最新比的应用题分类练习(附带例题)

合集下载

比的应用题七种类型

比的应用题七种类型

比的应用题七种类型一、已知两个量的比和其中一个量,求另一个量比如说,苹果和梨的数量比是3 : 2,苹果有15个,那梨有多少个呢?就像分糖果一样,苹果占3份是15个,那1份就是15除以3等于5个,梨占2份,所以梨就是5乘以2等于10个。

这就好比你知道一伙人里男生和女生的比例,又知道男生有多少人,就能算出女生有多少人啦。

二、已知两个量的比和总量,求这两个量分别是多少举个例子哈,糖水里糖和水的比是1 : 4,糖水一共50克。

那总共就是1 + 4 = 5份,1份就是50除以5等于10克。

糖占1份就是10克,水占4份就是10乘以4等于40克。

这就像把一堆东西按照一定比例分成两部分,先算出一份是多少,再分别乘以各自的份数就好啦。

三、按比例分配的连比问题例如,甲、乙、丙三个数的比是2 : 3 : 5,它们的和是100。

那一共就是2+3+5 = 10份,1份就是100除以10等于10。

甲就是10乘以2等于20,乙就是10乘以3等于30,丙就是10乘以5等于50。

这就像三个人分蛋糕,按照不同的比例来分,先算出一份蛋糕多大,再根据各自的比例拿蛋糕。

四、已知两个量的比的变化,求原来的量比如说,原来男生和女生的比是3 : 2,后来转走了2名男生,这时候男生和女生的比变成了2 : 2了。

那我们可以设原来男生有3x个,女生有2x个,转走2名男生后,男生就变成3x - 2个了,这时候比例是2 : 2,也就是相等啦,就可以列方程3x - 2 = 2x,解这个方程就能算出x的值,进而算出原来男生和女生的数量了。

这就像一群小动物在搬家,走了几只后比例就变了,我们要倒推回去看原来有多少。

五、已知两个量的比,求部分量占总量的几分之几就像苹果和水果总数的比是1 : 5,那苹果就占水果总数的1除以5等于1/5。

这就好比在一个班级里,男生和全班人数的比例是2 : 7,那男生就占全班人数的2/7。

简单说就是把比当成份数,用其中一份的数量除以总份数就得到占比啦。

比的应用练习题及答案

比的应用练习题及答案

比的应用练习题及答案比的应用练习题及答案在学习数学的过程中,比是一个非常重要的概念。

它可以帮助我们比较两个或多个物体的大小、数量或性质。

比的应用题是数学学习中的基础,通过解答这些题目,我们可以更好地理解和掌握比的概念。

下面是一些关于比的应用练习题及其答案。

题目一:小明和小红分别有苹果、橙子和香蕉。

小明有5个苹果、3个橙子和2个香蕉,小红有3个苹果、4个橙子和6个香蕉。

比较小明和小红的水果总数。

解答一:小明的水果总数为5+3+2=10个,小红的水果总数为3+4+6=13个。

所以小红的水果总数比小明多3个。

题目二:小华和小李参加了一次长跑比赛。

小华跑了800米,用时4分钟;小李跑了1000米,用时5分钟。

比较两人的平均速度。

解答二:小华的平均速度为800米/4分钟=200米/分钟,小李的平均速度为1000米/5分钟=200米/分钟。

所以两人的平均速度相同。

题目三:一辆汽车以每小时60公里的速度行驶,行驶了4小时后,又以每小时80公里的速度行驶了2小时。

求汽车行驶的总路程。

解答三:汽车以60公里/小时的速度行驶4小时,行驶的路程为60公里/小时× 4小时 = 240公里。

然后以80公里/小时的速度行驶2小时,行驶的路程为80公里/小时× 2小时 = 160公里。

所以汽车行驶的总路程为240公里 + 160公里 = 400公里。

题目四:小明的数学成绩是80分,小红的数学成绩是90分。

小红的数学成绩比小明高了多少百分点?解答四:小红的数学成绩比小明高了90分 - 80分 = 10分。

小明的数学成绩的百分比为80分/100分× 100% = 80%。

小红的数学成绩的百分比为90分/100分× 100% = 90%。

所以小红的数学成绩比小明高了90% - 80% = 10个百分点。

通过以上的练习题,我们可以看到比的应用题可以涉及到不同的领域,如数量比较、速度比较和百分比比较等。

关于比例的应用题

关于比例的应用题

关于比例的应用题一、简单比例应用题1. 题目- 已知甲、乙两数的比是3:5,甲数是12,求乙数是多少?- 解析:- 因为甲、乙两数的比是3:5,设乙数为x。

- 根据比例的定义,(甲)/(乙)=(3)/(5),已知甲数是12,可列出方程(12)/(x)=(3)/(5)。

- 通过交叉相乘得到3x = 12×5,即3x=60。

- 解得x = 20,所以乙数是20。

2. 题目- 一种盐水,盐和水的比是1:10,要配制这种盐水550克,需要盐和水各多少克?- 解析:- 盐和水的比是1:10,那么盐水一共是1 + 10=11份。

- 要配制550克盐水,每份的重量是550÷11 = 50克。

- 盐占1份,所以盐的重量是50×1 = 50克。

- 水占10份,水的重量是50×10 = 500克。

二、比例尺相关应用题1. 题目- 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米。

A、B两地的实际距离是多少千米?- 解析:- 比例尺1:5000000表示地图上1厘米代表实际距离5000000厘米。

- 量得A、B两地在地图上的距离是6厘米,那么实际距离就是6×5000000 = 30000000厘米。

- 因为1千米 = 100000厘米,所以30000000厘米=30000000÷100000 = 300千米。

2. 题目- 一个长方形操场,长120米,宽80米。

如果把它画在比例尺是1:400的图纸上,长和宽各应画多少厘米?- 解析:- 因为1米 = 100厘米,所以长120米=120×100 = 12000厘米,宽80米=80×100 = 8000厘米。

- 根据比例尺1:400,图上距离 = 实际距离×比例尺。

- 长应画12000×(1)/(400)=30厘米。

- 宽应画8000×(1)/(400) = 20厘米。

比的应用练习题及答案

比的应用练习题及答案

比的应用练习题及答案一、选择题1. 一个班级有40名学生,其中女生占总人数的60%,那么这个班级有多少名女生?A. 20B. 24C. 30D. 362. 某工厂生产了一批零件,其中合格率为95%,如果生产了500个零件,那么不合格的零件有多少个?A. 25B. 26C. 27D. 283. 某水果店的苹果和梨的比例是3:2,如果今天卖出了60个苹果,那么卖出了多少个梨?A. 40B. 50C. 60D. 70二、填空题4. 一个班级有50名学生,其中男生占总人数的40%,那么这个班级有________名男生。

5. 某公司员工总数为200人,其中管理人员占20%,技术人员占30%,其他人员占50%。

如果公司要招聘10名管理人员,那么管理人员的总数将变为________人。

6. 某农场种植了小麦和玉米,小麦的种植面积占总面积的60%,玉米的种植面积占总面积的40%。

如果农场总面积是100公顷,那么玉米的种植面积是________公顷。

三、计算题7. 某工厂生产了一批零件,其中不合格率为5%,已知不合格的零件有50个,求这批零件的总数。

8. 某班级有学生总数为100人,其中女生人数是男生人数的2/3,求这个班级男生和女生各有多少人。

9. 某公司在两个不同的市场销售产品,A市场占总销售额的70%,B市场占总销售额的30%。

如果A市场销售额为21万元,求B市场销售额。

四、应用题10. 某学校有学生总数为800人,其中一年级学生占总人数的20%,二年级学生占总人数的30%,三年级学生占总人数的50%。

如果学校要进行一次全校性的活动,需要按照年级比例分配活动物资,求每个年级应分配到的活动物资数量。

11. 某工厂有员工总数为300人,其中技术部门员工占总员工数的40%,生产部门员工占总员工数的50%,管理部门员工占总员工数的10%。

如果工厂计划进行一次技能培训,需要按照部门比例分配培训名额,求每个部门应分配到的培训名额数量。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

数学比的应用题有答案

数学比的应用题有答案

数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。

如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。

2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。

这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。

3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。

A型产品和B型产品的生产比是4:3。

如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。

4. 问题:在一个水果店,苹果和橘子的比例是5:3。

如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。

5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。

如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。

6. 问题:一个公园的树木中,松树和柏树的比例是7:4。

如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。

7. 问题:在一个合唱团中,男生和女生的人数比是5:4。

如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。

8. 问题:一个农场的奶牛和山羊的头数比是6:5。

如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。

9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。

如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。

10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。

如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。

关于比的应用题

关于比的应用题

1.一个果园里,苹果树和梨树的比例是3:2。

如果果园里有150棵苹果树,那么梨树有多少棵?A.50棵B.100棵(答案)C.150棵D.200棵2.在一个班级中,男生和女生的比例是4:5。

如果班级里有32名男生,那么女生有多少人?A.32人B.40人(答案)C.48人D.56人3.一个公司里,技术员工和管理员工的比例是7:3。

如果公司里有210名技术员工,那么管理员工有多少人?A.60人B.90人(答案)C.120人D.150人4.在一个餐厅,红葡萄酒和白葡萄酒的销售比例是6:5。

如果餐厅一周内卖出了180瓶红葡萄酒,那么白葡萄酒卖出了多少瓶?A.120瓶B.150瓶(答案)C.180瓶D.210瓶5.一个学校里,学生和教师的比例是10:1。

如果学校里有800名学生,那么教师有多少人?A.60人B.80人(答案)C.100人D.120人6.在一个图书馆,小说类书籍和科技类书籍的比例是8:3。

如果图书馆有240本小说类书籍,那么科技类书籍有多少本?A.60本B.90本(答案)C.120本D.150本7.一个篮球队里,中锋和前锋的比例是2:3。

如果球队里有10名中锋,那么前锋有多少名?A.12名B.15名(答案)C.18名D.20名8.在一个花店里,玫瑰和百合的比例是5:4。

如果花店里有100朵玫瑰,那么百合有多少朵?A.60朵B.80朵(答案)C.100朵D.120朵9.一个公司里,男员工和女员工的比例是3:2。

如果公司里有180名男员工,那么女员工有多少人?A.100人B.120人(答案)C.150人D.180人10.在一个学校里,高年级学生和低年级学生的比例是9:7。

如果学校里有270名高年级学生,那么低年级学生有多少人?A.180人B.210人(答案)C.240人D.270人。

六年级数学上册比的应用题分类练习

六年级数学上册比的应用题分类练习

六年级数学上册比的应用题分类练习一.已知两个数的和与比求这两个数1、学校的花坛中有红、黄两种颜色的花共108朵,红花和黄花的数量比是5:4,那么两种花各多少朵?解;红花的朵数:108×54+5=60(朵)黄花的朵数:108-60=48(朵)答:红花有60朵,黄花有48朵.2、一个三角形三个内角的度数比是2:3:4,这个三角形三个内角分别是多少度?解:180°×22+3+4=40° 180°×32+3+4=60°180°×42+3+4=80°答:这三个内角分别是40°、60°、80°.二.已知两个数的差与比,求这两个数.1、王大爷家今年收苹果和梨的重量比是9:5,已知苹果比梨多128千克,王大爷家今年收苹果和梨各多少千克?解:(1)128÷(9-5)×9=32×9=288(千克)(2)128÷(9-5)×5=32×5=160(千克)答:王大爷家今年收苹果288千克,梨160千克.2、大母鸡和小母鸡的生蛋数量比是10:9,大母鸡比小母鸡多生2个鸡蛋,求大、小母鸡各生多少个蛋?解:大母鸡生蛋:2÷(10﹣9)×10=2÷1×10=20(个)小母鸡生蛋:2÷(10﹣9)×9=2÷1×9=18(个)答:大母鸡生蛋20个,小母鸡生蛋18个.三.已知一个数与比,求另一个数.1、运来一批电脑,卖出18台,剩下的和卖出的台数的比是5:3,这家店一共运来多少台?解:18÷3×(5+3)=6×8=48(台)答:这家店一共运来48台.2、一个鱼塘按1:2:3养殖草鱼,鲤鱼,白鲢鱼,已知鲤鱼养了6666尾,草鱼,白鲢鱼各养了多少尾?一个养鱼塘按1:2:3养殖草鱼、鲤鱼、白鲢鱼,已知鲤鱼养了6666尾,草鱼和白鲢鱼各养了多少尾?解:求总份数:1+2+3=6(份);其中鲤鱼占26 求三种鱼的总尾数:6666÷26=6666×62=19998(尾) 草鱼有:19998×16=3333(尾) 白鲢鱼有:19998×36=9999(尾) 答:草鱼养了3333尾,白鲢鱼养了9999尾.四.把间接的分配量转化为直接的分配量1、一个长方体棱长总和为96厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?解:长宽高的和是:96÷4=24(厘米)3+2+1=6所以长是:24×36=12(厘米)宽是:24×26=8(厘米)高是:24×16=4(厘米)所以长方体的体积是:12×8×4=384(立方厘米)答:这个长方体的体积是384立方厘米.2、一块长方形菜地的周长是120米,长与宽的比是3:2,这块菜地的面积是多少平方米?解:120÷2÷(3+2)=12(米)长是:12×3=36(米)宽是:12×2=24(米)面积是:36×24=864(平方米)答:这块菜地的面积是864平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比的应用题分类练习(附带1种解题方法)一、已知两个数的和与比求这两个数1、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?①70(5+2)=10朵②10×2=20朵③10×5=50朵或者①70×2/7=20朵②70×5/7=50朵2、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?3、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?7、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?9、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。

这个三角形三条边各是多少厘米?10、学校要把150本课外书,按六年级的人数比分给三个班级,六年一班48人,六年二班32人,六年三班40人,每个班级各分到书多少本?11、一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?12、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。

求大桶里原来装有多少千克油?13、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?14、一根绳子长20米,用去多少米,用去的与还剩的比是3:2?15、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?16、一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?17、一根绳子长20米,第一次用去全长的1/5,再用去多少米,用去的与全长的比是2:3 ?二、已知两个数的差与比,求这两个数。

1、红花比黄花多20朵,红花与黄花的比是7:3,求红花与黄花各是多少朵?①20÷(7-3)=5朵②5×7=35朵③5×3=15朵或者①7/10-3/10=2/5 ②20÷2/5=50朵③50÷(7+3)=5朵④5×3=15朵⑤ 5×7=35朵2、大母鸡和小母鸡的生蛋数量比是10:9,大鸡比小鸡多生2个蛋,大、小母鸡各生几个蛋?3、妈妈买回来一些苹果和香蕉,苹果和香蕉重量的比是3:2.已知苹果比香蕉多0.5千克,两种水果各有多少千克?4、一批作业本按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?5、一批作业本,取出它的2/5按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?6、制作一种零件,甲要5分钟,乙要10分钟,丙要8分钟,现三人共做这种零件若干个,甲比丙多做24个,这批零件共多少个?三、已知一个数与比,求另一个数。

1、红花有朵,红花与黄花的比是4:7,求黄花有多少朵?①7+4=11 28÷4/11=77朵③77×7/11=49朵或者①28÷4=7朵②7×7=49朵2、商店运来一批冰箱,卖出18台,卖出的台数与剩下台数比是3:2,商店共运来多少台冰箱?3、小伟和小英给希望工程捐款钱数的比是2 :5。

小英捐了35元,小伟捐了多少元?4、一个鱼塘按1:2:3养殖草鱼,鲤鱼,白鲢鱼,已知鲤鱼养了6666尾,草鱼,白鲢鱼各养了多少尾?5、一块合金中,铜,锌的比是3:2 ,其中这块合金中含铜6克,合金中含锌多少克?6、三个同学跑步比赛,A,B,C的速度比是4:3;2,A 跑了600米,其他两人各跑多少米?四、把间接的分配量转化为直接的分配量1、一个长方体棱长总和为 96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?①96÷4=24厘米②24÷(1+2+3)=4厘米③长:4×3=12厘米宽:4×2=厘米高 4×1=厘米④体积:长×宽×高=12×8×4=384立方厘米2、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是3 ∶2 ,这个长方体的体积是多少?3、王伯伯家里的菜地一共有800平方米,准备用 200平方米种西红柿。

剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?4、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?5、修路队要修一条长432米的公路,已经修好了全长的1/6 ,剩余的任务按5︰4分给甲、乙两个修路队。

两个修路队各要修多少米?6、在"学雷锋"活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。

五、六年级同学各做好事多少件?7、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?8、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?9、一块长方形菜地周长320米,长与宽的比是9:7,这块菜地的面积?10、一个等腰三角形,顶角与底角的比是1:2,这个三角形的顶角与底角各是多少度?11、长方形周长是60厘米,长与宽的比是5:1,求面积。

12、甲乙丙丁四家共存款18000元,其中前三家存款比是5:4:3,丁存款2000元,甲乙丙各存款多少元?13、小刚,小李,小红三人平均体重40千克,他们重量比为5:4:3.,三个人各多重?16、A、B两数的平均数是45,这两个数的比是2:7,求这两个数各是多少?17、新华书店新进3000本新书,把其中的4/5按3:5分给两个门市部,每个门市部分多少本?18、客车,货车同时从相距480千米的两地出发,相向而行,经过3小时相遇,已知客车货车的速度比是5:3,求两车速度。

19、工程队三天修完全长1200千米的公路,第一天修了全长的30%,第二天和第三天修的米数比是4:3,第二天和第三天各修多少米?20、甲乙两港口相距294千米,两轮船同时从两港口相对开出,3.5小后相遇,货轮和客轮的速度比是3:4,相遇时两船各行多少千米?21、学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占1/3,文艺书与故事书的比是2:3,故事书有多少本?21、由王师傅、赵师傅和刘师傅三人合作加工一批模具,分工比例是3:8:4。

其中赵师傅加工了72件。

这批模具一共有多少件?22、某工厂老中青工人的比是2:5:8,老工人比青年工人少60人,中年工人有多少人?23、两地相距600米,甲乙两车从两地相对开出,4小时相遇,已知甲乙两车速度比是4:5,求两车速度是多少?24、学校6个年级的平均人数是200人,其中低,中,高三个年级的人数比为5:4:3,学校的高年级有多少人?25、一个长方形的周长是24厘米,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?26、甲乙两桶油共130千克,从甲桶倒出2/7给乙桶后,甲桶与乙桶油的比为7:6,原来甲,乙桶分别有油多少千克?/五、把比转化成分率,总量不变1、甲乙两仓化肥的比是7:5,甲仓运出26吨到乙仓,这时甲乙两仓化肥比是3:4,甲乙两仓原来化肥各多少吨?①7+5=12份3+4=7份②7/12-3/7=13/84或者4/7-5/12=13/84 ③26÷13/84=168吨④168×7/12=98吨 168×5/12=70吨2、小兰,小红的图书比是5:3,小兰给小红15本后,两人图书本数相同,两人原来各有多少本图书?3、有三箱水果共重60千克,如果从第一,二箱各拿出3千克放入第三箱中,则三箱重量比是1:2:3,求三箱水果原来各重多少千克?4、小明看一本故事书,第一天看的与剩下的比是1:8,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?5、甲乙两校原来图书比是7:5,如果甲校给乙校650本,甲乙两校图书本数比是3:4,原来甲校有多少本图书?6、甲乙两个车间原来人数比为4:3,甲四间调48人到乙车间后,甲乙两个车间人数比为2:3,两车间原来各有多少人?7、有一本故事书,已读的页数与没读的页数比为2:3,又读了40页,这时已读的与没读的页数比为3:2,这本书共有多少页8、甲乙两队人数比是3:7,现在从甲队调30人到乙队,则甲乙两队人数的比是2:3,甲、乙两队原来各有多少人?9、甲乙两个粮库,原来甲,乙两粮库存粮的吨数比是5:7,如果从乙粮库调6吨粮食到甲粮库,则甲乙两粮库存粮吨数比是4:5,原来两粮库各存粮多少吨?10、一批书按3:2的比例分给甲乙两学校,结果甲学校分到630本,比原来少1/4,这批书共有多少本?11、五年级甲乙两班人数比是5:4,在义务劳动,甲班调21人去乙班,这时甲乙两班人数比是2:3,两班原来各有多少人?12、学校合唱队与舞蹈队人数的比为3:2,如果将合唱队员抽调10名到舞蹈队,那么这时的人数比为7:8,原来合唱队有多少人?13、有三桶油共重45千克,如果从第一,第二桶中都取出2.5千克倒入第三桶,这时一,二,三桶油重量之比是1:2:3。

三桶油原来各有多少千克?14、修一条路,已修的与没修的比是1:5,又修了490米后,已修的与没修的比为3:1,这时还有多少米没修?15、甲乙两人的钱数比是3:1,如果甲给乙0.6元,则两人钱数比为2:1,两人共有钱多少元?六、总量变了,根据求比1、学校有足球和篮球共65个,其中足球和篮球数量比是1:4,今年又买回一些足球,这时足球和篮球数量比是3:4,今年买回多少个足球?①1+4=5份 4+3=7份②不变量为篮球65×4/5=52个③新的总和52÷4/7=91个④买回个数 91-65=26个2、有两筐水果,甲筐水果重32千克,从乙筐取出1/5后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?3、学校原有科技书、文艺书共630本,其中科技书与文艺书的比是1∶4。

后来又买进一些科技书,这时科技书与文艺书的比是3∶7。

后来又买进科技书多少本?4、有一块铜梓合金,其中铜与梓得比是2:3。

现在加入梓6克,共得新合金36克,求在新合金内铜与梓的比。

七、将两两分量的比转化为所有分量的比1、甲乙两数比是6:5,甲丙两数比是4:9,甲乙丙三个数的比是多少?相同的量为甲,找出甲在比中的两个数量(6和4)的最小公倍数12甲比乙 6:5=12:10 甲比丙 4:9=12:27甲乙丙之比 12:10:272、新世纪小学将五年级140人分成三个小组,第一小组和第二小组人数比是2:3,第二小组和第三小组人数比是4:5,这三个小组各有多少人?3、一个书架有三层,共放图书540本,上层与中层图书本数比是4:5,,中层与下层图书本数比是10:9,上层,中层,下层图书各多少本?4、三筐苹果共重140千克,甲筐和乙筐重量比是3:4,第二筐和第三筐重量比是6:7,三筐水果分别多重?5、植物园中菊花与月季花的盆数比是31:5,兰花与睡莲的盆数比是40:9,月季与睡莲的盆数比是25:3。

相关文档
最新文档