱圆锥三棱柱长方体思考:把立方体剪了几刀才展成平面图形的?剪了七刀,一条棱剪开成两条棱,展开图的周边一共有14条棱,所以剪了七刀.小结:由一些平面图形围成的几何体可以沿某些棱剪开展成平面图形;反之,由展开的平面图形也可以围成相应的几何体.长方体 长方形正方形线段 点左视图 主视图 俯视图3.点、线、面、体像长方体、正方体、圆柱体、圆锥体、球体、棱锥体等都是几何体,简称体;包围着体的是面,面有平面和曲面两种;面与面相交的地方形成线,线有直线和曲线两种;线与线相交的地方是点.从静态的一面看:体是由面围成的,面与面相交成线,线与线相交成点. 从动态的一面看:点动成线,线动成面,面动成体.二.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线. 直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示.平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外.一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA 或射线m .注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面. 直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.例 已知线段a 、b ,求作线段AB=a+b解:(1)作射线AM ;(2)在AM 上顺次截取AC=a ,CB= b 则AB= a+b 为所求。

图形认识初步-课件


1 2
AB=7㎝
∴OC=AC-AO
=9㎝-7㎝
=2㎝
2、如图,已知∠AOB=90°,∠AOC是60°,
OD平分∠BOC,OE平分∠AOC。求∠DOE。
解:∵∠AOB=90°,∠AOC=60°
∴∠BOC=∠AOB+∠AOC=150°
∵OD平分∠BOC ∴∠DOC= 1 ∠BOC=75°
2
同理∠EOC=
延伸
延伸
1
0
以点O为端 过A、B两点 点作射线OC 作直线AB
下面的知识点你掌握了吗?
线段的基本性质:两点之间线段最短.
直线的基本性质:经过两点有一条直线 并且只有一条直线. 两点间的距离:连结两点的线段的长度, 叫做这两点间的距离.
应用举例
用一个钉子把一根细木条钉在木 板上,用手拔木条,木条能转动,这表 明过_一_点__有_无__数_条__直_线____;用两个钉子把 细木条钉在木板上,就能固定细木条, 这说明_两__点_确__定_一_条__直_线_____。
线段中点的定义



A
C
B
ACCB1 AB
2
或 AB=2AC=2CB
(1)已知AC=8cm,CB=6cm,如果O是线段 AB的中点,求线段OC的长度。
A
OC
B
AOB
C
(2)已知AB=16cm,C是直线AB上一点, 且AC=10cm,D为AC的中点,E是BC的中 点,求线段DE的长。
认真想一想
把长方形的一角折叠得到折痕EF,如图1,

11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21

第四章图形认识初步

第四章图形认识初步4.1.1 几何图形4.1.1几何图形(1)一、教学目标1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。

二、教学重点与难点教学难点:从具体事物中抽象出几何图形知识重点:识别简单几何体三、教学过程(师生活动)(一)引入新课(出示章前图)你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?常见的平面图形有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平内,这样的几何图形叫做平面图形.(二)找一找出示实物(如茶叶、地球仪、字典及魔方等)及图片(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似? (三)议一议(出示棱柱、圆柱、棱锥、圆锥模型)看一看再动手摸一摸,说说它们的异同。

(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充。

) 2.常见的立体图形有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平内,这样的几何图形叫做立体图形.(四)想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答。

(五)赛一赛长方形 正方形三角形五边形圆形 六边形长方体正方体圆柱圆锥球圆台小组长组织组员完成课本118页思考题,并进行学习汇报 (六)课堂小结 常见立体图形的归类请学生谈:我知道了什么?我学会了什么?我发现了什么? (七)布置作业1、 课本第123页习题4.1第1、2题2、 课本第125页习题4.1第7、8题。

图形的初步认识PPT教学课件


垂线的性质2:直线外一点与直线上各点连 结的所有线段中,垂线段最短。
简称:“垂线段最短”
点到直线的距离:
直线外一点到直线的 垂线段的长度,叫做 点到直线的距离。
如上图中垂线段DB的长度,就是点D到直线 AC的距离。
如图:直线 EF截直线AB、CD
像∠1与∠5,处于直线EF 的同一侧,直线AB、CD 的同一方,这样位置的一 对角就是同位角.
• 由定义可得:角平分线是在角的内部的一 条射线,同时还有:

①∠AOC=∠COB= 1/2∠AOB

②∠AOB=2∠AOC=2∠COB

③∠AOC=∠BOC.
6、互为补角、互为余角、对顶角的 概念及其性质。
• (1)概念 • 如果两个角的和等于 180°(平角),
就说这两个角互为补角,也就是说其中一 个角是另一个角的补角,如图所示.
• 2、由一个物体的三视图,描述该物体的形 状,关键是能想象出三视图和立体图形之 间的联系,从而描述该物体的形状.
(三)、平面图形的初步认识
• 1、立体图形是由平面图形所围成的. • 2、圆是由曲线围成的封闭图形. • 3、多边形:由几条线段首尾顺次相连组成
的封闭图形叫做多边形. • 4、每一个多边形都可以分割成若干个三角
• 互为邻补角的两个角既有数量关系又有位 置关系。
3、方向角
• 以测点为原点,以正北方向或正南方向 为始边,旋转到目标方向线所成的锐角, 叫做这个目标方向所成的方向角,方向角 在 0°~90°范围内。
4、方位角
• 轮船、飞机等物体运动的方向与正北方向 之间的夹角称为方位角。
立体图形
图形的初步认识
形. • 5、n边形从一个顶点出发可以作(n-3)

图形认识初步 PPT课件 人教版


13、人生最大的错误是不断担心会犯错。

14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。

15、不管怎样,仍要坚持,没有梦想,永远到不了远方。

16、心态决定命运,自信走向成功。

17、第一个青春是上帝给的;第二个的青春是靠自己努力的。

18、励志照亮人生,创业改变命运。

立体图形:几何图形的各部分不都 在同一平面内
正方体
圆柱体
球体
长方体
三棱柱 圆锥体 四棱锥 六棱柱 三棱锥
1、说出下列物体类似的立体图形: 数学课本类似于( 长方体 ),金字塔类似 于(四棱锥),西瓜类似于( 球 ),日光灯 类似于( 圆柱 )。 2. 写出下列立体图形的名称
圆柱
三棱柱 三棱锥
圆锥
19、就算生活让你再蛋疼,也要笑着学会忍。

20、当你能飞的时候就不要放弃飞。

21、所有欺骗中,自欺是最为严重的。

22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。

23、天行健君子以自强不息;地势坤君子以厚德载物。

24、态度决定高度,思路决定出路,细节关乎命运。
请发挥你的想象力,用一些简单的平 面图形设计出一个独特且具有意义的图形, 并写上几句贴切、诙谐的解说词.
图形间的联系
以下立体图形的表面包含哪些平面图形?
长方体
六棱柱
四棱锥
圆柱
想一想
如果拼两个这样的三角形(等 边三角形)至少需要几条线段? 四个呢?
..
小结与质疑:
通过本节课的学习你有何收获? 你还有什么问题吗?还想知道什么呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档