15分钟训练12不等式的基本性质

合集下载

不等式的基本性质

不等式的基本性质

110,又 a0, aa0, 一
dc
dc
性质四
又 ab0,10, ab0,二
c cc
性质四
由一二可得
ab还0有,其a他 方b d c 法d吗 c
性质二
性质六
c> d > 0性质{四cc>d d o
c1 d1 0 cd cd
1 10 dc
课堂互动讲练
一.实数大小的比较
一数轴上的点与实数一一对应可以利用数轴上点的左
二.不等式的基本性质
由两数大小关系的基本事实可以得到不等式的一些基
本性质:
一如果a>b那么b<a;如果b<a那么a>b.即 a>
b⇔b<a .
二如果a>bb>c那么
.a即>ac>bb>c⇒ . a>c
三如果a>b那么a+c> b+. c
四如果a>bc>0那么ac bc;>如果a>bc<0那么ac bc.
b是正数;如果a=b那么a-b等于零;如果a < b那么a-b 是负数;反过来也对.
用数学式子表示为:
表示等价于
a b a - b 0 a b a - b 0 a b a - b 0
基本理论
a b a-b 0;
a b a-b 0;
ab a-b0.
上式中的左边部分反映的是实数的大小顺序而右 边部分则是实数的运算性质合起来就成为实数的 大小顺序与运算性质之间的关系. 这一性质不仅 可以用来比较两个实数的大小而且是推导不等式 的性质、不等式的证明、解不等式的主要依据.
20> 0
所以 (x+1)(x+2) > (x-3)(x+6)
课堂小结与作业
1.不等式的概念: 同向不等式;异向不等式;同解不等

不等式的基本性质初中教案

不等式的基本性质初中教案

不等式的基本性质初中教案教学目标:1. 理解不等式的概念,掌握不等式的基本性质。

2. 能够运用不等式的基本性质解决实际问题。

教学重点:1. 不等式的定义和基本性质。

2. 运用不等式的基本性质解决实际问题。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入不等式的概念,通过实际例子让学生感受不等式的存在。

2. 提问学生:不等式和等式有什么区别?二、不等式的基本性质(15分钟)1. 介绍不等式的基本性质,包括:a. 不等式的两边同时加上或减去同一个数,不等号的方向不变。

b. 不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

c. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

2. 通过示例和练习,让学生掌握不等式的基本性质。

三、运用不等式的基本性质解决实际问题(15分钟)1. 给出实际问题,让学生运用不等式的基本性质解决。

2. 引导学生思考如何将实际问题转化为不等式问题。

3. 通过示例和练习,让学生学会运用不等式的基本性质解决实际问题。

四、巩固练习(10分钟)1. 给出练习题,让学生独立完成。

2. 引导学生思考如何运用不等式的基本性质解决题目。

3. 对学生的答案进行讲解和指导。

五、总结和作业布置(5分钟)1. 对本节课的内容进行总结,让学生掌握不等式的基本性质和运用方法。

2. 布置作业,让学生巩固所学内容。

教学反思:本节课通过实际例子引入不等式的概念,让学生感受不等式的存在。

接着介绍了不等式的基本性质,并通过示例和练习让学生掌握不等式的基本性质。

最后,通过实际问题的解决,让学生学会运用不等式的基本性质解决实际问题。

在教学过程中,要注意引导学生思考如何将实际问题转化为不等式问题,培养学生的转化能力。

同时,通过练习题的巩固,让学生熟练掌握不等式的基本性质和运用方法。

作业布置要合理,难度要适中,以便让学生在巩固所学内容的同时,不断提高自己的解题能力。

12 不等式的基本性质 完美版

12 不等式的基本性质  完美版
22
5、判断正误:
(1)∵a+8>4
(2)∵3>2
∴a>-4 (√ )
∴3a>2a( ×)
(3)∵-1>-2
(4)∵ab>0
∴a-1>a-2 ( √ ) ∴a>0,b> 0( ×)
6、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc (2)如果a>b,那么ac2 >bc2 (3)如果ac2>bc2,那么a>b (4)如果a>b,那么a-b>0 (5)如果ax>b且a≠0,那么x>b/a
如果a b,那么 a c < b c
性质1,不等式的两边都加上(或减去) 同一个整式,不等号的方向不变.
不等式的基本性质
填空(1):
填空(2):
60 < 80 60 ×0.8 < 80 ×0.8
4>ห้องสมุดไป่ตู้ 4×5 > 3×5 4÷2 > 3÷2
性质2,不等式的两边都乘以(或除以) 同一个正数,不等号的方向不变。
B.3x2>2x2
C.3+x>2
D.3+x2>2
4、单项选择: (1)由 x>y 得 ax>ay 的条件是( B ) A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D) A.a>0 B.a<0 C.a≥0 D.a≤0 (3)由 a>b 得 am2>bm2 的条件是( C ) A.m>0 B.m<0 C.m≠0 D.m是任意有理数 (4)若 a>1,则下列各式中错误的是( D ) A.4a>4 B.a+5>6 C. a < 1 D.a-1<0
7、利用不等式的基本性质填空,
(填“<”或“>”)

高一不等式专题训练

高一不等式专题训练

高一不等式专题训练一、不等式的基本性质1. 知识点回顾不等式的基本性质:对称性:a>bLeftrightarrow b < a。

传递性:a > b,b > cRightarrow a>c。

加法性质:a > bRightarrow a + c>b + c;a>b,c > dRightarrow a + c>b + d。

乘法性质:a>b,c>0Rightarrow ac > bc;a > b,c < 0Rightarrow ac < bc;a>b>0,c>d>0Rightarrow ac>bd。

乘方性质:a > b>0Rightarrow a^n>b^n(n∈N,n≥slant1)。

开方性质:a > b>0Rightarrowsqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。

2. 例题例1:已知a < b < 0,比较下列各数大小:(1)/(a)与(1)/(b)。

解析:因为a < b < 0,给a < b两边同时除以ab(ab>0),根据不等式的乘法性质,得到(a)/(ab)<(b)/(ab),即(1)/(b)<(1)/(a)。

例2:已知a>b,c < d,求证:a c>b d。

解析:因为c < d,根据不等式的性质,c>-d。

又因为a>b,再根据不等式的加法性质,将两个不等式相加,得到a+( c)>b+( d),即a c>b d。

二、一元二次不等式及其解法1. 知识点回顾对于一元二次不等式ax^2+bx + c>0(a≠0)(或<0),先求出一元二次方程ax^2+bx + c = 0的根(判别式Δ=b^2-4ac)。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。

教学重点:1. 不等式的基本性质;2. 不等式的运算规则。

教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。

教学准备:1. 教学课件;2. 练习题。

教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。

三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。

四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。

教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。

七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。

2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。

九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。

高中数学选修4《不等式的基本性质》巩固提升案

高中数学选修4《不等式的基本性质》巩固提升案

1.1.1 不等式的基本性质(建议用时:30分钟) 测控导航知识点题号(难易度) 不等式的基本性质1——8(容易) 不等式的基本性质及应用9、10(一般) 不等式的基本性质及应用 12、13(较难) 达标体验达标体验1.设a ,b ,c ∈R 且a >b ,则( )A .ac >bc B.1a <1b C .a 2>b 2 D .a 3>b 32.(2014·四川高考理科)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <bc3.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是() A .ab >ac B .c (b -a )>0 C .cb 2<ab 2 D .ac (a -c )<04.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0 D .-π2<α-β<π25.如果a <b <0,那么下列不等式成立的是( )A.1a <1b B .ab <b 2 C .-ab <-a 2 D .-1a <-1b6.若1a <1b <0,则下列不等式正确的有 ( ).①a +b<ab ;②|a|>|b|;③a<b ;④ac>bc.A .1个B .2个C .3个D .4个7.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.若1<a <4,1<b <2,则ab 的取值范围为( ).A .(1,2) B.⎝⎛⎭⎫12,2 C .(2,4) D.⎝⎛⎭⎫12,49.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ).A.1a <1b B .a 2>b 2C.a c 2+1>b c 2+1D .a |c |>b |c | 10.已知不等式:①x 2+3>2x ;②a 5+b 5>a 3b 2+a 2b 3;③a 2+b 2≥2(a -b -1),其中正确的不等式有__________(填上正确的序号).11.对于实数a ,b ,c ,给出下列命题:①若a >b ,则ac 2>bc 2;②若a <b <0,则a 2>ab >b 2;③若a >b ,则a 2>b 2;④若a <b <0,则a b >b a .其中正确命题的序号是________.拓展提能12. 若a >b >0,c <d <0,e <0.求证:(1)e a -c >e b -d ; (2)e(a -c )2>e(b -d )2.13. 已知-π2≤α≤π2,0≤β≤π2.求α+β2,α-β2的取值范围.。

不等式的基本性质[整理] [其它]

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

不等式的基本性质习题

不等式的基本性质习题

不等式的基本性质知识点:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或 a c < b c. 一.选择题1、若x >y,则ax >ay ,那么a 一定为( )。

A.a >0 B .a<0 C .a≥0 D .a ≤02、若m <n,则下列各式中正确的是( )。

A .m -3>n-3 B.3m >3n C.-3m >-3n D.m /3-1>n /3-13、若a <0,则下列不等关系错误的是( )。

A .a +5<a +7 B.5a >7a C.5-a <7-a D.a /5>a /74、下列各题中,结论正确的是( )。

A .若a >0,b <0,则b /a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b /a <05、下列变形不正确的是( )。

A .若a >b ,则b <aB .-a >-b ,得b >aC .由-2x >a ,得x >-a /2D .由x /2>-y ,得x >-2y6、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( )。

A .小于或等于3的有理数B .小于3的有理数C .小于或等于-3的有理数D .小于-3的有理数7、绝对值不大于2的整数的个数有( )A .3个B .4个C .5个D .6个8、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m >D 、1m n> 9、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0a b< D 、-a >-b 10、由不等式ax >b 可以推出x <b a,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >011、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定12、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数13、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b14、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y --<,则x >y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2 不等式的基本性质
班级:_______ 姓名:_______
一、快速抢答
用“>”或“<”填空,并在题后括号内注明理由:
(1)∵a >b
∴a -m ________b -m ( )
(2)∵a >2b
∴2
a ________
b ( ) (3)∵3m >5n ∴-m ________-
35n ( ) (4)∵4a >5a
∴a ________0( )
(5)∵-2
4n m -< ∴m ________2n ( )
(6)∵2x -1<9
∴x ________5( )
二、
下列说法正确吗?
(1)若a <b ,则ac 2<bc 2.( )
(2)若b <0,则a -b >a .( )
(3)若x >y ,则x 2>y 2.( )
(4)若x 2>y 2,则x -2>y -2.( )
(5)3a 一定比2a 大.( )
三、认真选一选
(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )
A.m <p <0
B.m <p
C.m <0,p <0
D.p <m
(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )
A.-x >y
B.a 2x >a 2y
C.a -x <a -y
D.x >-y
(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( )
A.|a |>|b |
B.|a |<|b |
C.当a <0,b >0时,|a |>|b |
D.当a >0,b <0时,|a |>|b |
四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式
(1)3
432-<x (2)-0.3x >0.9
(3)x +2≤-3
(4)4x ≥3x +5
参 考 答 案
一、(1)>,不等式的性质1
(2)>,不等式的性质2
(3)<,不等式的性质3
(4)<,不等式的性质1
(5)>,不等式的性质3
(6)<,不等式的性质1和2
二、(1)× (2)√ (3)× (4)× (5)×
三、(1)C (2)C (3)D
四、(1)x <-2 (2)x <-3 (3)x ≤-3-2 (4)x ≥5。

相关文档
最新文档