相似性原理和因次分析

合集下载

流体力学-教学大纲

流体力学-教学大纲

《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。

该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。

通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。

二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。

第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。

基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。

重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。

难点:惯性力是质量力,牛顿内摩擦定律的应用计算。

第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。

重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。

难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。

第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。

流体力学_龙天渝_相似性原理和因次分析

流体力学_龙天渝_相似性原理和因次分析


将方程组无量纲化,也即将(10-16)式代入(10-15
u u u y x z 0 y z x u u u P p 2u 2u 2u x x x x x x u u u 2 x y z x y z V 2 x VL x y 2 z 2 K K u u u gL P p 2u 2u 2u z z z z z z u u 2 u 2 x y z 2 2 2 y z V V z VL x y z x 此式又可写成: u u u y x z 0 x y z u u u p 1 2u 2u 2u x x x x x x u u Eu u x y z 2 2 2 y z x Re x y z x K K u u u 1 p 1 2u 2u 2u z z z z z z u u Eu u 2 x y z 2 2 y z Fr z Re x y z x

lm vm
m
则长度与速度的比例关系为:
vn n m vm 即v
ln lm
,在多数情况下,模型和原型采用同一种流体,则 l
v
1
l
雷诺数相等,表示黏性力相似。原型和模型流动雷诺数相等 这个相似条件,称为雷诺模型律。按照上述比例关系调整原 型流动和模型流动的流速比例和长度比例,就是根据雷诺模 型律进行设计。
u x u y u z 0 y z x u 2u x 2u x 2u x u x u x 1 p x uy uz 2 2 u x x y z x x y 2 z 2 2 2 u u y u u y u u y 1 p u y u y u y 2 y z x x x y z y y 2 z 2 u z 2u z 2u z 2u z u z u z 1 p uy uz g 2 2 u x x y z z x y 2 z 引入无量纲量x、y、z 、u 、u 、u 和p。它们与相应的无量纲量之间的关系为: x y z x=Lx,y=Ly,z=Lz u x Vu,u y Vu,u Vu x y z z p Pp 式中L、V 、P均为定性量

流体力学基础知识

流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。

其单位是牛顿,N。

单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。

其单位是N/kg。

2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。

3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。

4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。

其单位为N/(㎡·s),以符号Pa·s表示。

运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。

国际单位制单位㎡/s。

动力黏度μ与运动黏度ν的关系:μ=ν·ρ。

5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。

毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。

6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。

(P12,还需看看书,了解什么是以上三种模型!)。

第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。

2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。

两水头中的压强P必须采用相对压强表示。

b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。

3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。

第四 章 量纲分析和相似理论

第四 章 量纲分析和相似理论

度、物质的量和发光强度这七个物理量作为“基本量”。
第一节 有因次量和无因次量
这七个基本量的因次相应地用[L]、[M]、[T]、 [E]、[Θ]、[N]、[C]来表示,称为基本因次。其 它一些物理量的因次是用上述基本因次根据一定的物理方程 推导出来的,称为“导来因次”。如速度的因次[LT- 1 ]是
p p0 h
各项的因次都必须是[ML-1T-2]。
第一节 有因次量和无因次量
再如伯努利方程
p1
2 u12 p2 u2 z1 z2 2g 2g
各项的因次都必须是[L]。
由此可给出因次分析的一个重要原理,即
因次和谐原理: “凡正确的物理方程,其中各项的因次都
必须相同,这是完整物理方程所必然具有的特征”。 有因次方程体现了参与过程的各物理参量之间的具体的依 变关系,给人以直观感。
任意一个物理量x的量纲都可以用L、T、M这三
个基本量纲的指数乘积来表示,即
x L T M
α β
γ
(3)无量纲量
各量纲的指数为零,即α=β=γ=0时,物理
量 x L0T0M0 1 ,则称x为无量纲量。
阐述无量纲量的特点 2. 量纲和谐原理 量纲和谐原理:凡正确反映客观规律的物理方 程,其各项的量纲都必须是一致的。
(用下标p表示)具有相同的流动规律,并能通过模
型实验结果预测原型流动情况,模型与原型必须满足 流动相似,即两个流动在对应时刻对应点上同名物理 量具有各自的比例关系,具体地说,流动相似就是要 求模型与原型之间满足几何相似、运动相似和动力相 似。
一、几何相似
几何相似:指模型和原型流动流场的几何形状相似, 即模型和原型对应边长成同一比例、对应角相等。

相似性原理和因次分析相似的概念

相似性原理和因次分析相似的概念
1 1 1
2 ( LT 1 ) ( L) ( ML3 ) ( ML1T 2 )
2 2 2
3 ( LT 1 ) ( L) ( ML3 ) ( L)
3 3 3
4 ( LT 1 ) ( L) ( ML3 ) ( L)
二、因次分析法
因次分析π定理: 当某现象由n个物理量所描述(根本不能组成无因次综合量 的物理量不计在内),而这些物理量中有m个基本因次,则可 得到n—m个独立的无因次综合量,即相似准数 书上[例10-3] 有压管流中的压强损失。 分析思路:
描述该现象的物理量有:压强损失ΔP、管长l,管径d,管壁 粗糙度K、黏度ν、密度ρ、平均流速v -----(共7个物理量)
第五章 相似性原理和因次分析
第一节 力学相似性原理
相似的概念:
如果两个同一类的物理现象,在对应的时空点,各标量物 理量的大小成比例,各物理量除大小成比例外,且方向相同, 则称两个现象是相似的。 流体流动相似条件:
流动几何相似.运动相似,动力相似,以及流动的边界 条件和起始条件相似 一、几何相似 几何相似:指流动空间几何相似。即形成此空间任意相应 两线段夹角相同,任意相应线段长度保持一定的比例。
关系表示。或由定性物理量组成的相似准数,相互间存在着函数关 系。 例如:准则数1=(准则数1,准则数2,准则数3 · · · · · · · · · · · · )
被决定的准数
(非定性准数)
决定性准数
(定性准数)
例如:大多数流体流动:Eu=(Fr,Re)
第三节 因次分析法
一、因次分析的概念和原理 因次(量纲):物理量的性质和类别。 例如:长度---[L] 质量---[M] 与单位区别:单位除表示物理量的性质外,还包含着物理量 的大小. 基本因次:质量[m]=M 长度[l]=L. 时间[t]=T 温度[T]=Θ

流体力学第六章 相似原理与量纲分析

流体力学第六章 相似原理与量纲分析

• 相似准则: 相似准则:
粘性相似准则:保证两现象的雷诺数相等 粘性相似准则:
重力相似准则:保证两现象的弗劳德数相等 重力相似准则:
压差力相似,即欧拉数相等往往是两现象动力相似的结果 压差力相似,
本章小结
1.两液流流动相似必须满足: 1.两液流流动相似必须满足: 两液流流动相似必须满足 (1)几何相似——原形和模型两个流场的几何形状相似; (2)运动相似——原形和模型两个流场的速度场相似; (3)动力相似——原形和模型两个流场中各相应质点 所受的同名方向相同,大小成一固定比例; (4)初始条件和边界条件相似; 2.相似准则 相似准则: 相似准则、 相似准则、 2.相似准则:Re相似准则、 Fr相似准则、 Eu相似准则
式中: ——流体声速 ——弹性模量
当弹性力起主要作用时,如水击,空气动力学中的亚音速或 超音速运动等,动力相似有: (6-20) 6.斯特哈罗数(时间准则) 6.斯特哈罗数(时间准则) 斯特哈罗数 斯特哈罗数:非恒定流体流动中,当地加速度 ,这个 加速度所产生的惯性作用与迁移加速度的惯性作用之比。 (6-21) f——振动频率 对非恒定流,表明有变力作用,动力相似有: (6-22)
2.雷利法 . 雷利法是量纲和谐原理的直接应用, 雷利法的计算步骤: 1. 确定与所研究的物理现象有关的n 个物理 量; 2. 写出各物理量之间的指数乘积的形式,如: FD=kDx Uyρz µa 3. 根据量纲和谐原理,即等式两端的量纲应 该相同,确定物理量的指数x,y,z,a ,代入指 数方程式即得各物理量之间的关系式。 应用范围:一般情况下,要求相关变量未知 数n小于等于4~5个.
第10 章因次分析与模型试验
对于复杂的实际工程问题,直接应用 基本方程求解,在数学上极其困难,因此 需有赖于实验研究来解决。本章主要阐述 有关实验研究的基本理论和方法,包括流 动相似原理,相似准则,量纲和谐原理及 量纲分析方法等。

流体力学第十章 相似原理和因次分析

流体力学第十章 相似原理和因次分析

例如: 粘滞力相似:由 Re m Re p 得
vmlm
m

v pl p
m p
p
vm l p 1 v p lm l
重力相似:由 Frm Frp 得
vm g m lm vp g pl p
gm g p
lp vm 1 vp lm l
由此可以看出,有时要想做到完全相似是不可能 的,只能考虑主要因素做近似模型实验。
Fm mVm vm tm 3 1 2 2 l v t l v Fp pVp v p t p
也可写成:
F 1 2 2 l v
令:
F
l v
2 2
Ne
Ne称为牛顿数, 它是作用力与 惯性力的比值。
Ne称为牛顿数,它是某种作用力与惯性 力的比值,是无量纲数。由此可知,模型 与原型的流场动力相似,它们的牛顿数必 相等。
qv g H f
f const 2 时, 2
当重力加速度 g 不变时,三角堰流量与堰
顶水头 H 的关系为:
qv CH ~ H
5 2 5 2
其中 c 只能用实验方法或其他方法确定。
【例】 不可压缩粘性流体在粗糙管内定常流动时,沿管道 的压强降 p 与管道长度 L ,内径 d ,绝对粗糙度 ,流体的平均 流速 v ,密度 和动力粘度 有关。试用瑞利法导出压强降的表 达式。 【解】 按照瑞利法可以写出压强降 p kLa d a a v a a a (b)
第三节
动力相似的准则(模型率)
一.相似准则的提出
相似原理说明两个流动系统相似必须在几何相似、 运动相似和动力相似三个方面都得到满足。 但实际应用中,并不能用定义来检验流动是否相 似,因为通常原型的流动是未知的。这就产生一个问

第8章 相似性原理和因次分析

第8章 相似性原理和因次分析

本章目录8.1 力学相似性原理8.2 相似准数8.3 模型实验8.4 因次分析法本章概述什么是科学实验?人们根据研究的目的,利用科学仪器和设备,突出主要因素,忽略次要因素,人为地控制或模拟自然现象,探索自然规律的认知活动。

现代力学问题,总体来说,能列出方程给出分析公式的是少数,能列出方程,给出边界条件和初始条件, 并得到精确解的更是少数。

科学实验仍然是解决科学问题的主要方法。

模型实验的意义通过流体力学实验可以重复实现和观察某流动现象或过程,可以获得充分的感性认识,揭示流动的特性和本质,发现新的现象。

大多数实验是在模型上进行的。

模型(model)实验就是将尺寸过大的原形(prototype)缩小,将尺寸过小原形放大,将过于复杂的原形简化。

问题:如何保证模型和原形具有同样的流动规律?答案:保证模型和原形流动相似。

什么是两现象相似?如果两个同一类物理现象,在对应的时空点,各标量物理量大小成比例,各向量物理量除大小成比例以外,而且方向相同,称这两个现象相似。

相似理论(相似性原理)就是研究相似现象之间关系的理论。

相似理论是模型实验的理论基础。

§8.1 力学相似性原理概述要保证两个流动问题的力学相似,必须满足:(1)几何相似;(2)运动相似;(3)动力相似;(4)边界条件和初始条件相似,共四个方面。

§8.1.1 几何相似几何相似是指流动空间几何相似——任意相应两线段夹角相同,任意对应线段成比例。

面积比例为长度比例的平方体积比例为长度比例的立方几何相似是力学相似的前提。

有了几何相似,才有可能在模型流动与原形流动之间,存在着相应点,相应线段等一系列对应的要素以及相应速度、加速度、作用力等一系列对应的力学量。

§8.1.2 运动相似运动相似是指两流动相应点的流速大小成比例,方向相同。

时间比尺的意义:两流动实现特定流动过程所需要的时间之比。

两流动只要速度相似,加速度必然相似。

§8.1.3 动力相似动力相似是指两流动相应点受同名力作用,力的方向相同,大小成比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似性原理和因次分析
1、两个流动问题力学相似的必要条件是其中相似是模型试验的目的,是力学相似的前提,是运动相似的保障。

2、Fr准数的物理意义是,We准数的物理意义是,Eu准数的物理意义是,
数相等是流动相似的重要标志和判据。

3、有一直径为15cm的输油管道,长5m,管中要通过流量为0.18m3/s,现用水作模型试验,管径为5cm,水温为10℃,原型的油的运动粘度为)0.131cm2/s,水的运动粘度为0.0131cm2/s,问水的模型流量应为多少才能达到相似,若测得模型lm相应管段上的压强水头差为3cm,试求输油管每公里的压强差为多少(用油柱表示)。

4、一个潜水艇以5m/s的速度在0℃的海里(海水密度为1028kg/m3,粘度为18.86 ×10-4Pa.S))行使,(a)求比例尺为20的模型在淡水20℃(密度为998.3kg/m3,粘度为10.02 ×10-4Pa.S )中的行使速度um;(b)如果模型的推力是200kN,那么潜艇本身所需的功率是多少?
5、设计一台离心式输油泵,其转速为n=1450r/min,准备选用较实物小1倍的模型输送空气进行实验。

已知油的运动粘度为0.3cm2/s,20℃空气的运动粘度为0.15cm2/s,求模型泵的转速为若干?
6、以1:15的模型在风洞中测定气球的阻力,原型风速为36km/h,问风洞中的速度应为多大?若在风洞中测得阻力为687N,问原型中阻力为多少?
7、桥孔过流模型试验,已知两桥台的距离为90m,中间设有一桥墩长24m,墩宽为4.3m,水深为8.2m,平均流速为2.3m/s,如实验室供水流量仅为0.1m3/s,问模型可选取多大的比例尺,并计算该模型的尺寸、平均流速。

8、因次分析法的基础是,所谓因次一致性原则是指。

9、因次分析的方法有法和法。

习题10-2,10-6,10-8。

相关文档
最新文档