7.3.3移位寄存器及其应用

合集下载

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

移位寄存器及应用

移位寄存器及应用

实验3.6 移位寄存器及应用一、实验目的1.掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2.熟悉移位寄存器的应用,实现数据的串行、并行转换和构成环行计数器。

二、实验原理时序功能组件常用的有计数器和移位寄存器等,借助于器件手册提供的功能表和工作波形图,就能正确地使用这些器件。

对于一个使用者,关键在于合理地选用器件,灵活地使用器件的各控制输入端,运用各种设计技巧,完成任务要求的功能,在使用MSI器件时,各控制输入端必须按照逻辑要求接入电路,不允许悬空。

1.移位寄存器74LS194是一个4位双向移位寄存器,它的逻辑符号如图3.6.1所示,功能表见表3.6.1,其中D0D1D2D3和QQ1Q2Q3是并行数据输入端和输出端;CP是时钟输入端;CR是直接清零端;D SR和D SL分别是右移和左移时的串行数据输入端;S1和S0是工作状态控制输入端。

移位寄存器还可用来构成计数器,典型的有环形计数器和扭环形计数器。

三、实验仪器1.数字逻辑实验箱一台2.双踪示波器一台3.数字万用表一块图3.6.1 74LS194逻辑符号4.集成块若干207表3.6.1 74LS194功能表四、实验任务及步骤1.双向移位寄存器⑴逻辑功能测试①清除:先将CR端接+5V,检查Q端输出情况,再将CR端接0电平,所有Q 端输出应为0,清零后再将CR端接+5V。

②并行输入:S1S置入11,D端置入一组代码(如1011),给 CP端送单次脉冲,观察 Q端的状态。

此时若将DSL 或DSR置入1或0,Q端的状态是否改变?③右移:令S1S=“01”,CP接1Hz方波脉冲,再令DSL=“0”,观察Q端的变化,待4个LED全灭以后(此时输入的串行码是什么?),再令DSR=“l”,观察此时Q端LED点亮的次序。

当 4个LED都点亮时,输入的串行码又如何?若要串行输入代码1010(或其它非全0、非全1码),在DSR端置入一位数码(低位先送),给 CP端送单次脉冲,经过4个脉冲之后立即将S置成0以使寄存器工作于保存状态。

实验七 移位寄存器及其应用

实验七 移位寄存器及其应用
息,也可以用来把串行的二进制数转换为并行的二进制数(串并转换) 或相反(并串转换)。在计算机电路中,还可以应用移位寄存器来实现 二进制的乘2和除2功能。
在具体独立应用方面,移位寄存器不单可做成可编程的分频器、串行 加法器、串行累加器和序列号发生器(见书上P229),而且还可以用来 构成计数器,这是工程中经常用到的。以74LS194双向移位寄存器为 例,74LS194可构成环形计数器、扭环形计数器和自启动的扭环形计数 器。 五、实验的步骤 ㈠ 集成移位寄存器基本功能验证。
将74LS194插入实验箱中,并按图7-2进行接线。接线完毕后,接通 电源,即可进行74LS194双向移位寄存器的功能验证。 ① 清零。将复位开关K3置0,使=0,通过观察LED灯的亮、灭情况, 记录有关实验数据。 =0时,74LS194输出为:Q0Q1Q2Q3= 。 ② 保持。使=1,CP=0,拨动逻辑开关K1和K2,输出状态不变。或者 使=1,M1和M0都为0(即K1和K2都为0),按动单次脉冲,这时输出状 态仍不变。 ③ 置数。使=1,M1=M0=1,数据开关置为0101,按动单次脉冲,这时 数据0101存入Q0Q1Q2Q3中。根据LED发光二极管的状态,记录 Q0Q1Q2Q3= ;变换数据开关的输出为1011,再按动单次脉冲,根 据LED发光二极管的状态,记录Q0Q1Q2Q3= 。
保1 × × 0
持1 0 0 × × × × × × ×
保持
置 1 1 1 ↑ × × d0 d1 d2 d3 d0 d1 d2 d3 数
பைடு நூலகம்
右1 0 1 ↑ × 1
1
移1 0 1 ↑
×
××××
0
0
左1 1 0 ↑ 1 ×
1
移1 1 0 ↑

实验七---移位寄存器及其应用

实验七---移位寄存器及其应用

集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用在现代科技中,电路是一个不可或缺的组成部分。

电路可以用于各种领域,其中移位寄存器和计数器是最为常见且重要的电路之一。

本文将深入探讨这两种电路的原理与应用。

一、移位寄存器的原理与应用移位寄存器是一种能够将输入数据连续地移位、保留并输出的电路。

其原理主要基于逻辑门电路的组合与连接。

1. 原理移位寄存器通常由多个触发器构成,触发器是一种能够存储一个二进制位的设备。

当输入数据进入移位寄存器时,触发器会按照一定的时序规律将数据进行移位,并输出。

移位寄存器可以实现向左(左移)或向右(右移)移动数据的功能。

2. 应用移位寄存器在数字系统中有广泛的应用。

例如,在串行通信中,移位寄存器可以将并行数据转化为串行数据进行传输;在移位加法器中,移位寄存器可以实现两个二进制数的相加;在移位寄存器阵列中,移位寄存器可以用于存储、处理和传输图像等。

二、计数器的原理与应用计数器是一种能够将输入的时钟信号进行计数并输出的电路。

计数器能够记录输入信号的数量,并根据设定的计数规则输出对应的结果。

1. 原理计数器通常由触发器和逻辑门电路构成。

当计数器接收到时钟信号时,触发器会根据时钟信号的上升沿或下降沿进行状态变换,从而实现计数功能。

计数器可以分为二进制计数器、十进制计数器等,根据不同的计数规则可以实现不同的计数功能。

2. 应用计数器在数字电路中有广泛的应用。

例如,在计算机中,计数器可以用于指示程序执行的步骤;在测量仪器中,计数器可以用于计算输入信号的频率或脉冲个数;在定时器中,计数器可以实现定时功能等。

综上所述,移位寄存器和计数器都是数字电路中重要的组成部分。

移位寄存器可以将输入数据按照一定的规律移位输出,广泛应用于数字系统中;计数器则可以根据输入的时钟信号进行计数输出,实现不同的计数功能。

这两种电路的原理与应用相互关联且互相补充,为数字电路的设计与实现提供了强大的工具与方法。

总之,了解移位寄存器和计数器的原理与应用对于理解和应用数字电路至关重要。

(整理)2移位寄存器及其应用.

(整理)2移位寄存器及其应用.

实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。

二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。

三、实验原理1. 移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

74LS194是一个4位双向移位寄存器,最高时钟脉冲为36MHz,其逻辑符号及引脚排列如图实验7.1所示。

图实验7.1 74 LS194逻辑符号及引脚排列其中:D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1、S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。

74LS194模式控制及状态输出如表实验7.1所示。

2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR端必须正确连接。

3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:表实验7.1 74LS194工作状态表2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR端必须正确连接。

图实验7.2 8位移位寄存器3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:图实验7.3 环形计数器图实验7.3电路是一个有四个有效状态的计数器,这种类型计数器通常称为环形计数器。

《移位寄存器》课件

《移位寄存器》课件

技术挑战与展望
高精度与高稳定性
随着应用需求的不断升级,对移位寄存器的精度和稳定性要求也越来越高。未来的研究将 致力于提高移位寄存器的性能指标,以满足各种高端应用的需求。
低功耗与高能效
在便携式和移动设备中,功耗和能效是至关重要的性能指标。未来的移位寄存器设计将更 加注重节能和能效提升,以延长设备的续航时间和降低运行成本。
硬件描述语言实现
使用Verilog或VHDL等硬件描述语言编写移位寄存器的逻辑 电路,通过仿真和综合工具生成可编程逻辑门阵列(FPGA) 或专用集成电路(ASIC)的配置文件。
集成电路实现
将移位寄存器的逻辑电路直接集成在一片集成电路(IC)中 ,通过外部接口与其它电路或系统连接。
基于软件的实现方式
ASIC实现
将移位寄存器的逻辑电路定制集成到专用集成电路(ASIC)中,通过硬件实现移位寄 存器的功能。ASIC具有高性能和低功耗的特点,但开发周期较长且成本较高。
05 移位寄存器的性能指标与 优化
性能指标
吞吐量
衡量移位寄存器处理数据的能 力,通常以每秒传输的位数( bps)或每秒传输的帧数(fps

02
小型化
随着便携式电子设备的普及,移位寄存器的小型化需求也越来越迫切。
小型化移位寄存器的设计需要综合考虑性能、功耗和集成度等多个因素

03
智能化
智能化是当前电子设备的重要发展方向,移位寄存器也不例外。通过集
成智能算法和传感器,移位寄存器可以实现自适应控制和预测性维护等
功能,提高设备的整体性能和可靠性。
集成化与模块化
集成化和模块化是提高移位寄存器可靠性和可维护性的重要手段。未来的移位寄存器将更 加注重模块化和可扩展性设计,以方便设备的组装和维护。同时,集成化设计也有助于减 小设备体积和重量,满足便携式应用的需求。

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告一、实验目的1.了解移位寄存器的基本原理和工作方式;2.掌握移位寄存器的应用场景和使用方法;3.通过实验验证移位寄存器的功能和性能。

二、实验原理移位寄存器是一种特殊的寄存器,它可以将数据按照一定的规律进行移位操作。

移位操作可以分为左移和右移两种方式,左移是将数据向左移动一定的位数,右移则是将数据向右移动一定的位数。

移位寄存器可以用于数据的移位、数据的存储和数据的转换等多种应用场景。

移位寄存器的基本原理是利用触发器和门电路实现数据的移位操作。

触发器是一种存储器件,可以存储一个二进制位的数据。

门电路则是一种逻辑电路,可以实现数据的逻辑运算。

移位寄存器通常由多个触发器和门电路组成,可以实现多位数据的移位操作。

移位寄存器的工作方式是通过时钟信号来控制数据的移位操作。

当时钟信号为高电平时,移位寄存器开始工作,数据按照一定的规律进行移位操作。

当时钟信号为低电平时,移位寄存器停止工作,数据保持不变。

移位寄存器还可以通过控制输入端和输出端的电平来实现不同的功能。

三、实验内容本次实验主要是通过实验板上的移位寄存器模块,实现数据的移位和存储操作。

具体实验内容如下:1.将实验板上的移位寄存器模块连接到开发板上;2.使用开发板上的按键控制移位寄存器的工作方式,包括左移、右移、存储和清零等操作;3.使用示波器观察移位寄存器的时钟信号和数据输出信号,验证移位寄存器的工作状态和性能。

四、实验步骤1.将实验板上的移位寄存器模块连接到开发板上,按照连接图进行连接;2.使用开发板上的按键控制移位寄存器的工作方式,具体操作如下:(1)按下左移按键,移位寄存器开始向左移动数据;(2)按下右移按键,移位寄存器开始向右移动数据;(3)按下存储按键,移位寄存器将当前数据存储到寄存器中;(4)按下清零按键,移位寄存器将当前数据清零。

3.使用示波器观察移位寄存器的时钟信号和数据输出信号,具体操作如下:(1)将示波器的探头连接到移位寄存器的时钟输入端,观察时钟信号的波形;(2)将示波器的探头连接到移位寄存器的数据输出端,观察数据输出信号的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.3.3移位寄存器及其应用
一、实验目的
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用——实现数据的串行、并行转换和构成环形计数器。

二、实验原理
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,
如图10-2所示,把输出端 Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表7-29所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图7-52 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。


图 7-52 环形计数器
(2)实现数据串、并行转换
第一串行/并行转换器串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。

图10-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

电路中S0端接高电平1,S1受Q7控制,二片寄存器连接成串行输入右移工作模式。

Q7是转换结束标志。

当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式,当Q7=0时,S1=1,有S1S0=10,则串行送数结束,标志着串行输入的数据已
图10-3 七位串行 / 并行转换器
串行/并行转换的具体过程如下:
转换前,R C端加低电平,使1、2两片寄存器的内容清0,此时S1S0=11,寄存器执行并行输入工作方式。

当第一个CP脉冲到来后,寄存器的输出状态Q0~Q7为01111111,与此同时S1S0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的S R端加入。

随着CP 脉冲的依次加入,输出状态的变化可列成表10-3所示。

表10-3
由表10-3可见,右移操作七次之后,Q7变为0,S1S0又变为11,说明串行输入结束。

这时,串行输入的数码已经转换成了并行输出了。

当再来一个CP脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。

第二,并行/串行转换器,并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。

图10-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比图10-3多了两只与非门G1和G2,电路工作方式同样为右移。

图10-4 七位并行 / 串行转换器
寄存器清“0”后,加一个转换起动信号(负脉冲或低电平)。

此时,由于方式控制S1S0为11,转换电路执行并行输入操作。

当第一个CP脉冲到来后,Q0Q1Q2Q3Q4Q5Q6Q7的状态为
0D1D2D3D4D5D6D7,并行输入数码存入寄存器。

从而使得G1输出为1,G2输出为0,结果,S1S2变为01,转换电路随着CP脉冲的加入,开始执行右移串行输出,随着CP脉冲的依次加入,输出状态依次右移,待右移操作七次后,Q0~Q6的状态都为高电平1,与非门G1输出为低电平,G2门输出为高电平,S1S2又变为11,表示并/串行转换结束,且为第二次并行输入创造了条件。

转换过程如表10-4所示。

表10-4
移位寄存器用级连的方法来扩展位数。

三、实验设备及器件
1、+5V直流电源
2、单次脉冲源
3、逻辑电平开关
4、逻辑电平显示器
5、 CC40194×2(74LS194) CC4011(74LS00) CC4068(74LS30)
四、实验内容
1 、测试CC40194(或74LS194)的逻辑功能
按图10-5接线,R C、S1、S0、S L、
S R、D0、D1、D2、D3分别接至逻辑开关的
输出插口;Q0、Q1、Q2、Q3接至逻辑电平
显示输入插口。

CP端接单次脉冲源。


表10-5所规定的输入状态,逐项进行测
试。

图10-5 CC40194逻辑功能测试
(1)清除:令R=0,其它输入均为任意态,这时寄存器输出Q0、Q1、Q2、
Q3应均为0。

清除后,置R C=1 。

(2)送数:令R C=S1=S0=1 ,送入任意4位二进制数,如D0D1D2D3=abcd,加CP脉冲,观察CP=0 、CP由0→1、CP由1→0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP脉冲的上升沿。

(2)右移:清零后,令R C=1,S1=0,S0=1,由右移输入端S R送入二进
制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。

(4) 左移:先清零或予置,再令R C=1,S1=1,S0=0,由左移输入端S L送入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之。

(5) 保持:寄存器予置任意4位二进制数码abcd,令R C=1,S1=S0=0,加CP脉冲,观察寄存器输出状态,记录之。

2、环形计数器
自拟实验线路用并行送数法予置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表10-6中。

表10-5
表10-6
3、
(1)串行输入、并行输出
按图10-3接线,进行右移串入、并出实验,串入数码自定;改接线路用左移方式实现并行输出。

自拟表格,记录之。

(2)并行输入、串行输出
按图10-4接线,进行右移并入、串出实验,并入数码自定。

再改接线路用左移方式实现串行输出。

自拟表格,记录之。

五、实验预习要求
1、复习有关寄存器及串行、并行转换器有关内容。

2、查阅CC40194、CC4011及CC4068 逻辑线路。

熟悉其逻辑功能及引脚排列。

3、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?
4、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?
5、若进行循环左移,图10-4接线应如何改接?
6、画出用两片CC40194构成的七位左移串/并行转换器线路。

7、画出用两片CC40194构成的七位左移并/串行转换器线路。

六、实验报告
1、分析表10-4的实验结果,总结移位寄存器CC40194的逻辑功能并写入表格功能总结一栏中。

1、根据实验内容2 的结果,画出4位环形计数器的状态转换图及波形图。

2、分析串/并、并/串转换器所得结果的正确性。

相关文档
最新文档