流体力学课后答案解析第九章一元气体动力学基础

合集下载

流体力学_龙天渝_一元气体动力学原理

流体力学_龙天渝_一元气体动力学原理

第九章 一元气体动力学基础一、学习指导 1. 基本参数 (1) 状态方程气体的压强p ,密度ρ以及温度(绝对)T 满足状态方程p RT ρ=式中,R 为气体常数,对于空气,287/()R J kg K =⋅。

(2) 绝热指数k/p v k c c =式中,c p 和c v 分别是等压比热和等容比热,他们与气体参数地关系为1p k c R k =-,11p c R k =-(3) 焓和熵焓h 的定义是ph e ρ=+式中,e 是气体内能,v e c T =。

h 可一表示为 p h c T =熵的表达式为ln()kps cv c ρ=+常数(4) 音速cc =(5) 马赫数马赫数M 的定义是uM c =式中,u 是气流速度;c 是音速。

2. 一元恒定流动的运动方程 (1) 气体一元定容流动ρ=常数22pv g γ+=常数 (2) 气体一元等温流动T =常数,pRT cρ==2ln 2v c p +=常量2ln 2v RT p +=常量(3) 气体一元绝热流动k p cρ= 212k p v k ρ⋅+-=常量3. 滞止参数气流在某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。

用p 0、ρ0、T 0、i 0、c 0表示滞止压强、滞止密度、滞止温度、滞止焓值、滞止音速。

0/T T ,0/p p ,0/ρρ,0/c c 与马赫数M 的函数关系:20112T k M T -=+11200112k kk k p T k M p T ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1111200112k k T k M T ρρ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1122200112c T k M c T -⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭4. 气体一元恒定流动的连续性方程2(1)dA dv M A v =-(1) M<1为亚音速流动,v<c ,因此dv 与dA 正负号相反,速度随断面面积增大而减慢;随断面面积减小而加快。

第五版 流体力学习题答案完整版

第五版 流体力学习题答案完整版

《流体力学》答案1-6.当空气温度从00C 增加至020C 时,ν值增加15%,容重减少10%,问此时μ值增加多少?⎡⎤⎣⎦解0000000000(115%90%)()()0.035 3.5%gggγγννμμρνρνμρνγν⨯---====1-7.图示为一水平方向运动的木板,其速度为1m s ,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-9.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,已知1m v s =,1mm δ=,求润滑油的动力粘滞系数?⎡⎤⎣⎦解0T GSin α-= 55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以1-10.一个圆锥体绕其铅直中心轴等速旋转,锥体与固定壁的间距为δ=1mm ,全部为润滑油充满,μ=0.1Pa.s ,当旋转角速度ω=16s -1,锥体底部半径R =0.3m,高H =0.5m 时,求:作用于圆锥的阻力矩。

解: 取微元体, 微元面积:阻力矩为:阻力: 阻力矩51213GVδ22cos 0dhdA r dl r du r dy dT dA dM dT rππθωτμμδτ=⋅=⋅-====⋅0333012cos 12()cos 12cos HHHM dM rdT r dAr r dh r dh r tg h tg h dhττπθωμπθδθωμπθδθ====⋅⋅=⋅⋅⋅=⋅=⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰1-14.图示为一采暖系统图,由于水温升高引起水的体积膨胀,为了防止管道及暖气片胀裂,特在顶部设置一膨胀水箱,使水的体积有自由膨胀的余地,若系统内水的总体积38V m =,加热前后温度差050t C =,水的热胀系数0.0005α=,求膨胀水箱的最小容积?⎡⎤⎣⎦解因为 dV V dt α=所以 30.00058500.2dV Vdt m α==⨯⨯=2-2.在封闭管端完全真空的情况下,水银柱差250Z mm =,求盛水容器液面绝对压强1p 及测压管中水面高度1Z ?⎡⎤⎣⎦解312013.6109.80.056664a p Z p γ=+=⨯⨯⨯=11 6.6640.686809.8p Z m mm γ==== 2-6.封闭容器水面的绝对压强20107.7KNp m =,当地大气压强298.07a KNp m =,试求(1)水深0.8h m =的A 点的绝对压强和相对压强?(2)若容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。

流体力学张兆顺课后答案

流体力学张兆顺课后答案

流体力学张兆顺课后答案【篇一:流体力学知识点大全】书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。

2没有内摩擦,也就没有内耗散和损失。

层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。

因为流速增加导致层流出现不稳定性。

定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。

5、无黏流体—无摩擦—流动不分离—无尾迹。

6、流体的特性:连续性、易流动性、压缩性不可压缩流体:d??0dtconst是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。

是一个过程方程。

7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述;同一时刻、不同质点连接起来的速度场向量线;dr?u?x,tdr?u?0迹线:流体质点的运动轨迹,是流体质点运动的几何描述;同一质点在不同时刻的位移曲线;涡线:涡量场的向量线,u,dr???x,t??dr???0涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。

第二章流体静力学1、压强:p?lim?fdf??a?0?ada静止流场中一点的应力状态只有压力。

2、流体的平衡状态:1)、流体的每个质点都处于静止状态,==整个系统无加速度;2)、质点相互之间都没有相对运动,==整个系统都可以有加速度;由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有:体积力(重力、磁场力)和表面力(压强和剪切力)存在。

气体动力学基础答案

气体动力学基础答案

气体动力学基础答案1. 什么是气体动力学?气体动力学是研究气体在力的作用下及热力学条件下的运动规律和性质的学科。

它主要研究气体的物理性质、状态方程以及气体的运动、扩散和传热等过程。

2. 描述气体的状态有哪些基本参数?气体的状态可以由以下几个基本参数来描述:•压力(P):指气体分子对容器壁的撞击给容器壁单位面积上的力,通常以帕斯卡(Pascal)表示。

•体积(V):指气体所占据的空间大小,通常以立方米(m³)表示。

•温度(T):指气体的热度,通常以开尔文(Kelvin)表示。

•物质量(n):指气体中的物质量,通常以摩尔(mol)表示。

这些参数可以通过状态方程来描述气体的状态,常见的状态方程有理想气体状态方程(PV=nRT)和范德瓦尔斯状态方程。

3. 什么是理想气体状态方程?理想气体状态方程是描述理想气体状态的数学公式,由理想气体定律得到。

理想气体状态方程可以表示为PV=nRT,其中P表示气体的压力,V表示气体的体积,n表示气体的物质量(摩尔数),R表示气体常量,T表示气体的温度(开尔文)。

理想气体状态方程可以用于描述气体的状态和变化,例如计算气体的压力、体积和温度的关系以及计算气体的摩尔数等。

4. 理想气体状态方程适用的条件有哪些?理想气体状态方程适用于以下条件下的气体:•气体分子之间不存在相互作用力;•气体分子之间的体积可以忽略;•气体分子之间的碰撞是完全弹性碰撞;•气体分子之间的相互作用不会受到温度的影响。

在实际情况下,很多气体都可以近似看作是理想气体,特别是在低密度、高温度的条件下。

但在高密度、低温度的情况下,气体分子之间的相互作用力会变得更加显著,此时理想气体状态方程将不再适用,需使用修正的状态方程进行计算。

5. 范德瓦尔斯状态方程是什么?范德瓦尔斯状态方程是对理想气体状态方程的修正,考虑了气体分子之间的相互作用力和气体分子的体积。

范德瓦尔斯状态方程可以表示为: \[ (P + \frac{an2}{V2})(V - nb) = nRT \] 其中P表示气体的压力,V表示气体的体积,n表示气体的物质量(摩尔数),R表示气体常量,T表示气体的温度(开尔文),a和b是范德瓦尔斯常量。

流体力学课后答案

流体力学课后答案

流体力学课后答案本文旨在为许多有志于学习流体力学的学生提供一些帮助。

作为一名知名学者,我深知流体力学在现代工程和科学中的重要性。

本文提供的答案将涵盖流体力学的基础知识和一些实际应用示例。

第一部分:基础知识1. 什么是流体?答:流体是指那些能够流动并且没有一定的形状的物质。

其中包括液体和气体。

2. 流体的物理属性有哪些?答:流体的物理属性包括密度、压力、温度、粘度和速度等。

3. 流体的连续性方程是什么?答:流体的连续性方程是描述流体运动的基本方程之一。

它表明,在流体中,质量的守恒和连续性是成立的。

它的数学表达式为:∂ρ/∂t + ∇·(ρv) = 0,其中ρ是流体的密度,v 是流体的速度场。

4. 流体动力学的牛顿定律是什么?答:牛顿定律描述了流体运动的基本行为。

它表明,流体运动的加速度与作用在流体上的力成正比。

在流体静止时,它的数学描述为F = 0。

当流体运动时,它的数学描述为F = ma,其中m是流体的质量,a是流体的加速度,F是作用在流体上的合力。

第二部分:实际应用1. 什么是雷诺数?答:雷诺数是用于描述流体流动的重要无量纲参数。

它由流体的速度、密度和长度来定义。

高雷诺数表示流体流动是湍流,低雷诺数表示流体流动是层流。

2. 怎样计算压力?答:流体的压力可以用万能气体定律来计算。

这个定律表明,流体的压力与它的密度、温度和体积成正比。

在一些实际应用中,压力可以通过流量测量来间接地计算。

3. 管道中的液体流动如何控制?答:管道中的液体流动可以通过改变管道的截面积和形状、液体的输送速度、管道的材料和表面粗糙度等参数来控制。

4. 如何设计类似翼型的物体?答:翼型是一种通过改变流体流动的方式来提供升力和阻力的物体。

它们通常由气体流动的形状和外形来确定。

设计翼型的关键是了解流体的物理属性和翼型与流体的相互作用,以及如何优化翼型的形状。

总结:在理解流体力学时,了解基本概念和方程非常重要。

为了更好地应用流体力学原理,学生们需要了解如何将这些原理应用于实际问题中,如管道设计、液体流动控制和翼型设计等。

流体力学_09一元气体动力学基础

流体力学_09一元气体动力学基础
第九章 一元气体动力学
§9-2音速、滞止参数、马赫数 §9-3气体一元恒定流动的连续性方程
§9-2音速、滞止参数、马赫数
1.音速 流体中某处受外力作用,使其压力发生变化,称为压力 扰动,压力扰动就会产生压力波,向四周传播。微小扰动在 流体中的传播速度,就是声音在在流体中的传播速度,以符 号C表示。C是气体动力学的重要参数。 2.滞止参数 气流某断面的流速,设想以无摩擦绝热过程降低至零时, 断面各参数所达到的值,称为气流在该断面的滞止参数。滞 止参数以下标“0”表示。
§9-3气体一元恒定流动的连续性方程
一、连续性微分方程
第三章已给出了连续性方程 对管流任意两断面
A 常量
1v1 A1 2v2 A2
为了反映流速变化和断回变化的相互关系,对上式微分
d ( A) dA Ad Ad 0 d d dA 0 A
由欧拉运动微分方程:
2 消去密度 ,并将 c
dp

d 0
dp ,M 代入,则断面A与气流速度 d c
之间的关系式为:
dA d 2 ( M 1) A
二、气流反映气体可压缩大小。当气流速 度越大,则音速越小,压缩现象越显著。马赫数首先将有关影 响压缩效果的的v和c两个参数联系起来,指指定点的当地速度 v与该点当地音速c的比值为马赫数M。
v M c
M>1,v>c,即气流本身速度大于音速,则气流中参数 的变化不能向上游传播。这就是超音速流动。 M<1,v<c,即气流本身速度小于音速,则气流中参数 的变化能够向上游传播。这就是亚音速流动。 M数是气体动力学中一个重要无因次数,它反映惯性力 与弹性力的相对比值。如同雷诺数一样,是确定气体流动状 态的准则数。

流体力学龙天渝课后答案 一元流体动力学基础

流体力学龙天渝课后答案 一元流体动力学基础

1 一元流体动力学基础1.直径为150m m 的给水管道�输水量为h k N /7.980�试求断面平均流速。

解�由流量公式v A Q �� 注意���v A Q s k g h k N ����// A Q v��得�s m v /57.1� 2.断面为300m m ×400m m 的矩形风道,风量为2700m 3/h ,求平均流速.如风道出口处断面收缩为150m m ×400m m ,求该断面的平均流速 解�由流量公式v A Q � 得�AQv �由连续性方程知2211A v A v � 得�s m v /5.122� 3.水从水箱流经直径d 1=10c m ,d 2=5c m ,d 3=2.5c m 的管道流入大气中. 当出口流速10m / 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解�(1)由s m A v Q /0049.0333�� 质量流量s k g Q /9.4�� (2)由连续性方程� 33223311,A v A v A v A v �� 得�s m v s m v /5.2,/625.021�� 4.设计输水量为h k g /294210的给水管道�流速限制在9.0∽s m /4.1之间。

试确定管道直径�根据所选直径求流速。

直径应是m m 50的倍数。

解�v A Q �� 将9.0�v ∽s m /4.1代入得343.0�d ∽m 275.0 ∵直径是m m 50的倍数�所以取m d 3.0� 代入v A Q �� 得m v 18.1� 5.圆形风道�流量是10000m 3/h ,�流速不超过20 m /s 。

试设计直径�根据所定直径求流速。

直径规定为50 m m 的倍数。

解�v A Q � 将s m v /20�代入得�m m d 5.420� 取m m d 450� 代入v A Q � 得�s m v /5.17� 6.在直径为d 圆形风道断面上�用下法选定五个点�以测局部风速。

流体力学第九章习题答案

流体力学第九章习题答案

流体力学第九章习题答案9-1设长为L ,宽为b 的平板,其边界层中层流流动速度为δy u u =0。

试求边界层的厚度)(x δ及平板摩擦阻力系数fC解xu x x x u dxxxu u u dx x u u u x u dx x u C xu u u xu u u xu x dx u d u dx d u u dx d udx d u y y y dy y y dy y y dy u u yu x xxf y Re 155.132213111122112211211121212121216161u663121)()1()u1(u u 000020200002000200000220200200000230222000||||||====?=??=??=??=? =?=∴?=??====?====-=-=-=-===υυυρρυρτρυμυμδμτυδυδυδρμδδρδμδρτθδμμτδθδδδδδθδδδδδδ 又因因即因为9-2一平板长为5m,宽为0.5m ,以速度1m/s 在水中运动。

试分别按平板纵向和横向运动时计算平板的摩擦阻力。

解:设水为 15海水,其运动粘性系数和密度分别为1.1883?12610--?s m ,1025.91kg/3m , 只判别边界层的流动状态(取Recr=5105?))(948.7)25.05(191.10255.010099.32110099.31004.410503.3Re 1700)(Re 074.010027.4101883.151e )2)(77.5)25.05(191.10255.01025.2211025.266.64846.1101883.15.0146.1246.1Re 46.117.4.9)1594.01101883.1105Re 2323335/1662323665N s u C D C uL c R N s u C D uB C m u cr x f f LL f f f B f cr ==?=?=?-?=-=?=??====?=?==??====???=?=--------ρυρυ数为界层;平板尾缘处雷诺沿长度方向上为混合边得双侧摩擦阻力)界层,采用层流公式(则沿宽度方向为层流边9-3长10m 的平板,水的流速为0.5m/s ,试决定平板边界层的流动状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元气体动力学基础
1.若要求22
v p ρ∆小于0.05时,对20℃空气限定速度是多少? 解:根据2
20v P ρ∆=42
M 知 4
2
M < 0.05⇒M<0.45,s m kRT C /3432932874.1=⨯⨯== s m MC v /15334345.0=⨯==
即对20℃ 空气限定速度为v <153m/s ,可按不压缩处理。

2.有一收缩型喷嘴,已知p 1=140kPa (abs ),p 2=100kPa (abs ),v 1=80m/s ,T 1=293K ,求2-2断面上的速度v 2。

解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量损失时,可按等熵流动
处理,应用结果:2v =2121)(2010v T T +-,其中T 1=293K
1ρ=1
1RT p =1.66kg/m 3. k P P 11
212)(ρρ==1.31kg/m 3. T 2=R
P 22ρ=266 K 解得:2v =242m/s
3.某一绝热气流的马赫数M =0.8,并已知其滞止压力p 0=5×98100N/m 2,温度t 0=20℃,试求滞止音速c 0,当地音速c ,气流速度v 和气流绝对压强p 各为多少?
解:T 0=273+20=293K ,C 0=0KRT =343m/s
根据 202
11M K T T -+=知 T=260 K ,s m kRT C /323==,s m MC v /4.258==
100-⎪⎭⎫ ⎝⎛=k k T T p p
解得:2/9810028.3m N p ⨯=
4.有一台风机进口的空气速度为v 1,温度为T 1,出口空气压力为p 2,温度为T 2,出口断面面积为A 2,若输入风机的轴功率为N ,试求风机质量流量G (空气定压比热为c p )。

解:由工程热力学知识:
⎪⎪⎭⎫ ⎝⎛+=22
v h G N ∆∆,其中PA
GRT T c h P ==,pA GRT A G v ==ρ ∴⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧+-⎥⎦⎤⎢⎣⎡+=)2()(2121122222v T c A p GRT T c G N P P 由此可解得G
5.空气在直径为10.16cm 的管道中流动,其质量流量是1kg/s ,滞止温度为38℃,在管路
某断面处的静压为41360N/m 2,试求该断面处的马赫数,速度及滞止压强。

解:由G =v ρA
⇒=RT p
ρv=pA
GRT ⇒-+=kRT
v k T T 2
0211T =282k 又:202
11M k T T -+= ∴717.0=M
s m kRT M MC v /4.241===
⇒⎪⎭⎫ ⎝⎛=-100k k T T p p p 0=58260N/m 2
6.在管道中流动的空气,流量为0.227kg/s 。

某处绝对压强为137900N/m 2,马赫数M =0.6,
断面面积为6.45cm 2。

试求气流的滞止温度。

解:c
v M =和kRT c =得 kRT M v =
G =vA ρ和
RT p =ρ得 pA
GRT v =,代入:kRT M v = ∴⇒=
GR
A kRT pM T T =269.6k ⇒-+=202
11M k T T T 0=289.1k 7.毕托管测得静压为35850N/m 2(r )(表压),驻点压强与静压差为65.861kPa ,由气压计读
得大气压为100.66kPa ,而空气流的滞止温度为27℃。

分别按不可压缩和可压缩情况计算空气流的速度。

解:可按压缩处理:a p p 13651010066035850=+=
Pa P p 202371658610=+=
1)2
11(20--+=k k
M k p p 解得:77.0=M 202
11300M k T T T -+== 解得:k T 2.268= kRT C M ν
ν
== 解得:s m v /8.252= 按不可压缩处理:ρρp p =11
即:g
ρ0066.17.12013.1= ∴3
/29.1m N =ρ s m P
v /2.23629
.13585022===ρ 8.空气管道某一断面上v =106m/s ,p =7×98100N/m 2(abs ),t =16℃,管径D =1.03m 。

试计算
该断面上的马赫数及雷诺数。

(提示:设动力粘滞系数μ在通常压强下不变)
解:查表可以计算知s Pa ⋅⨯=-3
100181.0μ 2892874.1⨯⨯==KRT c =340.8m/s
马赫数为:m =
c
v =0.311 7105Re ⨯====μμρυvd RT p vd vd 9.16℃的空气在D=20cm 的钢管中作等温流动,沿管长3600m 压降为1at ,假若初始压强为5at (abs ),设λ=0.032,求质量流量。

解:由G =)(16222152p p lRT
D -λπ 其中:Pa p 4110807.95⨯⨯=,Pa p 4210807.94⨯⨯=
解得G =1.34kg /s 校核:s m kRT C /8.340== 322/73.4m kg RT
p ==ρ s m D G
v /9422
2==πρ 0265.022==C v M k M 12<,计算有效
10.已知煤气管路的直径为20cm ,长度为3000m ,气流绝对压强p 1=980kPa ,t 1=300K ,阻力系数λ=0.012,煤气的R =490J/(kg ·K),绝对指数k =1.3,当出口的外界压力为490kPa
时,求质量流量(煤气管路不保温)。

解:按等温条件计算G =)(16222152p p lRT
D -λπ=5.22kg s / 验算管道出口马赫数 c=m kRT 1.437=/s
RT p 22=
ρ=3.33kg /m 3 2224D G v πρ==50m /s
2M =
11.02=c v M 2<k 1=0.88,计算有效
11.空气p 0=1960kPa ,温度为293K 的气罐中流出,沿流长度为20m ,直径为2cm 的管道流入p 2=392kPa 的介质中,设流动为等温流动,阻力系数λ=0.015,不计局部阻力损失,求出口质量流量。

解:由G=)(16222152p p lRT
D -λπ=0.537kg/s RT p 22=
ρ=4.66kg/m 3 2224D G
v πρ==367m/s
M =K
1=0.845 v c =MC =290m/s
由于v 2>v c ,则
G=A v c 2ρ=0.426kg/s
12.空气在光滑水平管中输送,管长为200m ,管径5cm ,摩阻系数λ=0.016,进口处绝对压
强为106N/m 2,温度为20℃,流速为30m/s ,求沿此管压降为多少?
若(1)气体作为不可压缩流体;
(2)可压缩等温流动;
(3)可压缩绝热流动;
试分别计算之。

解:(1)若气体作为不可压缩流体,查表得20=t ℃时,ρ=1.205kg /m 3则
∆p =2
2
v D l ρλ=3.47×105N/m (2)气体作可压缩等温流动 D l RT v p p λ2
1121-==5.6×105N/m 2 ∆p =21p p -=4.4×105 N/m 2 校核:s m p p v v /6.532
112== s m kRT C /343== k
C v M 116.022<==,计算有效 (3)气体作可压缩绝热流动
⎥⎥⎦⎤⎢⎢⎣
⎡-+=++k k k k k p p p k k l DA G 1211111212ρλ ,又:111A v G ρ=,111RT p =ρ 得:⎥⎥⎦
⎤⎢⎢⎣⎡-+=+k k p p k k l D RT v 112121)(112λ 解得:262/10597.0m N p ⨯= ∴2521/1003.4m N p p p ⨯=-=∆
校核:因为2211p v p v =k p p v v 1
2
112)(=∴ 故26.432=v 又因为-K T T T p p k k
253)(212121=∴=- s m kRT c /31922==∴ 所以113.02
22<==
c v M ,因此计算有效。

相关文档
最新文档