08高考数学指数对数函数问题复习
高考数学专题指数函数、对数函数、幂函数

高考数学专题 指数函数、对数函数、幂函数【要点】考点1:指数函数 定义:函数)1,0(≠>=a a a y x且称指数函数。
考点2:对数函数 定义:函数)1,0(log ≠>=a a x y a 且称对数函数。
1>a 10<<a1>a 10<<a图 象性 质定义域: R 值域:(0,+∞)①过点(0,1),图象都在第一、二象限; ②指数函数都以x 轴为渐近线; ③对于相同的)1,0(≠>a a a 且,函数xxay a y -==与的图象关于y 轴对称。
(,0)x ∈-∞时y ∈(0,1); ),0(+∞∈x 时 y ∈(1,+∞)。
(,0)x ∈-∞时 y ∈(1,+∞); ),0(+∞∈x 时y ∈(0,1)。
在R 上是增函数。
在R 上是减函数。
考点3:幂函数 1.幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象。
2.观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点 ;在(0,)+∞上是 函数; (2)当0α<时,图象过定点 ;在(0,)+∞上是 函数; 在第一象限内,图象向上及向右都与坐标轴无限趋近。
【课堂精练】 1.=3log 9log 28( )A .32 B . 1 C .23D .2 2.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使幂函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,3 3.函数2x y =-的图象( )A .与2x y =的图象关于y 轴对称B .与2x y =的图象关于坐标原点对称C .与2x y -=的图象关于y 轴对称D .与2x y -=的图象关于坐标原点对称 4.(2010年重庆卷)函数164x y =-的值域是( )(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4) 5.已知函数xxx f +-=11lg)(,若b a f =)(,则)(a f -=( ) A .b B .b - C .b 1D .1b-6.已知10<<a ,1-<b ,则函数b a y x+=的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 7.设02log 2log <<b a ,则( )(A )10<<<b a (B )10<<<a b (C )a b <<1 (D )b a <<1 8.函数lg y x =( )A .是偶函数,在区间(,0)-∞ 上单调递增B .是偶函数,在区间(,0)-∞上单调递减C .是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减 8.(06天津卷)设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A .R Q P << B .P R Q <<C .Q R P <<D .R P Q <<9.(2010年全国卷)设a=3log 2,b=In2,c=125-,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a10.(2009宁夏海南卷)用min{a ,b ,c}表示a ,b ,c 三个数中的最小值,设{})0(10,2,2m in )(≥-+=x x x x f x ,则)(x f 的最大值为( )(A )4 (B )5 (C )6 (D )711.(2008年山东卷文)已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101ba -<<<- D .1101ab --<<<12.(2010年全国卷)已知函数x x f lg )(=,若b a <<0且)()(b f a f =,则b a 2+的取值范围是( )(A))+∞(B))+∞ (C)(3,)+∞ (D)[3,)+∞13.幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 。
对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )
人
A. 2
B.2 或12
教
B
版
C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,
版
∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B
版
图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.
人
性质 (4)当 a>1 时,在(0,+∞)是增函数;
教
B
当 0<a<1 时,在(0,+∞)上是减函数.
B
版
(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2
如何解决高考数学中的指数与对数运算问题

如何解决高考数学中的指数与对数运算问题在高考数学中,指数与对数运算问题一直是考生们的难点之一。
本文将介绍一些解决这类问题的方法和技巧,帮助考生们更好地应对高考数学中的指数与对数运算。
一、指数运算问题的解决方法:1. 熟悉指数的基本运算法则:指数相乘,底数不变,指数相加;指数相除,底数不变,指数相减;指数的负指数是指数的倒数等。
掌握这些基本运算法则可以快速简化指数运算。
2. 注意指数运算的特殊情况:0的任何正指数都等于0,0的负指数为不存在;1的任何指数都等于1,1的负指数为1的倒数等。
遇到这些特殊情况,可以直接计算结果。
3. 运用指数运算的化简规则:当指数运算中有相同底数时,可以运用化简规则将指数部分合并或分解。
例如,指数相乘时可以将底数不变,指数相加;指数相除时可以将底数不变,指数相减。
灵活应用这些规则可以简化计算过程。
4. 运用对数函数化简指数:对数函数和指数函数是互逆关系,通过运用对数函数可以将指数运算转化为对数运算,并利用对数运算的性质来解决问题。
二、对数运算问题的解决方法:1. 了解对数的基本性质:对数的底数必须为正实数且不能等于1,对数的真数必须为正实数。
了解这些基本性质可以帮助我们正确应用对数运算。
2. 运用对数运算的基本公式:对数运算有两个基本公式,即对数公式和换底公式。
对数公式是ln(a/b) = ln(a) - ln(b),换底公式是loga(b) = logc(b) / logc(a)。
根据具体情况灵活应用这些公式可以化简对数运算。
3. 善用常见对数与自然对数的计算:常见对数的底数为10,自然对数的底数为e。
掌握常见对数和自然对数的近似值,可以在计算过程中快速估算结果。
常见对数的近似值为log10(2)≈0.3010,log10(3)≈0.4771,自然对数的近似值为ln(2)≈0.6931,ln(3)≈1.0986。
4. 运用对数变换解决问题:对数变换是将原问题转化为以对数形式表示的问题,通过运用对数的性质解决问题。
高考数学中的指数函数与对数函数题详解

高考数学中的指数函数与对数函数题详解指数函数和对数函数是高考数学中的重要内容,涉及到的题型和考点较多。
本文将对指数函数和对数函数的基本定义、性质以及解题方法进行详细解析。
一、指数函数指数函数是以指数为自变量的函数,其一般形式为y = a^x (其中a>0且a≠1)。
下面,我们来讨论指数函数的基本性质。
1. 指数函数的定义域和值域指数函数的定义域为实数集R,值域为正实数集(0, +∞)。
2. 指数函数的图像特点当指数a>1时,指数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势;当0<a<1时,指数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势。
3. 指数函数的性质(1) 指数函数在定义域内具有严格单调性,即当a>1时为严格递增函数,当0<a<1时为严格递减函数。
(2) 指数函数在定义域内具有连续性,无间断点。
(3) 指数函数在定义域内具有无界性,即当x趋向于正无穷时,函数值也趋向于正无穷。
(4) 指数函数具有经过点(0, 1)的特点。
接下来,我们通过解题的方式来进一步认识指数函数。
例题1:已知方程2^x = 4的解为x = 2,则方程e^(x-1) = 1的解为多少?解题思路:首先,根据指数函数的性质可知,2^x = 4 等价于 x = 2。
然后,代入方程e^(x-1) = 1,得到e^(2-1) = 1,即e^1 = 1,因此方程e^(x-1) = 1的解为x = 1。
二、对数函数对数函数是指以对数为自变量的函数,其一般形式为y = loga(x)(其中a>0且a≠1,x>0)。
下面,我们来探讨对数函数的基本性质。
1. 对数函数的定义域和值域对数函数的定义域为正实数集(0, +∞),值域为实数集R。
2. 对数函数的图像特点当0<a<1时,对数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势;当a>1时,对数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势。
如何解决高考数学中的指数对数函数求导问题

如何解决高考数学中的指数对数函数求导问题指数对数函数是高考数学中的一个重要内容,求导是解题的关键。
本文将介绍如何解决高考数学中的指数对数函数求导问题。
首先,我们将从指数函数的求导入手,然后介绍对数函数的求导方法,最后给出综合应用题的解答方法。
1. 指数函数的求导:指数函数的一般形式为 y = a^x (a > 0,且a≠1)。
对于指数函数 y = a^x 的求导,可以使用链式法则来求解。
首先,对于 y = e^x 的情况,它的导数恒等于自身,即 dy/dx = e^x。
对于一般的指数函数 y = a^x,可以将其写成 y = (e^lna)^x 的形式,然后利用链式法则求导,得到dy/dx = (e^lna)^x * lna = a^x * lna。
2. 对数函数的求导:对数函数的一般形式为 y = loga(x) (a > 0,且a≠1)。
对于对数函数 y = loga(x) 的求导,同样可以使用链式法则来求解。
首先,对于 y = loge(x) 或 y = ln(x) 的情况,它的导数为 dy/dx = 1/x。
对于一般的对数函数 y = loga(x),可以将其写成 y = ln(x)/ln(a) 的形式,然后利用链式法则求导,得到 dy/dx = (1/x) / ln(a) = 1/(x * ln(a))。
3. 综合应用题的解答方法:对于高考中常见的综合应用题,涉及到指数函数和对数函数的求导问题,可以综合运用前述的求导方法来解答。
具体的解题步骤如下:(1)根据题目中给出的函数形式,确定所涉及的指数函数和对数函数的类型。
(2)针对各个函数类型,运用前述的求导方法,求出各个函数的导函数。
(3)根据题目中的要求,将函数的各个部分代入导函数中,求得最终的导数表达式。
(4)根据求得的导数表达式,进行进一步的化简和推导,以满足题目中的要求。
总结:在解决高考数学中的指数对数函数求导问题时,我们可以运用指数函数和对数函数的求导方法,利用链式法则来求解。
对数函数-高考数学复习

解析
当
当
当
1
1
logm7=log ,logn7=log ,
7
7
1
1
1<m<n 时,0<log7m<log7n,所以
>
,即 logm7>logn7;
log7
log7
1
1
0<m<n<1 时,log7m<log7n<0,所以log > log ,即 logm7>logn7;
函数y=loga|x|与y=|logax|(a>0,a≠1)的性质
y=loga|x|
函数
a>1
0<a<1
定义域 (-∞,0)∪(0,+∞)
R
值域
奇偶性 偶函数
在(0,+∞)内单调递增; 在(-∞,0)内单调递增;
单调性
在(-∞,0)内单调递减 在(0,+∞)内单调递减
图象
y=|logax|
a>1
0<a<1
1.函数f(x)=log3(x-1)是对数函数.( × )
2.若logax>1,则x>a.( × )
3.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上是单调递增函数.(
4.函数 y=|lo1 x| 的单调递减区间是(1,+∞).( × )
2
)
题组二 回源教材
5.(人教A版必修第一册习题4.4第1题改编)函数 y= 0.5 (4-3) 的定义域
高考数学复习专题知识梳理总结—指数函数与对数函数
高考数学复习专题知识梳理总结—指数函数与对数函数一.根式及相关概念(1)a的n次方根定义如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示n的奇偶性a的n次方根的表示符号a的取值范围n为奇数n a Rn为偶数±n a[0,+∞)(3)根式式子na叫做根式,这里n叫做根指数,a叫做被开方数.二.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=≥0,a<0.(3)n0=0.(4)负数没有偶次方根.思考:(na)n中实数a的取值范围是任意实数吗?提示:不一定,当n为大于1的奇数时,a∈R;当n为大于1的偶数时,a≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:amn=na m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1na m(a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =na m 中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈Q ).(2)(a r )s =a rs (a >0,r ,s ∈Q ).(3)(ab )r =a r b r (a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R 值域(0,+∞)过定点(0,1),即当x =0时,y =1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称思考1:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?提示:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)log a1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x=log a N时,不存在N≤0的情况.十一.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N;(2)log a MN=log aM-log a N;(3)log a M n=n log a M(n∈R).思考:当M>0,N>0时,log a(M+N)=log a M+log a N,log a(MN)=log a M·log a N是否成立?提示:不一定.十二.对数的换底公式若a>0且a≠1;c>0且c≠1;b>0,则有log a b=log c b log c a.十三.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考1:函数y=2log3x,y=log3(2x)是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质a的范围0<a<1a>1图象定义域(0,+∞)值域R性定点(1,0),即x=1时,y=0质单调性在(0,+∞)上是减函数在(0,+∞)上是增函数思考2:对数函数的“上升”或“下降”与谁有关?提示:底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.十五.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.十六、三种函数模型的性质十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).二十二.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)二十三.建立函数模型解决问题的基本过程思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x <3,开方、化简,再求值.(1)-1[∵x <0,∴|x |=-x ,x 2=|x |=-x ,∴x +|x |+x 2x=x -x -1=-1.](2)[解]x 2-2x +1-x 2+6x +9=(x -1)2-(x +3)2=|x -1|-|x +3|,当-3<x ≤1时,原式=1-x -(x +3)=-2x -2.当1<x <3时,原式=x -1-(x +3)=-4.2x -2,-3<x ≤1,4,1<x <3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;-23(b >0).[解](1)原式=a ·a 12=a 32=a 34.(2)原式=13x ·(x 25)2=13x ·x 45=13x 95=11x 35=x -35.(3)-23=b -23×14×=b 19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x 的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x ;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x 前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由=39得a -32=39,所以a =3,又f (-2)=a -2,所以f(-2)=3-2=1 9 .]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f(x)的图象单调递减,所以0<a<1,又0<f(0)<1,所以0<a-b<1=0,即-b>0,b<0,故选D.(2)令x-3=0得x=3,此时y=4.故函数y=a x-3+3(a>0,且a≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).[解](1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x 在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x 的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3;当0<a <1时,y =a x 在R 上是减函数,故a 1.1<a 0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式a f (x )>a g (x )(a >0a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )x )>g (x ),a >1,x )<g (x ),0<a <1.典例8:(1)解不等式x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解](1)∵21,∴原不等式可以转化为x -11.∵y 在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a<1时,函数f(x)=a x(a>0,a≠1)在R上是减函数,∴x2-3x+1>x+6,∴x2-4x-5>0,根据相应二次函数的图象可得x<-1或x>5;②当a>1时,函数f(x)=a x(a>0,a≠1)在R上是增函数,∴x2-3x+1<x+6,∴x2-4x-5<0,根据相应二次函数的图象可得-1<x<5.综上所述,当0<a<1时,x<-1或x>5;当a>1时,-1<x<5.9.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.典例9:判断f(x)2-2x的单调性,并求其值域.[思路点拨]令u=x2-2x―→函数u(x)的单调性―→――→函数f(x)的单调性[解]令u=x2-2x,则原函数变为y.∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y在(-∞,+∞)上递减,∴y 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u=x2-2x=(x-1)2-1≥-1,∴y ,u ∈[-1,+∞),∴1=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 1232=-55=32.(3)由lg 1000=3,可得103=1(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b ,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a =5b =c ――――→指对互化求1a ,1b ――――→1a +1b=2求c 的值[解]∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)+1>0,-x >0,>-1,<2,解得-1<x <2,故函数的定义域为(-1,2).(3)4x +8>0,x -1>0,x -1≠1,<2,>12,≠1.故函数y =log (2x -1)(-4x +8)的定义域为|12<x <2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b a b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y=a -x 与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C[∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解](1)-1>0,-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a>1x<3,-1≤6-2x,解得1<x≤7 3;②当0<a<1x<3,-1≥6-2x,解得73≤x<3.综上可得,当a>1,7 3;当0<a<1时,不等式的解集为7 3,17.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y=2019x B.y=2019C.y=log2019x D.y=2019x(2)下面对函数f(x)=log12x,g(x)与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是()A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快(1)A(2)C[(1)指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.(2)观察函数f(x)=log1x,g(x)与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:2函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f(x)=2x和g(x)2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f f(2019)与g(2019)的大小.[解](1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.(2)∵f(1)=g(1),f(2)=g(2)从图象上可以看出,当1<x<2时,f(x)<g(x),∴当x>2时,f(x)>g(x),∴f(2019)>g(2019).19.函数零点的求法(1)代数法:求方程f(x)=0的实数根.(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.典例19:(1)求函数f(x)2+2x-3,x≤0,2+ln x,x>0的零点;(2)已知函数f(x)=ax-b(a≠0)的零点为3,求函数g(x)=bx2+ax的零点.[解](1)当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以函数f(x)2+2x-3,x≤02+ln x,x>0的零点为-3和e2.(2)由已知得f(3)=0即3a-b=0,即b=3a.故g(x)=3ax2+ax=ax(3x+1).令g(x)=0,即ax(3x+1)=0,解得x=0或x=-1 3 .所以函数g(x)的零点为0和-1 3 .20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f(x)=ln(x+1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x-x-3=0的一个根所在区间是()x-10123e x0.371 2.727.3920.08x+323456A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C(2)C[(1)因为f(1)=ln2-21<0,f(2)=ln3-1>0,且函数f(x)在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选C.(2)构造函数f(x)=e x-x-3,由上表可得f(-1)=0.37-2=-1.63<0,f(0)=1-3=-2<0,f(1)=2.72-4=-1.28<0,f(2)=7.39-5=2.39>0,f(3)=20.08-6=14.08>0,f(1)·f(2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A .4,4B .3,4C .5,4D .4,3D[图象与x 轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f (x )(万件)如下表所示:x 1234f (x )4.005.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a ≠0).由已知得a +b =4,3a +b =7,解得a =1.5,b =2.5,∴f (x )=1.5x +2.5.检验:f(2)=5.5,且|5.58-5.5|=0.08<0.1,f(4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f(x)=1.5x+2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f(5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。
高三数学总复习对数和指数函数
高中数学总复习对数和指数函数复习内容:高中数学第三章【复习目标】1. 理解对数的意义,会熟练的将指数式与对数式互化,掌握积、商、幂的对数运算性质换底公式; 2. 理解反函数的概念,会求已知函数的反函数,掌握函数与它的反函数在定义域、值域及图像上的关系;3. 理解指数函数和对数函数的要领,掌握指数函数和对数函数的图像和性质,掌握指数函数和对数函数互为反函数的结论;4. 理解指数方程和对数方程的意义,会解简单的指数方程和对数方程. 5. 掌握数学方法:分类讨论,数形结合,换元法,等价转换.【重点难点】对数的意义与运算性质,反函数的概念及性质,指数函数和对数函数的图像和性质. 【课前预习】1.函数()(2)x f x =-、2()3x f x -=、1()2()3x f x =⋅、3()f x x =中,指数函数是2.(1)函数1()()2x f x =的值域是 (2)函数212()log (25)f x x x =-+的值域是3.(1)函数()f x =(2)函数()f x =4.(1)函数()y f x =的图像与函数()2x f x =的图像关于x 轴对称,则()y f x == (2)函数lg(2)(2)y x x =->的图像关于x 轴对称的函数()y f x ==5. 函数2()(1)x f x a =-是R 上的减函数,则实数a 的取值X 围是6. 已知0<a<1,b<-1,则函数()x f x a b =+的图像不经过 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 7.函数213()log (232)f x x x =--的单调递增区间是8. 使log 2(-x)<x+1成立的x 的取值X 围是 9.不论a 为何值时,函数y=(a-1)2x -2a 的图像过一定点,这个定点的坐标是(-1,-12)10.已知函数f(x)是定义在R 上的奇函数,当x<0时,f(x)=1()3x ,则f(12)11.已知函数y=4x -32x +3的值域为[1,7],则实数x 的取值X 围是(-∞,0]∪[1,2]12.函数()2x f x =,x 1,x 2∈R 且x 1≠x 2,则 ( ) A.12121[()()]()22x x f x f x f ++= B.12121[()()]()22x x f x f x f ++> C.12121[()()]()22x x f x f x f ++< D.以上答案都不对【基础知识】1.幂的有关概念(1)正整数指数幂()nna a a a a n N *=⋅⋅⋅⋅∈ (2)零指数幂)0(10≠=a a(3)负整数指数幂()10,nn aa n N a-*=≠∈ (4)正分数指数幂()0,,,1mn m n a a a m n N n *=>∈>; (5)负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>(6)0(0)a a >,没有意义.2.有理数指数幂的性质()()10,,rsr sa a aa r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式的内容(1)根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
对数与对数函数-高考数学复习课件
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,
2
所以 a +2 b = a + .
2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)
值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0
a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0
性质
在(0,+∞)上是 增
数
函
当 x >1时, y <0 ;
当0< x <1时, y >0
在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作
指数函数和对数函数复习(有详细知识点和习题详解)
一、指数的性质 (一)整数指数幂1.整数指数幂概念:an na a a a 个⋅⋅⋅= )(*∈N n ()010a a =≠ ()10,nnaa n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),mnm na a am n Z +⋅=∈ (2)()(),nm mn a a m n Z =∈(3)()()n n nab a b n Z =⋅∈其中m n m nm na a a aa--÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ()*∈>Nn n ,1,那么这个数叫做a 的n 次方根,即: 若a xn=,则x 叫做a 的n 次方根, ()*∈>N n n ,1例如:27的3次方根3273=, 27-的3次方根3273-=-,32的5次方根2325=, 32-的5次方根2325-=-.说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ;②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±)③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根;④()*∈>=Nn n n,100 0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。
∴na =..4.a 的n 次方根的性质一般地,若n 是奇数,则a a n n =;若n 是偶数,则⎩⎨⎧<-≥==00a aa aa a nn.5.例题分析:例1.求下列各式的值:(1)()338- (2)()210- (3)()443π- (4)()()b a b a >-2解:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
08高考数学指数对数函数问题测试指数函数、对数函数是高考考查的重点内容之一, 本节主要帮助考生掌握两种函数的概 念、图象和性质并会用它们去解决某些简单的实际问题•难点磁场1 + X 1 (★★★★★)设 f(x)=log 2,F(x)=+f(x).1 -x2—x(1) 试判断函数f(x)的单调性,并用函数单调性定义,给出证明;—1— "in⑵若f(x)的反函数为f (x),证明:对任意的自然数 n(n 》3),都有f (n)> ;n +1-1 -1⑶若F(x)的反函数F (x),证明:方程F (x)=0有惟一解. •案例探究[例1]已知过原点 0的一条直线与函数 y=log 8X 的图象交于A 、B 两点,分别过点 A 、 B 作y 轴的平行线与函数 y=log 2x 的图象交于C 、D 两点.(1) 证明:点C 、D 和原点0在同一条直线上; (2) 当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知 识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k oc =k oD . ⑵第⑵问的解答中蕴涵着方程思想,只要得到方程 (1),即可求得A 点坐标.错解分析:不易考虑运用方程思想去解决实际问题 技巧与方法:本题第一问运用斜率相等去证明三点共线; 第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为X 1、X 2,由题意知:X 1>1,X 2>1,则A 、B 纵坐标分别为log 8 x 1log 8 x 2 (X 1,log 2X 1),(X 2,log 2X 2),由于 log 2X 1=— =3log 8 x 1,log 2 x 2- -=3log 8X 2,所以 OC 的斜log s 2log 8 2OD 的斜率:k 2=!ga i^ =3log8X 2,由此可知:k 1=k 2,即0、C 、D 在同一条直线上.x 2 x 2一 1(2)解:由 BC 平行于 x 车由知:log 2X 1=log 8X 2 即:log 2X 1= log 2x 2,代入 X 2log 8X 1=X 1log 8X 2得:X 13log 8X 1=3x 1log 8X 1,由于 X 1>1 知 log 8X 1* 0,二 xF=3x 1.又 X 1>1, /• X 1= 3 ,则点 A 的坐标为 (3 ,log 8x 1,log 8X 2.因为 A 、B 在过点 O 的直线上,所以log 8 %Xlog 8 X 2X 2,点C 、D 坐标分别为 率: 匕=log ?为 _3log 8 X 11 X 2X1log8 ■- 3).[例2:在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n)…,对每个自然数n点P na位于函数y=2000( )x(o<a<1)的图象上,且点P n,点(n,0)与点(n +1,0)构成一个以P n为顶点的10等腰三角形•(1) 求点P n的纵坐标b n的表达式;⑵若对于每个自然数n,以b n,b n+i,b n+2为边长能构成一个三角形,求a的取值范围;⑶设C n=lg(b n)(n € N*),若a取⑵中确定的范围内的最小整数,问数列{C n}前多少项的和最大?试说明理由•命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力•属★★★★★级题目•知识依托:指数函数、对数函数及数列、最值等知识错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题•1 a nl解:(1)由题意知:a n= n+ ,••• b n=2000( ) 2.2 10a(2) •••函数y=2000( )x(0<a<10)递减,•对每个自然数n,有b n>b n+1>b n+2则以b n,b n+1,b n+210为边长能构成一个三角形的充要条件是b n+2+b n+1>b n,即(一「+( )—1>0,解得a<—5(1+展)10 10或a>5( •, 5 —1). •• 5^-.' 5 —1)< a<10.⑶•/ 5(、5 —1)< a<10, • • a=77 n g…b n=2000( ) 2•数列{b n}是一个递减的正数数列,对每个自然数n A 2,B n = b n B n- 1.于10是当b n > 1时,B n<B n-1,当b n<1时,B n< B n- 1,因此数列{B n}的最大项的项数n满足不等式b n7 n屯A1 且b n+1<1,由b n=2000( ) 2A 1 得:n W 20.8.• n=20.10•锦囊妙计本难点所涉及的问题以及解决的方法有:(1) 运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2) 综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力(3) 应用题目.此类题目要求考生具有较强的建模能力.•歼灭难点训练一、选择题〔.(★★★★)定义在(—8,+ g)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10x+1),其中x€ ( —g,+ g),那么()x —xA. g(x)=x,h(x)=lg(10 +10 +2)xx xC.g(x)=r h(x)=lg(10 +1) - 2x xD.g(x)= - - ,h(x)=lg(10 +1)+- 2函数y=log a x和y=(1 —a)x的图象只可能是()AB C DB.g(x)=1 x[lg(10 +1)+x] ,h(x)= :lg(10x+1)- x]xr ' ' ......... *… 2 '?.(★★★★)当a>1 时,二、填空题3.( ★★★★★) 已知函数2xf(x)=1og 2(—x)(x—0)(-2 :::.则f-—1(x—1)= _________4.(★★★★★)如图,开始时,桶1中有a L水,t分钟后剩余的水符合指数衰减曲线y=ae nt,那么桶2中水就是y2=a —ae nt,假设过5分钟时,桶1和桶2的水相等,则再过___________ 分钟桶1中的水只有a8 .三、解答题5. (^^^^ )设函数f(x)=log a(x—3a)(a>0且1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x—2a, —y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式;⑵若当x€[ a+2,a+3]时,恒有|f(x) —g(x)|< 1,试确定a的取值范围.16. (★★★★)已知函数f(x)=log a x(a>0 且a^ 1),(x € (0,+ g)),若X1,X2€ (0,+ m),判断一2 X" +x2[f(X”+f(x2)]与f( 1 2)的大小,并加以证明.22 2 2 2?.(★★★★★)已知函数x,y 满足x> 1,y> 1.log a x+log a y=log a(ax )+log a(ay )(a>0 且a丰1),求log a(xy)的取值范围.28.(★★★★)设不等式 2 (log 1x) +9(log 1x)+9 < 0的解集为M,求当x€ M 时函数2 2f(x)=(log 2x)(log 2 —)的最大、最小值.2 8参考答案难点磁场1 +x1 1, 1 +x 2 i 1 +x 1F(X 2)— F(X 1)=(二一亍)+( log 21T^-log 21T^)+Iog 2(1—X1)(1+X2)(2—X J(2—X 2)3 2(1 % )(1—X 2)••• X 2 — X 1>0,2 — X 1 >0,2 — X 2>0, •••上式第2项中对数的真数大于 1. 因此 F(X 2)— F(X 1)>0,F(X 2)>F(X 1),「. F(X )在(一1 , 1)上 是增函数•1 + X1 + X ⑵证明:由 y=f(x)= log2 得:2=,x= y 1 -x1 -x 2y +1—1 2 -1 — 1•f (X)=厂,-⑹的值域为R,^ f - (X)的定义域为R•-1n 2 -1 n21 n当n >3时,5)>荷=厂百二1 一厂1 一百二2②「答案:C2•解析:当a>1时,函数y=log a x 的图象只能在 A 和C 中选,又a>1时,y=(1 — a)x 为 减函数•答案:B2y -1用数学归纳法易证 2n >2n+1(n > 3),证略.1 —1 1 1 —1⑶证明:■/ F(0)= — ,• F (- )=0, • x= 是 F (x)=0 的一个根 假设1 -1 1 -1X 0(X 0^2 ),则 F (X 0)=0,于是 F(0)=X 0(X 0^ 3).这是不可能的,故 F (x)=0 —1F (x)=0还有一个解 -12 歼灭难点训练一、1.解析:由题意:g(x)+h(x)=lg(10X +1) 又 g(— x)+h( — x)=lg(10 +1).即—g(x)+h(x)=lg(10 +1)由①②得:g(x)=| ,h(x)=lg(10X +1) — | .有惟一解.二、3.解析:容易求得f 1(x)= log2 x-2X(X_1),从而:(x <1)—1f (x—1)= *1og2(x —1),(x32) -2"1, (xv2).答案: 1og2(x -1),(x 启2) -2心(x<2)4•解析:t 1由题意,5分钟后,y1=ae " ,y2=a —ae nt,y1=y2.• n=_ln2.设再过t分钟桶1中的5—nt水只有a,则8叫即解得t=10.1答案:10三、5.解:(1)设点 Q 的坐标为(x ' ,y '),则 x ' =x -2a,y ' =— y.即 x=x ' +2a,y= -y-g(x)=lOg a1 2 2 2 1,T |f(X )— g(x)| = |log a (x — 3a) — log a | = |log a (x — 4ax+3a )| • |f(x) — g(x)|< 1, •— 1 < log a (xx -a2 2 2 —4ax+3a ) < 1, •/ 0 v a v 1, • a+2>2a.f(x)=x — 4ax+3a 在]a+2,a+3 ]上为减函数,• 卩 2 2(x)=log a (x — 4ax+3a )在]a+2,a+3]上为减函数,从而[卩(x)] max =卩(a+2)=log a (4 — 4a),:卩0 ::: a ::: 1«log a (9 —6a) 1 的解.jog a (4—4a)兰 1丄 9—(574由loga (9 — 6a)》一1 解得 0 v a w,由 log a (4 — 4a) w 1 解得 0 v a w ,12 5•所求a 的取值范围是0v a w 9一、'57 . 126.解:f(X 1)+ f(X 2)=log a X 1 +log a x 2=log a X 1X 2,T X 1 ,X 2 (0,+ 8 ),X 1X 2W ( X 1X 2 )2(当且仅当 X 1=X 2 时取"=”号),2即 2[f(x 1)+f(x 2):w f(宁)(当且仅当x 1=x 2 时取“=”号)当 0v a v 1 时,有 log a X 1X 2> log a (X 1 X 2)2,2二-(log a X 1 + log a X 2) > log a' 空,即丄[f(X1)+f(X 2)] > f(^ 空)(当且仅当 X 1=X 2 时取"=” 2 2 2 2号).2 2 2 27.解:由已知等式得:log a x+log a y=(1+2log a x)+(1+2log a y),即(log a x — 1) +(log a y — 1) =4,令 u=log a x,v=log a y,k=log a xy,则(u — 1)2+(v — 1)2=4(uv > 0),k=u+v.在直角坐标系 uOv 内,圆弧(u —1)2+(v — 1)2=4(uv > 0)与平行直线系v= — u+k 有公共点,分两类讨论.(1)当u > 0,v > 0时,即a>1时,结合判别式法与代点法得1+ 3 w k w 2(1+: 2);⑵当 u w 0,v w 0,即 0v a v 1 时,同理得到 2(1 — 2 )w k w 1 — 3 .x 综上,当 a>1 时,log a xy 的最大值为2+2 2,最小值为1+、、3 ;当0v a v 1时,log a xy 的最大值为1 — 3,最小值 为 2—2 2.当 a>1 时,有 log a X 1X 2W log a (•••点 P(x,y)在函数 y=log a (x - 3a)的图象上,二—y ' =log a (x ' +2a - 3a),即 y = lOg a ~2x -a(2)由题意得 x — 3a=(a+2) — 3a= — 2a+2>0;1 1x -a (a 3) -a>0,又 a>0 且 a 丰 1, ••• O v a vX 1 x 2 21log a X 1X 2W log a (X1 2X2 ),1 (log a X 1+log a X 2) w logX 1 x 2 2(x)] min =(a+3)=log a (9 — 6a),于是所求问题转化为求不等式组28•解:T 2( log i x) +9( log 1 x)+9 < 02 2(2 log 1 x+3)( log 1 x+3) < 0.2 231—31 -()wlog i x w log i ( ) 222 2 231 = 1 —3 l•••( — ) 2 w x w ( — )2.2 w x W 822即 M={x|x €[ 2 , 2 ,8: }又 f(x)=(log 2x — 1)(log 2x — 3)=log 22x — 4log 2x+3=(log 2x — 2)2— 1.—3■/ 2 2 w x w 8, •w log 2x w 33W log i x w —2即 log i222••当Iog2x=2,即x=4 时y min= —1;当log2X=3,即x=8 时,y max=0.。