谈谈新课标高三数学如何进行有效的复习

合集下载

新课程标准下高三数学复习总体设想

新课程标准下高三数学复习总体设想

新课程标准下高三数学复习总体设想在新的课程标准下,如何在高三短暂的时间内搞好高三数学一轮复习工作,提高复习效率,在高考中考出优异成绩,是每个师生所关心的问题,通过近几年的新课程标准试卷进行探索、归类整理,总结出只要在复习中注意以下几个问题,复习效果会更好一些。

1.切实重视基础知识、基本技能和基本方法的复习近年来新课标下的高考数学试题新颖性、灵活性及概念性越来越强,不少师生把主要精力放在难度大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的复习。

其主要表现在对知识的发生、发展过程揭示不够。

复习中首先给出概念、公式、定理,然后讲几道例题,就通过大量的题目来训练。

其实定理、公式推证的过程就蕴含着重要的解题方法和规律,我们没有充分暴露、展示思维过程,没有发掘其内在的规律,就去做题,试图通过大量地做题去“悟”出某些道理,结果是“悟”不出方法、规律、理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化,从而造成失分。

我们一直强调抓基础,但总是抓得不实,其实近几年新课程标准下的高考数学试题已明确告诉我们:基础知识、基本技能、基本方法始终是高考数学试题考查的重点,选择题、填空题以及解答题中的基本常规题已达整份试卷的85%左右,特别是选择题、填空题主要是考查基础知识和基本运算,但其命题的叙述或选择往往具有迷惑性,有的选择题就是学生常见的错误。

如果我们在复习中过于粗疏,或在学习中对基本知识不求甚解,都会导致在考试中判断错误,事实上,新课程标准下的高考数学试题对基础知识的要求更高、更严了,只有基础扎实的考生才能正确判断.另一方面,对于解题速果度慢的考生往往无法完成全部试卷的解答,可以降低目标,在基础知识、基本技能上多下功夫,对于解答题中解析几何、导数的应用等难度大的题可以适当的放弃第二问,通过加强基础知识、基本概念、基本运算来弥补技能的不足。

高三数学五大复习方法总结

高三数学五大复习方法总结

高三数学五大复习方法总结考前的复习方法对于高三数学考试至关重要。

下面是五种高效的复习方法的总结。

方法一:复习理论知识1.复习重点:通过查看历年高考试题的分析,确定数学考试的重点知识点,将这些知识点作为复习的重点。

注意解答过程中的关键步骤和常见的解题方法。

2.系统学习:对于每个知识点,应该系统地学习相关的理论知识,并使用各种资源进行学习,如教科书、教学视频、在线资源等。

3.做笔记:在学习过程中,要做好笔记,记录重点内容和关键公式,以便后续的复习和记忆。

方法二:解题技巧的复习与应用1.熟悉题型:通过解决大量的练习题,熟悉高考数学各个题型的解题方法和技巧,掌握解题思路和关键步骤。

2.掌握解题技巧:根据不同的题型,掌握相应的解题技巧和方法,如代数方程的解法、几何图形的运算和变换等。

3.重点练习:重点练习历年高考真题和一些模拟题,加强对已学知识的巩固和理解,同时也可以了解考试的难度和要求。

方法三:创造性解题1.追根溯源:通过多次联系和实际问题相结合,培养学生的创造力和思考能力,引导学生对数学问题的分析和解决问题的思路。

2.灵活应用:让学生灵活运用已学的数学知识和方法解决实际问题,培养学生的发散思维和解决问题的能力。

3.总结归纳:在解决问题的过程中,注意总结和归纳解题方法和技巧,为后续的复习和实践提供参考。

方法四:模拟考试与错题订正1.模拟考试:模拟考试是考前必不可少的一项准备活动,可以提前适应考试环境和节奏,了解自己在真实考试中的实力和问题。

2.错题订正:在模拟考试中,列出自己的错题清单,分析原因并进行订正,务必对每道错题都进行仔细思考和理解。

方法五:小组合作学习与讨论1.小组合作学习:与同学组成学习小组,相互合作、讨论和解答问题,共同解决难题,在团队中互相促进和学习。

2.澄清疑惑:在小组合作学习的过程中,可以及时澄清个人的疑惑和问题,增强对知识的理解和记忆。

3.分享经验:与同学分享学习经验和解题技巧,相互借鉴和学习,提高解题能力和应试技巧。

浅谈新课标高三数学复习的策略

浅谈新课标高三数学复习的策略

浅谈新课标高三数学复 习的策略
游 贤伟
( 重 庆 市 涪 陵 高 级 中 学校 4 0 8 1 0 0 )
【 摘要 】 到衡 水 学 习 , 学 会 了奉 献 和 关 爱 , 知 道 了把 二 流 学 生 打造 为一 流 学 生的 秘 决 ; 到綦 江中学学习, 学会 了新 课 标 理 念 , 体 会 到 问 题 式教 学 的 方 法 , 相 阳专 家的 演讲 , 明 白 了新课 标 下 , 家长 、 老师、 学 生 的联 系 , 提 出 了高 考 增分 的方 法和 具 体 措 施 , 创 造低 进 高 出的 奇 迹 。 【 关键词 】 奋 斗 目标 一轮 复 习 二轮复 习 模拟冲刺 常规 教 学要 求和 措 施 【 中圈 分 类号 】 G6 3 3 . 6 【 文献 标 识 码 】 A 【 文章 编 号 】 2 0 9 5 — 3 0 8 9 ( 2 0 1 3 ) 0 7 — 0 2 5 5 — 0 2 我 是 重 庆 涪 陵 高 级 中学 校 的一 名 数 学 教 师 。 为 了在 高 考 中考出优异成绩 . 清高中的老师苦苦探 索 , 结合学生实 际 . 重 视 学生 ” 四基 ” 培养 。 能力提升 , 全面发展 。 我校老 师到衡水 学习 , 学 会 了奉 献 和 关 爱 , 知 道 了把 二 流学 生 打造 为一 流学 牛 的秘 决 : 我 校 老 师 到 綦 江 中学 学 习 , 学 会 了新课标 理念 , 体 会 到 问 题 式 教 学 的方 法 : 学 生学 , 老 师 教 的真谛 ; 通过相 阳专家精彩的演讲 , 让 我 们 明 白了 新 课 标 下 , 家长 、 老师 、 学 生 三 者 的联 系 , 提出 _ 『高 考 增 分 的 科 学 方 法 和 具 体措 施 , 到 罩 庆 育 中学 、 涪 五 中 开会 , 领会 了 2 0 1 3年 高 考 数 学考 试 的 方 向 和要 求 。 创 造 低 进 高 出 的奇 迹 。时代 在 进 步 。 教 学方法在改 变 , 机遇在我们面前 , 涪 高 中将 扮 演 新 的 角 色 , 2 0 1 3年 高 j 三 数 学 复 习计 划 如 下 : 数 学 奋 斗 目标 : 培养 学生分 析 问题 、 解 决 问 题 的 能 力, 空间想象能力 , 抽象概括能力 , 推理论证能力 , 运算 求解 能 儿, 数 据 处 理 能 , 数学实 际应用意识和创新 意识 ; 形 成 数 形 结合思想 , 分类讨论思想 , 方 程 与 函数 思 想 , 建模型思想 , 算 法 与 统计 思想 , 转化思想 , 使学生养成思考严谨 、 分析条理 、 解 答 正确 、 书 写 规 范 的 良好 习 惯 ; 力争 2 0 1 3年 高 考 中 , 取 得 理想 的 成绩 , 把 我 校 数 学 高 考 成 绩 上一 个新 台 阶 。 二、 复习计 划 : 文 理 科 的数 学 分 三 个 阶 段 : 一轮复 习 , 二

浅析新课标下高三数学复习指导策略

浅析新课标下高三数学复习指导策略

求解不等式  ̄ 9一 > +1 虽然 可 以通 过代 数方 / , 法求解 , 但若用数形结合方法 , 转化为半 圆与直线 的 位 置 关 系 , 题 将 变 得 非 常 简 单 。还 可 以用 数 学 思 问 想 指 导 一 题 多 解 的练 习培 养 思 维 的发 散 性 、 活 性 、 灵 深刻性 、 严谨 性 。 3 培 养 学 生 良好 的 学 习 习惯 . 良好的学 习习惯是制胜 的关键 。高三学生在高 考 中要考 出水平 , 必须做到审题 细 , 演算准 、 表达清。 教师应对学生灌输 这样 的理 念 : 弄清 题意切 勿下 未 笔 , 审清问题涉 及哪些基 础知识 , 要 用什么数学思想
4 指 导 学 生 进 行 总 结 .
仅单纯机械地重复所 学 的知识 , 既容 易使人感 到枯 燥乏味 , 又容易使人厌倦 、 疲劳 。新课程要求还学生 学习主体地位 , 大力培养 学生 积极 主动 、 勇于探 索 、 合作交流的学习方式 。这种理念在高一高二年级 的
数 学 教 师 中 已渐 渐 形 成 共 识 , 不 断 落 实 , 在 高 三 并 但 数学复习课 中还未能充分体现 。不少高三教师认为 高三主要是复习 , 堂上要追 求所谓大容量快节奏 , 课 必 须 由 教 师 把 握 教 学 时 间 , 他 的 是 课 下 学 生 自 己 其 的事情。于是便使 用题海 战术 , 这使 得学 生疲 于应
付, 到最后成绩却 还不理 想。高三 复 习教 师应 根据 新课 标要求 , 体现学生学 习主体地位 , 对学生复习进
行指导。 1重 视 知 识 的 结构 。 助 学 生 建 立 知 识 的 网 络 . 帮 高三数学 , 知识基本上 已经学完 , 知识的整体把 握显 得尤为重要 , 问题往往 比较综合 , 涵盖很多知识 点。学生 的知识结 构如果 是零散 的 , 不仅仅 在头 脑 中 占据 大 量 的 空 间 , 容 易 提 取 , 且 , 难 找 到 复 不 而 很 杂 问题 与 知识 之 间 以 及 知识 与 知识 之 间 的 联 系 。 因 此 , 须指 导学生重视知识的结构 , 必 帮助学生建立 知 识 的网络结构 。比如 , 复习一 元二 次不 等式 的解 在 法 时 , 师要 顺 便 复 习 它 和 一 元 二 次 方 程 以 及 二 次 教 函数 的关 系 , 而 由一 元 二 次 方 程 又 联 系 到 韦 达 定 进 理, 由二次 函数联 系到 图象性质 以及二 次三项 式等 等, 体会 到“ 四个二 次 , 内在交 融” 。再 比如 , 在复 习 函数 的 重 要 性 质— — 单 调 性 时 , 联 系 一 下 中 学 所 要 学过的所有函数 , 合图象看 一看其单 调性如何 , 结 这 样既减少 了单调性 的抽象性 , 又丰富了学生的思 维 , 使单调性不再是那 么一个孤零 零 的抽象 的概念 , 需 要用时 , 便提取 。 方 2用 数 学 思想 指导 解 题 练 习 . 我们常见的三种数 学思想 方法 是 : 函数与 方程 的 数 学 思 想 、 形 结 合 的数 学 思 想 、 类 讨 论 的 数 学 数 分 思想 。 教 师 要利 用 数 学 思 想 来 指 导 学 生 解 题 练 习 。 现 阶段 学 生 的解 题 练 习 往 往 流 于 形 式 , 多 数 教 师 大 都采取题海 战术 , 不得 习题 能 占据学生 所有 的时 恨 间。其实效果怎 么样 , 目共 睹。学生解 题练 习的 有 过 程 应 该 是 在 数 学 思 想 的 指 导 下 , 理 联 想 提 取 相 合 关知识 , 调用一定数学 方法 , 工 、 理题设 条件 及 加 处 知识 , 步 缩 小 题 设 与 结 论 问 差 异 的 过 程 。 注 意 数 逐 学思维在解决典 型问题 中的运用。例 如选择题 中的

浅析高三数学总复习的方法与策略

浅析高三数学总复习的方法与策略

浅析高三数学总复习的方法与策略高三是学生们备战高考的重要一年,而数学作为高考科目之一,占据着重要的位置。

为了顺利备考,高三数学总复习是必不可少的环节。

本文将浅析高三数学总复习的方法与策略,帮助学生们制定合理的复习计划,提高数学成绩。

一、总复习的时间安排高三的学习任务较重,时间安排非常重要。

要确保每天有足够的时间进行数学复习,可根据个人情况合理分配,一般建议每天复习2-3小时。

要充分利用周末和假期进行集中的数学复习,这样可以集中精力、提高效率。

在复习的过程中要注意与其他科目进行合理的时间分配,不能忽视其他科目的学习。

二、总复习的内容和重点高三数学总复习的内容包括高一、高二数学全部知识点,其中高三上学期的知识点需要重点复习。

数学是一个渐进的学科,后面的知识点都是基于前面的知识点逐步发展起来的,所以复习时要注意整体框架的掌握,不能局限于零散的知识点。

在复习的过程中,要特别注意高考的热点、难点和高频考点。

高考试题中常常会出现一些经典的题目和知识点,因此要有意识的进行总结和归纳,集中精力进行深入的理解和掌握。

要注重对解题方法和思路的总结,多做一些类型的题目,熟悉各种解题思路和方法,提高解题的能力。

三、总复习的方法和技巧1. 扎实基础复习:高三数学的复习首要任务是扎实基础。

要通过课本、教辅和习题等各种资料,系统复习各个章节的知识点,并进行反复练习。

复习时要注重基础知识的串联和巩固,逐步提高学习的深度和广度。

2. 分阶段有重点地复习:根据高三数学的总复习计划,将整个复习过程分为几个阶段,每个阶段都要有明确的目标和重点。

可以根据自己的情况,选择不同时间段进行不同阶段的复习,以保证各个章节都能得到充分的复习。

3. 积累解题经验:在做题过程中,要逐步积累解题的经验和技巧。

可以找一些经典的题目进行反复练习,掌握一些解题的方法和技巧。

同时还可以参加一些数学竞赛和模拟考试,增加自己的解题经验和应试能力。

4. 多种复习方式的结合:数学的复习可以采用多种方式,如阅读教材、做习题、参加讨论、交流经验等。

新课标下高三数学复习方略

新课标下高三数学复习方略

不能 流于 表面 现象. 如平 面 向量 部分 , 能把握 好 以下 若 几点 , 而不 是在 题海 里游来 游去 , 么这部 分 的学 习就 那 基本上成 功了一半 : 紧两 个支 柱概念—— 向量 的加法 扣 与数量 积 ; 理清 两种 思 路——几 何法 与 坐标 法 ; 掌握 两
图象的两相邻对称轴 间的距 离为鲁.
识; 直线 的斜 率 和倾 斜 角 以及 直 线 的点 斜式 方 程 的意 识; 异面直 线所 成 的角 、 面角 的平 面角 的范 围等 的应 二
用意识 ; 数的方程与不等式解法 的讨论 意识等等 ; 含参
( ) 照考纲 , 2对 认真梳理教材上 的知识考 点 教材中 的基本概念 、 质 、 性 限制 条件 、 图形等 基础 知 识 要细读 . 在理解 概 念 时 , 定要 咬文 嚼 字 、 一 注意 细 节 , 尤 其要注意对教材 中“ 阅读 理解” “ 、 探究 与发现 ” “ 习 、实
中学 教 学 参 考
复 习指 津
新 课 标 下 高 三 数 学 复 习 方 略
宁夏 六盘 山 高级 中学 (50 2 岳 太 强 70 0 )
在 高 三数学 复 习时 , 始终 保 持 明确 的 目标 、 要 清醒 的头脑和 有效 的对 策 ; 能够 对 课 程 资 源 做 出正确 的判 断 , 当的取 舍和合 理的运用 ; 恰 在知识 与 能力 、 定与创 稳 新等诸 多矛盾 的冲突 中达到平 衡 ; 考纲要 求转 化为教 把
个 要 式 — 角平 与 直 s 求 童 公 — 求 (行 垂 )o一 青 ;距 c O
离 :口 一  ̄ l1 / .
2 梳 理 知 识 的 内在 联 系、 建 知 识 框 架体 系 . 构

新课程标准下高三数学复习的一些做法

新课程标准下高三数学复习的一些做法

新课程标准下高三数学复习的一些做法随着新课程改革的日渐推进,高三教师都认真研究新课程标准与考试大纲,研究2012年各地的高考试题,关注个专家对试题的评价。

随着时代的发展。

高考的出题方向也在变。

我们发现新高考的共性是注重对高中数学基础知识、数学理性思维、数学应用、创新意识的考查。

但新课程标准下的试卷凸显了信息新颖、信息量大、数据的搜集与数学运算量大。

这成为我们进行教学的依据。

成为我们对学生训练的方向。

下面谈谈我们的一些做法:一、以学科追随者的影响力为桥梁,增强学生学习数学的自信心学科追随者是我们学校提出的新的教学理念,一个学科的发展就必须有其固定的学科追随者。

有它的学科代言人。

也就是学科尖子。

从高一到高三,我们对学科尖子的培养始终不放松,我们坚信,师生关系就是教学质量,尤其是尖子生与老师之间的关系,更关乎着整个班级数学学习的动态。

所以,无论在课上,还是在课下,对于学生,我们从不抱怨,对于尖子生知识上的漏洞,我们会一对一的帮助他透彻理解概念的含义,并在解题中灵活运用。

同时,通过尖子生把这个概念再一传二,二传四的传接下去,不仅树立了尖子生的学科模范作用,增强其数学学习的动力,也使得概念的理解得到了普及,这比教师在课堂上的讲解更有效。

对于尖子生的数学学习行为,在不影响个人发展的同时,最大能力的发掘他的模范性,带动性。

比如说,我们的尖子生都有笔记本,我们就要求尖子生的笔记本要工整,画图要用直尺,铅笔,重点内容可以用红笔注释。

这样,经过一段时间的培养,尖子生都形成了一个良好的笔记习惯,接下来,我们通过展示几位尖子生的笔记本,就可以侧面的告诉学生,一个学科尖子生是通过良好的行为习惯形成的,通过这种形式的影响,逐渐的其它学生也会慢慢的向好习惯靠拢。

通过尖子生正能量的引领,会涌现出越来越多的数学学科追随者,学生对待数学的热情也会逐渐高涨,自信心也不断增强。

二、以解题答题模板为途径,向细节要分数在整个高三复习过程中,我们都会遇到的2个普遍的问题,一就是学生在面临解析几何和导数时的畏难情绪,二就是学生对于会做的题会产生会而不全,步骤失分的问题,针对这个问题我们根据自己学生的实际情况,在一轮复习过程中,针对每一个类型大题,创设了我们的答题模板。

2023年高三复习数学的方法总结归纳_高三数学怎么提高成绩整理

2023年高三复习数学的方法总结归纳_高三数学怎么提高成绩整理

2023年高三复习数学的方法总结归纳_高三数学怎么提高成绩整理高三复习数学的方法总结归纳_高三数学怎么提高成果高三复习数学的方法总结归纳有哪些?小伙伴们可有了解过?不妨一起来关注下吧!以下是我为大家带来的高三复习数学的方法总结归纳,盼望您能喜爱!高三复习数学的方法总结归纳一、课后准时回忆假如等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新学问必需准时复习。

可以一个人单独回忆,也可以几个人在一起相互启发,补充回忆。

一般根据老师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。

在复习过程中要不失时机整理笔记,由于整理笔记也是一种有效的复习方法。

二、定期重复巩固即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以渐渐拉长。

可以当天巩固新学问,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。

从内容上看,每课学问即时回顾,每单元进行学问梳理,每章节进行学问归纳总结,必需把相关学问串联在一起,形成学问网络,达到对学问和方法的整体把握。

三、科学合理支配复习一般可以分为集中复习和分散复习。

试验证明,分散复习的效果优于集中复习,特别状况除外。

分散复习,可以把需要识记的材料适当分类,并且与其他的学习或消遣或休息交替进行,不至于单调使用某种思维方式,形成疲惫。

分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

高三数学怎么提高成果1、比较辨析法。

政治学科中有不少相像的概念,考生在复习过程中简单混淆。

比较辨析法,就是通过对学问专题中的概念或原理进行比较辨析讨论,弄清其本质区分以及适用范围,为提升分析和解决问题的力量奠定基础。

列表比较法就是一种辨析相像概念、原理的好方法。

2、学问网络法。

在理解考点的基础上,学会自主归纳学问点,从微观上构建学问网络,一框题一建,一节一建,一课一建,详细分析每个框题之间、每个章节之间的内在联系,从根本上实现学问的内化,提升对学问的理解和整体把握的力量,为以后的复习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谈谈新课标高三数学如何实行有效的复习今年是全国高考招生数学卷(广东卷)由广东省独立命题的第5年,2007学年,对于广东省的高考命题,有着面临变革的重要意义:第二年采用2006年颁布的《数学教学大纲》,第二年采用原始分,第二年文理分科。

面对三个新“游戏规则”,人们有理由注重:08年的高考数学卷是相对稳定,还是充满变革?是保持传统风格,还是进一步向新课程过渡?怎么体现和巩固教改的成果,通过对今年试卷和答案的分析,我们试图给予初步的探索和回答。

一、高考题型和特点今年的高考数学卷(广东卷)有可如下6个特点:1.稳定结构框架,降低总体难度2. 承老大纲传统,向新课标过渡3.贴近教材内容,强化函数思想4.注重知识衔接,渗透高数理念5,强弱分别明显, 文理要求有别6,体现广东特色, 注重实际应用二、新教材的特点:1.讲背景,讲思想,讲应用知识的引入强调背景,使教材生动、自不过亲切,让学生感到知识的发展水到渠成而不是强加于人。

螺旋上升地安排核心数学概念和重要数学思想;把握数学本质,保证科学性;强调数学形式下的思考和推理训练。

通过解决具有真实背景的问题,引导学生体会数学的作用与力量,发展应用意识。

如2007年高考数学第4题:客车从甲地以60km/h的速度行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间的关系图象中,准确的是答案:C;.如2007年高考数学第7题:图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间实行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为(A)15(B)16(C)17 (D)18答案:B ;如2007年高考数学第7题:甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。

现分别从甲、乙两袋中各随机抽取1个球,则取出的两球是红球的概率为______(答案用分数表示) 答案:29解析:412669⨯=; 2.强调问题性、启发性,引导教、学方式的变革遵循认知规律,以问题引导学习,体现数学知识、学生认知的过程性,促使学生主动探究,培养学生的创新意识和应用意识,引导教、学方式的改进。

3.强调基础性,注重通性通法,淡化特殊技巧:坚持“三基”不动摇,为学生终身发展打好数学基础。

对新增内容的定位:基础性、可接受性,体现和巩固教改的成果。

对原有内容的处理:在教学要求和处理方式上实行变革,重点是继承传统教材优点的基础上,削支强干。

4.增强联系性,突出数学思考方法的引导5、强化主干知识,突出新增内容如2007年高考数学第6题(理科)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A 1、A 2、…A 10(如A 2表示身高(单位:cm )在[150,155)内的人数]。

图2是统计图1中身高在一定范围内学生人数的一个算法流程图。

现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是(A )i<6 (B) i<7 (C) i<8 (D) i<9答案:C ;解析:S=4567A A A A +++;如2007年高考数学第17题(理科):下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(1) 请画出上表数据的散点图;(2) 请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a =+;(3) 已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(3×2.5+4×3+5×4+6×4.5=66.5)解析:(1) 略;(2) 方法1(不作要求):设线性回归方程为y bx a =+,则222222222(,)(3 2.5)(43)(54)(6 4.5)42(1814)(3 2.5)(43)(54)(6 4.5)f a b b a b a b a b a a a b b b a b =+-++-++-++-=+-+-+-+-+- ∴79 3.5 4.52b a b -==-时, (,)f a b 取得最小值2222(1.51)(0.50.5)(0.50.5)(1.51)b b b b -+-+-+- 即22250.5[(32)(1)]572b b b b -+-=-+,∴0.7,0.35b a ==时f(a,b)取得最小值;所以线性回归方程为0.70.35y x =+;方法2:由系数公式可知,266.54 4.5 3.566.5634.5, 3.5,0.75864 4.5x y b -⨯⨯-=====-⨯ 93.50.70.352a =-⨯=,所以线性回归方程为0.70.35y x =+; (3)x=100时,0.70.3570.35y x =+=,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.6、凸显数学思想方法,强化水平考察7、注重知识点的衔接,考察创新意识如:2005年第18题是数列与概率的综合题:箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比是s :t ,现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意一个球,但取球的次数最多不超过n 次,。

以ξ表示取球结束时已取到白球的次数。

(I)求ξ的分布列;(II)求ξ的数学希望。

如2007年第18题(理科)是立体几何与导数应用的综合题:如图6所示,等腰三角形△ABC的底边AB=CD=3,点E是线段BD上异于B、D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF 折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACEF 的体积。

(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值。

解:(1)由折起的过程可知,PE⊥平面ABC,ABCS∆=2254BEF BDCxS S∆∆=⋅=21(9)12x-(0x<<(2)21'())4V x x-,所以(0,6)x∈时,'()0v x>,V(x)单调递增;6x<<'()0v x<,V(x)单调递减;所以x=6时,V(x)取得最大值(3)过F作MF//AC交AD与M,则,21212BM BF BE BEMB BEAB BC BD AB=====,PM=MF BF PF=====,在△PFM中,84722cos427PFM-∠==,∴异面直线AC与PF所成角的余弦值为27;如2007年第21题(理科)是函数、导数、数列不等式应用的综合题:已知函数2()1f x x x=+-,,αβ是方程f(x)=0的两个根()αβ>,'()f xF图6PEDCBA是f (x)的导数;设11a =,1()'()n n n n f a a a f a +=-(n=1,2,……) (1)求,αβ的值;(2)证明:对任意的正整数n ,都有n a >α;(3)记ln n n n a b a aβ-=-(n=1,2,……),求数列{b n }的前n 项和S n 。

如2006年第10题:对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=A.(4,0)B. (2,0)C. (0,2)D. (0,4)-.三、新课程理念下高考复习备考总体理念:准确把握教学要求,循序渐进地教学1.不搞“一步到位”。

2.删减的内容不要随意补充。

3.把更多的注意力放在核心概念、基本数学思想方法上。

4.追求通性通法,不搞“特技”。

5.保持学生高水平的数学思维。

6.以问题引导学习,尽量采用“归纳式”,让学生经历概念的概括过程,思想方法的形成过程,这是基本而重要的。

7.既要讲逻辑又要讲思想,引导学生通过类比、推广、特殊化等思维活动,促使他们提出研究的问题,形成研究的方法。

8.使学生在建立知识的内在联系过程中领悟本质四,新课程理念下高考复习备考的策略:(一)、要让学生明知高考命题要求、范围和重点等。

如2006年广东高考试卷以函数(26分,占17%)、立体几何(24分,占16%)和数列(22分,占15%)为主。

三个知识点合共72分,占整卷150分的48%。

函数是高中数学的核心,新教材中具体表现为知识的联系性方面: 如2007年广东高考试卷函数(24分,占16%)、新增内容(24分,占16%)、三角函数(17分,占11%),解析几何和立体几何(19分,占13%)。

1、函数与方程用函数的观点看待方程,能够用动态的观点看方程,把方程看成函数变化过程中的一个特殊状态,方程的根是函数的零点,解方程f (x )=0就是求函数y =f (x )的零点,从而能够引进二分法、导数等工具求方程的近似解。

2、函数与数列数列是特殊的函数。

因为它的定义域一般是自然数集或其子集,而自然数是离散的,所以,数列通常称为离散函数,数列作为离散函数,在数学中有重要地位。

注重联系:等差数列与一次函数;等比数列与指数函数。

3、函数与不等式、线性规划用函数的观点看不等式——运动变化、数形结合、几何直观。

从函数的观点看,线性规划问题就是确定目标函数在可行域(由约束条件确定的定义域)内的最值问题。

解线性规划问题的步骤是:第一步,确定目标函数;第二步,确定目标函数的可行域;第三步,确定目标函数在可行域内的最值。

4、函数与解析几何平面曲线是函数概念的重要背景,严格定义后它们有差异,但仍有紧密联系。

例如:从函数的角度看,一元二次函数的图象是抛物线,体现的是变量之间的对应关系;从方程和曲线的角度看,抛物线是由“到定点和定直线等距”这个几何特征确定的曲线。

教材注重这种联系,注重从不同角度体现数形结合思想。

5、函数与导数函数是导数的研究对象。

没有导数时,函数性质的研究需要很多技巧;导数是研究函数的通用、有效、简便的工具。

相关文档
最新文档