电液伺服控制

合集下载

电液伺服控制实验课程介绍

电液伺服控制实验课程介绍

电液伺服控制实验课程介绍1教学单位名称:机械科学与工程学院2 .实验中心名称:液压基础实验中心3 .课程名称:电液伺服控制4,课程代码:4124155,课程类别:专业课6 .课程性质:选修7 .课程学时:28学时,其中含实验4学时8 ,课程学分:1.59,面向专业:机械工程10 .实验课程的教学任务、要求和教学目的电液伺服控制系统实验课的开设是为了使学生将课堂上较为抽象的理论内容,如位置反馈、速度反馈、力反馈等各种闭环控制形式,伺服阀静态特性、动态特性等控制元件特性,阀控液压缸的频率响应特性、外特性等控制回路特性等,通过实物的形式获取直观概念。

要求学生能够识别电液伺服系统中主要控制和执行元件,根据控制要求用给定的液压元件和管路搭建控制回路,根据反馈形式合理安置和连接传感器,用计算机对伺服系统进行控制和实时数据采集。

其目的是使学生通过实验课熟悉基本的电液伺服系统的基本构成、使用及连接方式;熟悉各类实验的基本操作;培养制定、实施实验方案,实脸数据处理、分析,实验报告撰写等基本的科学研究能力。

通过实验课能够将抽象的控制理论与实际的系统输入输出规律、现象进行对照,反过来促进学生对控制理论的深入理解并思考导致理论与实际之间存在差异的因素,对学生工作后独立进行系统设计具有重要的指导意义。

11 .学生应掌握的实验技术及实验能力(1)掌握液压传动、液压伺服系统中常用元件的工作原理,能够利用所知的液压元件组成简单的液压传动、液压伺服系统;(2)了解液压的组成及液压元件、管路的连接形式,可以使用快速接头、焊接接头等进行管路连接;(3)了解液压伺服系统闭环的构成方式及电控系统的连接形式,可以按照系统原理图自行组装一套液压伺服系统;(4)了解计算机控制指令的输出方法及数据采集方法,可以进行简单的计算机控制程序编写并利用计算机读取实验数据;(5)掌握实验数据的处理和分析方法,能够根据采集数据分析液压伺服系统的控制特性。

电气工程中电液伺服系统的建模与控制

电气工程中电液伺服系统的建模与控制

电气工程中电液伺服系统的建模与控制电液伺服系统在电气工程中扮演着重要的角色,它是将电力和液压技术相结合的一种控制系统。

本文将探讨电液伺服系统的建模与控制方法,旨在帮助读者深入了解该系统的原理和应用。

1. 引言电液伺服系统是一种将电力与液压技术相结合的控制系统,它具有快速、精确以及大扭矩输出的特点,广泛应用于工业自动化领域。

该系统通常由液压执行机构、液压装置、电机、传感器以及控制器等组成。

2. 电液伺服系统的建模电液伺服系统的建模是理解系统行为和进行控制设计的重要基础。

一般来说,电液伺服系统的建模可以分为力平衡模型和压力平衡模型两种。

2.1 力平衡模型力平衡模型是基于力学平衡原理建立的,它通过分析液体在液压缸内的流动以及液压缸和负载之间的力平衡关系来描述系统行为。

该模型主要考虑了负载的机械特性以及阀门的开度对液体流量和压力的影响。

2.2 压力平衡模型压力平衡模型是基于流体的压力平衡原理建立的,它通过分析液体在液压缸内的流动以及阀门的开度对液体流量和压力的影响来描述系统行为。

该模型不考虑负载的机械特性,主要关注液体流动的特性以及阀门对压力的调节。

3. 电液伺服系统的控制电液伺服系统的控制主要包括位置控制、速度控制和力控制三种。

在控制设计中,通常使用比例积分微分(PID)控制器或模糊控制器来实现系统性能的改善。

3.1 位置控制位置控制是电液伺服系统中最常见的一种控制方式。

它通过控制液压缸的位置来实现对负载的准确控制。

在控制设计中,可以根据负载的特性选择适当的控制方法,如PID控制器或模糊控制器。

3.2 速度控制速度控制是电液伺服系统中实现对负载速度精确控制的一种方式。

在速度控制中,控制器通常根据传感器反馈的速度信号来调节液压缸的速度。

PID控制器常被用于速度控制中,通过调节比例、积分和微分参数来改善系统的响应性能。

3.3 力控制力控制是电液伺服系统中实现对负载施加特定力的控制方式。

在力控制中,控制器通常调节液压缸施加的力来满足特定的要求。

机械电液伺服控制系统设计研究

机械电液伺服控制系统设计研究

机械电液伺服控制系统设计研究导言:机械电液伺服控制系统是一种应用广泛的控制系统,它通过电液伺服电机和传感器等组件相互配合,实现对机械运动的精准控制。

本文将探讨机械电液伺服控制系统的设计研究,并着重介绍其在工业自动化领域中的应用。

一、机械电液伺服控制系统的工作原理机械电液伺服控制系统通过传感器感知机械运动,将运动信号传递给控制器。

控制器根据设定的控制算法,对电液伺服电机进行精确控制,调整阀门的开度,控制液压系统的输出,从而实现对机械的运动精准控制。

这种系统不仅可以实现高精度、高速度的运动控制,还可以对机械运动过程进行实时监测和调整,提高生产效率和产品质量。

二、机械电液伺服控制系统的设计要点1. 选择合适的电液伺服电机和传感器:根据机械系统的实际需求,选用合适的电液伺服电机和传感器来实现所需的运动控制精度和速度。

不同的电液伺服电机和传感器具有不同的特性,需要根据实际情况进行选择。

2. 控制算法的设计:控制算法是机械电液伺服控制系统的核心。

通过对传感器采集的数据进行处理,利用控制算法来实现对电液伺服电机的精确控制。

常用的控制算法包括PID控制、模型预测控制等,根据具体的应用场景选择合适的控制算法。

3. 液压系统的设计:液压系统是机械电液伺服控制系统中不可或缺的组成部分。

液压系统的设计要考虑流量、压力、温度等因素,以确保系统能够稳定运行。

同时,还需要考虑液压传动装置和阀门的选型,以及润滑、密封等方面的设计。

三、机械电液伺服控制系统在工业自动化领域的应用机械电液伺服控制系统在工业自动化领域中有着广泛的应用。

例如,在机床制造领域,机械电液伺服控制系统可以实现对工件的高精度加工,提高加工效率和加工质量。

在装配生产线上,机械电液伺服控制系统可以实现对物料输送、装配工序等的精确控制,提高生产线的运行效率和产品的质量。

此外,在航空航天、机器人、医疗设备等领域,机械电液伺服控制系统也有着广泛的应用。

例如,在航空航天领域,机械电液伺服控制系统可以实现对飞行器的姿态控制;在机器人领域,机械电液伺服控制系统可以实现对机器人的运动控制,提高机器人的操作精度和自动化水平;在医疗设备领域,机械电液伺服控制系统可以实现对医疗设备的运动控制,提高手术操作的准确性和安全性。

电液伺服控制器原理

电液伺服控制器原理

电液伺服控制器原理
电液伺服控制器是一种基于电液耦合的控制方法,利用电液系统传递控制信号,从而实现对运动、动力、控制等参数的精确控制。

其原理主要涉及到以下几个方面:
1. 控制系统
电液伺服控制器的控制系统包括输入信号的选择、反馈信号的处理、控制器的逻辑设计等。

其中输入信号的选择通常包括传感器、执行器等,反馈信号的处理可以通过测量、比较等方式实现,控制器的逻辑设计则通过数学模型的建立、控制器参数的优化等方式实现。

2. 电液系统
电液系统包括液体、电极、控制系统等。

液体通常采用油、水等介质,电极则通常采用金属导线、电极棒等。

控制系统包括控制器、液位控制器、液力耦合器等。

其中控制器主要负责对输入信号进行识别和处理,液位控制器主要负责测量液位,液力耦合器则将液位控制器的测量信号与控制系统的输出信号进行耦合实现对液力的控制。

3. 控制律
电液伺服控制器的控制律通常采用PID控制律。

PID控制律基于三个参数:比例、积分和微分,通过控制这些参数的比值来调节输出信号,从而实现对系统的控制。

综上所述,电液伺服控制器的原理主要涉及控制系统、电液系统和控制律三个方面,通过控制器对输入信号进行识别和处理,通过液位控制器和液力耦合器实现对液力的控制,从而实现对运动、动力、
控制等参数的精确控制。

伺服控制(电液伺服系统 )课件

伺服控制(电液伺服系统 )课件
20
(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +

电液伺服系统及其控制文档

电液伺服系统及其控制文档

电液系统及其控制1概述1.1电液控制系统工作原理及组成一.工作原理电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.举例:1.阀控式电液位置控制伺服系统(如上图)图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.其工作原理如下:指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.系统的工作原理方块图如下:2.泵控式电液速度控制伺服系统该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.如图所示为一泵控式电液速度控制伺服系统的原理图.图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.系统的工作原理方块图如下:二.电液伺服控制系统组成1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.6.控制对象---被控制的设备等,即负载.7.液压能源装置及各种校正装置等.1.2电液伺服控制的分类电液伺服控制系统可按不同的原则分类,基本上有五大类.一.按被控对象的物理量名称分类1.位置伺服控制系统主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.2.速度伺服控制系统主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.3.力伺服控制系统以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.二.按执行元件的控制方式分类1.阀控式伺服控制系统利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.其优点是响应速度快,控制精度高,结构简单.缺点是效率低.2.容积式伺服控制系统利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.三.按系统输入信号的变化规律分类1. 定值控制系统当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.2. 程序控制系统当系统输入信号为按预先给定的规律变化时称为程序控制系统..3. 伺服控制系统伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.四.按信号的方式分类1.模拟信号控制系统系统中全部信号都是连续的模拟量的系统称之.2.数字信号控制系统系统中全部信号都是数字量的系统称之.3. 数字-模拟混合控制系统系统中部分信号是数字量部分信号是模拟量的系统称之.五.按信号传递介质的形式分类1.机液伺服控制系统输入信号给定,反馈测量和比较均用机械构件实现的系统称之.2.电液伺服控制系统用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.1.3电液伺服控制的优缺点一. 电液伺服控制的优点1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.比较举例:电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.同功率:液压泵重量/电动机重量=10%-20%液压泵尺寸/电动机尺寸=12%-13%液压马达功率重量比=10倍相当容量的电动机液压马达力矩-惯量比=10-20倍电动机2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.3.液压伺服系统抗负载的刚度大.二. 电液伺服控制的缺点1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.3.液压能源传输不如电气系统方便2 电液伺服阀电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.2.1电液伺服阀的组成与分类一.组成电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:1.力矩马达(力马达)将输入的电信号转换成力矩或力控制液压放大器运动.2.液压放大器控制液压能源流向执行机构的流量和压力.3.反馈机构使伺服阀输出的流量和压力获得与输入信号相应的特性.二.分类电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:1.按输出量的控制功能分有:电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.2.按液压放大器的级数分有:单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.3.按第一级阀的结构分有:滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.4.按反馈形式分有:滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.2.2 力矩马达力矩马达是将电信号转换成机械运动的一种电气-机械转换.一.力矩马达工作原理利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.二.力矩马达分类1. 根据运动形式分1) 角位移马达--力马达,可移动件是直角位移.2) 直线位移马达—力马达,可移动件是直线位移.2.按可动件结构分1)动铁式---可动件是衔铁.2)动圈式---可动件是控制线圈.3.按极化磁场产生的方式分1)永磁式---利用永久磁铁建立极化磁通.2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流产生极化磁通.3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.三.力矩马达要求1.能产生足够的输出力和行程,且要求体积小,重量轻.2.动态性能好,响应速度快.3.直线性好,死区小,灵敏度高,磁滞小.4.抗震,抗冲击,不受环境温度和压力影响.四.典型力矩马达1. 永磁动铁式力矩马达1)组成下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).2)工作原理永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.2.永磁动圈式马达1)组成永久磁铁,可动线圈,对中弹簧等.2)工作原理图所示为一种常见的结构原理图图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.3.动铁式力矩马达与动圈式力马达比较动铁式力矩马达动圈式力马达磁滞大磁滞小工作行程小工作行程大输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.固有频率高同功率体积小, 价格高同功率体积大,价格低五.力矩马达的数学模型(电磁力矩计算)1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.通过力矩马达的磁路分析可求出电磁力矩的计算公式.a.力矩马达的控制电流参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:I1= I0+iI2= I0-i式中i1 i2--- 每个控制线圈中的电流;I0---每个控制线圈中的常值电流i---每个控制线圈中的信号电流;两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)I c ---输入马达的控制电流b. 衔铁中产生的控制磁通根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;NcΔi---永久磁铁产生的控制磁动势;c. 作用在衔铁上的电磁力矩根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为Td=KtΔi+Kmθ式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;Km---力矩马达的中位磁弹簧刚度;从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.2) 永磁动圈式力马达的数学模型(电磁力矩计算)参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:F=BgлDNcic=Ktic式中F---线圈所受的电磁力;K t---电磁力系数F=BgлDNcN c---控制线圈的匝数.B g---工作气隙中的磁感应强度;D---线圈的平均直径;I c---通过线圈的控制电流.结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.2.3 液压放大元件电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.一.液压放大元件的种类液压放大元件有滑阀,喷咀挡板阀和射流管阀等.二.滑阀滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制.滑阀结构形式多,控制性能好,在电液系统中应用最广泛.1.滑阀的结构及分类(1)按进出阀的通道数划分它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.图b 三通阀图c 二通阀二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.(2)按滑阀的工作边数划分a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.(3)按滑阀的预开口型式划分按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),参见图b.c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.图a 正开口图b 零开口图c 负开口.阀的预开口形式对其性能,特别是零位附近特性影响很大.如下图所示:零开口阀具有线性流量增益特性,性能比较好.负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.图不同开口形式的流量特性1-零开口2-正开口3-负开口2.滑阀静态特性滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.(1) 滑阀静态特性a.压力-流量方程滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.b)忽略管道和阀腔内的压力损失.c)假定液体是不可压缩的.d)假定阀各节流口流量系数相等.e)阀的窗口都是匹配和对称的.根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)A1- 为节流口1的面积;A2-为节流口2的面积;ps –为恒压油源压力pL-为负载压力,pL=p1-p2.供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)b.滑阀的静态特性曲线a)流量特性曲线阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.图a 空载流量特性曲线图图b 压力特性曲线b)压力特性曲线阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,其图形表示即为压力特性曲线.通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.c)压力-流量特性曲线阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求阀的压力-流量特性曲线(2)零开口四边滑阀的静态特性a. 理想零开口四边滑阀的静态特性理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).a)理想零开口四边滑阀的压力-流量方程 理想零开口四边滑阀的压力-流量方程:QL=Cd W xv -(1)b)压力-流量曲线根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.⎪⎪⎭⎫ ⎝⎛-Lv v s p p χχρ1。

电液位置伺服控制系统实验

电液位置伺服控制系统实验

2
s2
2.834 2 0.866 1 2 s s s 1 2 14 .726 14 .726
正常参数时的ωc=2.78, ωh=14.8,Kg=19.1
增大Ki
正常参数
C (s) 4.611 R( s) 1 2 0.866 2 s 14 .726 2 s 14 .726 s 1
斜坡输入1
正弦输入
正弦输入,幅值5,频率1
正弦输入,幅值5,频率2.95
3 液压系统原理
压力传感器2
伺服缸
压力传感器3
平衡阀 电磁换向阀
蓄能器
电液伺服阀 压力传感器1
流量计2
流量计1 精滤器 电磁溢流阀
电机泵组
M
粗滤器 精滤器
4 系统控制原理
数据采集
参考输入
控制器
数模转换
功率放大
伺服阀
伺服缸
K i 73.746 KV 2.834 K d 1 26.022
K d1 h 代入系数得到 K d 1 26 .022 14 .726 h a a 0.12 (b K d 2 ) (b K d 2 ) (0.2 2.861) h h 0.866 2 K d1 a 2 K d 1 a 2 26.022 0.12
mmax 为能量输出单元在线 性范围内的最大值
r0,ml 为输入信号在线性范 围内的最大值
阶跃输入2.5
阶跃输入5
阶跃输入9
阶跃输入12
系统开环传递函数
KV C (s) R(s) 1 2 2 h s 2 s s 1 h h
Ki KV K d1
2)阀控缸微分方程

电液伺服系统的建模与控制

电液伺服系统的建模与控制

电液伺服系统的建模与控制1. 引言电液伺服系统是一种广泛应用于工业控制领域的系统,它可以通过控制液压执行器的输出来实现对机械运动的精确控制。

本文将介绍电液伺服系统的建模与控制方法,以帮助读者更好地了解和应用这一技术。

2. 电液伺服系统的概述电液伺服系统由液压执行器、电液伺服阀、传感器和控制器等组成。

液压执行器负责将液压能转化为机械能,电液伺服阀负责控制液压执行器的动作,传感器用于反馈系统状态信息,控制器根据传感器的反馈信息对电液伺服阀进行控制。

3. 电液伺服系统的建模建模是控制系统设计的第一步,对于电液伺服系统也是不可或缺的。

电液伺服系统的建模既可以基于理论模型,也可以基于实验数据进行。

3.1 理论模型在理论模型建模中,我们需要考虑液压执行器、电液伺服阀和控制器的动态特性。

液压执行器的动态特性可以用惯性、摩擦、密封等参数来描述。

电液伺服阀的动态特性可以用阀门的流量-压力特性和阀门饱和现象来描述。

控制器的动态特性通常可以用传统的PID控制算法进行建模。

3.2 实验模型在实验模型建模中,我们需要通过实验得到系统的频率响应和传递函数,并将其转化为数学模型。

这种方法对于实际系统的建模更加准确,但也需要大量的实验数据和较高的技术要求。

4. 电液伺服系统的控制控制是电液伺服系统中最关键的环节之一。

常用的电液伺服系统控制方法有位置控制、速度控制和力控制等。

4.1 位置控制位置控制是电液伺服系统中最基本的控制方法之一。

通过控制电液伺服阀的输出来控制液压执行器的位置。

传感器将执行器的位置信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的位置跟踪。

4.2 速度控制速度控制是电液伺服系统中常用的控制方法之一。

通过控制电液伺服阀的输出来控制液压执行器的速度。

传感器将执行器的速度信息反馈给控制器,控制器根据反馈信息进行调节,使得系统实现期望的速度跟踪。

4.3 力控制力控制是电液伺服系统中一种高级的控制方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某工厂数控加工机床工作台位置控制系统的设计
1.设计要求及相关参数
工作台质量 工作台最大摩擦力:最大切削力, 工作台最大行程工作台最高速度,
工作台最大加速度 位置误差,速度误差.
由于工作台行程比较大,采用伺服阀控液压马达系统。

控制原理图如下 :
阀控液压马达位置控制系统结构框图
2根据静态计算确定动力元件参数 2.1 负载力的计算 为了简化,在此认为摩擦力f F 是个定值,取最大摩擦力f F =2000N,惯性力按最大加速度考虑: 。

假定系统是在最恶劣的负载条件下工作,则总的负载力为
2.2选择供油压力为 2.3计算液压马达排量
设齿轮减速比 ,丝杠导程 1.2/t cm r =,则所需液压马达动力矩为:
/235000.012/4 3.14 3.3L t T Ft n N m
π==⨯⨯=•
f 2000F N
=1000t M kg
=500c F N
=0.5m
S =max V 0.08/m s
=2max 1/a m s =0.05p e m <±1v e mm
<N
a M
F t i
100011000max
=⨯==N F F F F i
f
c
L
350010002000500=++=++=6.5s
P MPa
=21/2n n n ==
取 ,由于 ,所以液压马达
弧度排量为6733/23 3.3/2 6.510810/m L s D T p m rad
-==⨯⨯⨯=⨯
液压马达每转排量为 2.4确定伺服阀
液压马达最高转速为 所以负载流量为 。

此时伺服阀压降为 。

考虑到系统泄漏等的影响,将 增大15%,取 ,根据 和 ,额定流量为8L/min 的伺服阀满足要求,选用QDY1-C63伺服阀,额定电流为. 3.选择位移传感器增益 ,放大器增益 待定。

4.计算系统的动态参数
因为负载特性为惯性,因此液压马达-传递函数为:
221/2(1)
m
m h L
h
h
D s s θςθω
ω=++
工作台质量折算到液压马达轴的转动惯量为:
2242
2221000(0.012)9.210442t t M t J kg m
n ππ-⨯===⨯•⨯
考虑到齿轮、丝杠和液压马达本身的质量,取 ,并取液压马达的容积 。

则:
假定阻尼比仅由阀的流量-压力参数产生,则阻尼比: 0
c e t
h M t
K J D V βζ=2/3L s p p =L L m
T p D =7
6322 3.14810510/m m q D m r π--==⨯⨯⨯=⨯max /20.08/0.012800/min
n nv t r ==⨯=6
max 510800/604/min L m Q q n L -==⨯⨯=676max / 6.510 3.3/810
2.110v s L s L m p p p p T D Pa -=-=-=⨯-⨯=⨯L Q 4.6/min L Q L =L
Q L
p 100
/f K V m =a K 2
0.012t J kg m =•310t V cm =I=30mA
零位流量-压力系数 可近似计算,取 ,得
262
12300.025(510) 3.410/()
32320.018
c
c r K m s Pa u
πωπ--⨯⨯⨯=
=
=⨯•⨯
1.2h ζ=
=

m
D 、
h ω、h ζ代入得:
622
1.25102 1.2(1)380380m
L
S S S θθ⨯=⨯++
伺服传递函数根据样本可知:
2
220.51600600sv L
K s I
s θ=⨯∆++
额定流量 的阀在供油压力 时,空载流量为:
4308 1.310/m Q m L -==⨯ 所以阀的流量增益 则伺服阀的传递函数为:
32
24.21020.51600600L
s I
s θ-⨯=⨯∆++
位移传感器和放大器的动态特性可以忽略,其传递函数可以用它们的增益表示,
即 ,放大器增益为: 减速齿轮与丝杠的传递函数为
根据以上计算结果,可得阀控液压马达系统方框图如下
60.025,510,0.018c m r m u Pa
ω-==⨯=0c K 8/min
n Q L =66.510s p Pa =⨯4
330 1.310 4.210/()
m sv N Q K m s A I --⨯=⨯•100/f f p
U K V m
X =
=/a e
I K A V U ∆=0.0120.001/24p s
m X t K m rad n θππ====
图二 阀控液压马达位置控制方框图 由方框图绘制 时的系统开环增益伯德图(图三),相位裕量 ,此时,
增益裕量 ,穿越频率 ,
开环增益 所以
所以放大器的增益为 所以系统的开环传递函数为:
222294.5
()1 2.4(1)(1)600600380380G s s s s s s =
++++
5稳态误差的计算及系统动、静态性能分析
5.1 位置误差
对于位置输入来说,系统时
I 型的,因此由位置输入信号引起的误差为0。

假定干扰值之和为 ,由此引起的位置误差为
52%2%0.03
3.4100.18100
n pf f a I e m
K K -±∆±=
==±⨯⨯
=1
v K 51.4γ=。

g 11K dB =c 87.1/rad s ω=1
=90s v K -361
4.210 1.25100.0001100502v a a K K K s --=⨯⨯⨯⨯⨯⨯=90
0.18/502502v a K K A V ===2%n I ±∆
5.2速度误差
最大速度 时的速度误差为
4
max 0.089.01090v v v e m K -===⨯
系统能达到的技术指标为 , ,能够满足要求,无需校正。

5.3稳定性
系统的bode 图在matlab 中得到,结果如图
num=94.5*[0 1];
den=conv([1 0],conv([1/600^2 1/600 1],[1/380^2 2.4/380 1])); GKs=tf(num,den) ; bode; margin(Gks)
图三 系统开环Bode 图
max 0.08/v m s =5
3.410pf e m -=±⨯0.0009v e m =
由bode 图可知穿越频率为Wc=87.1rad/s ,相角裕度γ=51.4。

系统稳定。

5.3对阶跃信号的响应特性
系统对阶跃信号的响应特性见下图
图四 系统阶跃信号响应特性图
从图中可以看出系统超调量
,调整时间 ,调整时间较小,响应较快,能够满足一般的工作要求。

6.结论
该数控机床工作台位置控制系统能满足要求,能达到位置精度,即使实际情况下有误差,反馈环节的存在能够减小误差;其次,通过bode 图可知该系统稳定性裕量较大,有较高的稳定性,动态响应也较快,符合系统的设计要
p %σ≈16s t .s ≈008
求。

参考文献
[1] 王春行.液压伺服控制系统.机械工业出版社.2009
[2] 孙衍石,靳宝全,熊晓燕.电液伺服比例阀控位置控制系统仿真研究.流
体传动与控制,2009,32-35
[3] 沈瑜,高晓丁,王筠.对称阀控非对称液压缸的电液比例位置控制系统建
模与分析.陕西科技大学学报.2007
[4] 王春行.液压伺服控制系统.北京,机械工业出版社,1989
[5] 李伟.电液位置伺服系统的智能控制.[西南林学院研究生学位论文].2009。

相关文档
最新文档