初一数学下学期第一次月考试卷及答案
七年级下第一次月考数学试卷参考答案

七年级下第一次月考数学试卷参考答案一.单选题(每小题3分,9小题,共27分)1.A2.D3.C4.C5.B6.D7.D8.A9.D二.填空题(每小题3分,6小题,共18分)10.115°11.3012.7213.-514.±815.28三.解答题(8小题,共55分)16、(2小题,每题4分,共8分)(1)解:原式=-1+4+1=4(4分)(2)解:原式=a2-4-a2+a=a-4.(4分)17、(2小题,每题4分,共8分)(1)解:原式=x3﹣2x﹣x3﹣2x=﹣4x(4分)(2)解:原式=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29(4分)18、(6分)解:因为2a2+3a-6=0,所以2a2+3a=6,(2分)原式=6a2+3a-4a2+1=2a2+3a+1=6+1=7.(4分)19、(5分)解:OA∥BC,OB∥AC.(1分)理由:∵∠1=50°,∠2=50°∴∠1=∠2∴OB∥AC(同位角相等,两直线平行)(2分)∵∠2=50°,∠3=130°∴∠2+∠3=180°∴OA∥BC(同旁内角互补,两直线平行)(2分)括号里的理由,没填不扣分,证明过程不是唯一的,证对即可,后面的证明题是同样的。
20、(6分)解:∵AB⊥BC,BC⊥CD(已知)∴∠ABC=∠DCB=90°(垂直的定义)(写出90°得2分)∵∠1=∠2(已知)∴∠CBE=∠BCF(等角的余角相等)(证出角相等得2分)∴BE∥CF(内错角相等,两直线平行)(证出平行得2分)21、(6分)解:BC∥EF(1分)理由:∵∠A=∠1(已知)∴AC∥DF(同位角相等,两直线平行)(2分)∴∠C=∠CGF(两直线平行,内错角相等)∵∠C=∠F(已知)∴∠F=∠CGF(等量代换)(2分)∴BC∥EF(内错角相等,两直线平行)(1分)22、(8分)解:∵(x+y)2=25,(x-y)2=81,∴(x+y)2+(x-y)2=2x2+2y2=106,则x2+y2=53(4分,方法不唯一,能算对就给分)∴(x+y)2-(x-y)2=4xy=-56,则xy=-14(4分,方法不唯一,能算对就给分)23、(8分)解:(1)a2+3ab+2b2(2分)(2)①(a+b+c)2=a2+b2+c2+2(ab+bc+ac)或(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2分)写一个即可②∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+bc+ac)=121-76=45.(4分)。
七年级下第一次月考数学试卷及答案

七年级数学第一次月考试卷一、选择题(每小题3分,共30分)3.(3分)(2012•云南)若,,则a+b的值为()B4.(3分)计算:=()B36+12a)cm D9.(3分)已知,则下列等式成立的有()①;②;③;④.10.(3分)(2009•广东一模)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a >b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()二、填空题(每小题3分,共24分)11.有一道计算题:(﹣a4)2,李老师发现全班有以下四种解法,①(﹣a4)2=(﹣a4)(﹣a4)=a4•a4=a8;②(﹣a4)2=﹣a4×2=﹣a8;③(﹣a4)2=(﹣a)4×2=(﹣a)8=a8;④(﹣a4)2=(﹣1×a4)2=(﹣1)2•(a4)2=a8;你认为其中完全正确的是(填序号)_________.12.若(a m+1b n+2)•(a2n﹣1b2m)=a3b5,则m+n的值是_________.13.如果单项式﹣4x2a y2与是同类项,则这两个单项式的积为_________.14.已知长方体长为4×102毫米,宽为3×102毫米,高为2×102毫米,这个长方体的体积是_________立方毫米.15.(2010•贺州)已知10m=2,10n=3,则103m+2n=_________.16.若m+4n﹣2=0,则3m•81n=_________.17.已知2x+y=1,代数式(y+1)2﹣(y2﹣4x)的值为_________.18.如图所示,正方形ABCD和正方形CEFG的边长分别为a、b,如果a+b=17,ab=60,那么阴影部分的面积是_________.三、解答题(共66分)19.(12分)计算.(1)(a﹣2)2+4(a﹣1)(2)(a+2)(a+2)﹣a(a+1)(3)(a﹣b﹣1)(a+b﹣1)(4)(x+2y)2(x﹣2y)20.(6分)解下列方程(组).(x+3)2﹣2(x﹣3)(x+2)+(x﹣2)2=521.(15分)化简,求值.(1)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4;(2)已知210=a2=4b,化简,并求值.22.(5分)已知x 3m=4,y 3n=5,求:(x 2m)3+(y n)3﹣x 2m y n•x 4m•y 2n的值.24.(8分)(1),多项式a 2+b 2﹣4a+6b+13=0求a+b 值.(2)已知(x+y )2=25,(x ﹣y )2=9,求xy 与x 2+y 2的值.25.(6分)观察下列等式:32﹣12=8=8×1;52﹣32=16=8×2;72﹣52=24=8×3;92﹣72=32=8×4…这些等式反映了正整数的某种规律.(1)设n 为正整数,试用含m 的式子,表示你发现的规律; (2)验证你发现规律的正确性,并用文字归纳出这个规律.26.1.(8分)小明将一个底为正方形,高为m 的无盖盒子展开,如图①所示,测得其边长为n ,(1)请你计算无盖纸盒的表面展开图的面积S 1(即图中阴影部分的面积).(2)将阴影部分拼成一个长方形如图②所示,这个长方形的长和宽分别是多少?面积S 2是多少?(3)比较(1)、(2)的结果,你得出什么结论?2.(2007成都)下列运算正确的是( ) A .321x x -=B .22122xx --=-C .236()a a a -=·D .236()a a -=-3.(2007南昌)下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+C .221a a -- D .21a +4.(2008襄樊)下列运算正确的是( )A .x 3·x 4=x 12B .(-6x 6)÷(-2x 2)=3x 3C .2a-3a=-aD .(x-2)2=x 2-4 5.(2008湖州)计算(-x )2·x 3所得的结果是( )A .x 5B .-x 5C .x 6D .-x 66.(2008南京)计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 2b 3D .a 3b 6 7.(2008广东)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 8.(2008山东临沂)下列各式计算正确的是( ) A . 53232a a a =+ B . ()()xy xy xy 332=÷ C . ()53282b b = D . 65632x x x =∙9.(2007滨州)322313()()3x y xy ⎛⎫÷=⎪⎝⎭. 10.(2007河北)若20a a +=,则2007222++a a 的值为 .11.(2007武汉)一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为___________米.13.(2008南平)先化简,再求值:()()(2)a b a b b b +-+-,其中1a =-,1b =.14.(2008乌鲁木齐)若0a >且2x a =,3y a =,则x y a -的值为( ) A .1-B .1C .23D .3215(2007云南)已知x+y = –5,xy = 6,则22x y +的值是( ) A . 1 B . 13C . 17D . 2516.(2007梅州)定义a bcdad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+6=,x = .17.(2008聊城)计算:23283(2)2a b a b----÷= .18(2008盐城)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.ab bbaaC B A 第7题图图参考答案一选择1C 2C 3B 4B 5B 6A 7A 8C 9C 10A二填空11,(1)(3)(4)12 .1013 -14. 2.415. 7216. 917 .318. 54.5三解答题计算19.3a+4 .20 .x=-521 -122 -5923. a+b=-124略25 1略 2 两个连续奇数平方差是8的倍数。
七年级下期第一次月考(答案) (1)

七年级下期第一次月考数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.在3,-2,0,-5这四个数中,最小的数是(A)A.-5B.-2C.0D.32.如图,∠1和∠2是一对(B)A.同位角B.内错角C.同旁内角D.对顶角3.计算(a3)2的结果是(C)第2题图A.a B.a5C.a6D.a94.下列各式中能用平方差公式计算的是(D)A.(-x+y)(x-y)B.(x-y)(y-x)C.(x+y)(x-2y)D.(x+y)(-x+y) 5.下列计算正确的是(D)A.(a-b)2=a2-b2 C.(-a-b)2=a2-2ab+b2B.(a+b)2=a2+b2 D.(a-b)2=a2-2ab+b26.若3n=2,3m=5,则32m-n的值是(A)A.252B.4C.-15D.57.若x2+kx+25是一个完全平方式,则k=(B)A.10B.±10C.5D.±58.已知xy=-3,x+y=-4,则x2+3xy+y2值为(C)A.1B.7C.13D.319.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是(D)A.第一次向右拐40°,第二次向左拐140°;B.第一次向右拐40°,第二次向右拐140°;C.第一次向左拐40°,第二次向左拐140°;D.第一次向左拐40°,第二次向右拐40°;10.下列图形中,能由∠1=∠2得到AB//CD的是(D)第10题图11.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用x,y(x>y)表示长方形的长和宽,则下列关系式中不正确的是(C)A.x+y=14B.x-y=2C.x2+y2=196D.xy=48xy第11题图12.如图所示,将长方形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B落在AD边上,折痕与BC边交于点E (如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F (如图③);(3)将纸片展平,那么∠AFE的度数为(A)第12题图A.67.5°B.70°C.64.5°D.72°二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填( )2013 ⨯ (π- 3)0 - ⎪19.计算:-32 + -3 +-1在题后的横线上.13.中新社北京 1 月 13 日电,北京市气象台发布北京气象史上首个雾霾橙色预警,北京已连续 3 天空气质量达严重污染中的“最高级”——六级污染.雾霾(PM2.5)含有大量的有毒有害物质,对人体健康有很大的危害,被称为大气元凶.雾霾的直径大约是0.000 002 5m ,把数据 0.000 002 5 用科学记数法表示为____ 2.5 ⨯10-6 ______14.如果一个角的补角是 150°,那么这个角的余角的度数是60度;15.如图,已知 AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠ABC =____60 __度;EDC16.已知 (2 x - a)(5x + 2) = 10 x 2 - 6 x + b ,则 b =__-4__;17.如图, AB / / E D, ∠CAB = 135 °,∠ACD = 75 °,则 ∠CDE =____30___度;A第 15 题图B第 17 题图18.已知 x 2 - 3xy + 3 = 0, y 2 + xy - 7 = 0, 则x - y 的值为___ ±2.三、解答题:(本大题共 2 个小题,每小题 7 分,共 14 分)解答时每小题必须给出必要的演算过程或推理步骤.⎛ 1 ⎫-1⎝ 2 ⎭解:原式= -9 + 3 +(-1)⨯1 - 2 ……………………………….(5 分)= -9 + 3 - 1 - 2 ……………………………………….(6 分)= -9 …………………………………………………….(7 分)21.计算:(1)5a5⋅(-a)2--a2)⋅(-2a)20.如图,已知:AB//D E,∠1=∠2,直线AE与DC平行吗?请说明理由.答:AE//D C…………………………………………….(1分)理由如下:AB//D E(已知)∴∠1=∠3(两直线平行,内错角相等)……….(3分)∠1=∠2(已知)∴∠2=∠3(等量代换)…………………………………….(5分)∴AE=DC(内错角相等,两直线平行)……………….(7分)四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.3解:原式=5a5⋅a2-(-a6)⋅(-2a)………………………….(2分)=5a7-2a7………………………………………….(4分)=3a7……………………………………………….(5分)(2)(2x2y)3•(-3xy2)÷(12x4y5)解:原式=8x6y3⋅(-3xy2)÷(12x4y5)…………………….(1分) =-24x7y5÷(12x4y5)…………………………….(3分)=-2x3…………………………………………….(5分)证明:∵AD⊥BC,EF⊥BC(已知)F22.先化简,后求值:(x-3)2-(x+2)(x-2)-(x-2)(3-x),其中x=2.解:原式=x2-6x+9-(x2-4)-(3x-x2-6+2x)…………….(6分) =x2-6x+9-x2+4-3x+x2+6-2x………………….(7分)=x2-11x+19…………………………………………….(8分)当x=2时原式=22-11⨯2+19………………………………………….(9分) =4-22+19=1………………………………………………………….(10分)23.完成下列填空.如右图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.B E1A2D第23题图GC∴∠EFB=∠ADB=90°(垂直的定义)…………………….(1分)∴EF∥AD….(3分)(同位角相等,两直线平行)….(5分)∴∠1=∠BAD(两直线平行,同位角相等)…………………….(7分)又∵∠1=∠2(已知)∴∠BAD=∠2(等量代换)……………………….(8分)∴DG∥BA.(内错角相等,两直线平行)…………….(10分) 24.王老师在茶园购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.x ⎪ + 2 (6 - x )+ ⨯ x⎛根据图中的数据(单位:m ),解答下列问题: (1)用含 x 的代数式表示地面总面积;(4 分)(2)已知客厅面积比厨房面积多 12m 2.若铺 1m 2 地砖的平均费用为 100 元,那么铺地砖的总费用为多少元?(6 分)解:(1)由已知,得:总面积:地面总面积: 6 x + x 2 + ⎝2 ⎫3 2 3 ⎭ 2 32= ( x 2 + 7 x + 12)(m 2 ) …….(4 分)3(2)由于客厅面积比厨房面积多 12m 2:∴ 6x - 2 (6 - x ) = 12解得:∴ x = 3 ………………….(7 分)当 x = 3 时2地面总面积: ⨯ 32 + 7 ⨯ 3 + 123= 6 + 21 + 12= 39 (m 2)…………………………………….(9 分)铺 1m 2 地砖的平均费用为 100 元∴铺地砖的总费用为: 39 ⨯100 = 3900(元) ………….(10 分)五、解答题:(本大题共 2 个小题,每小题 12 分,共 24 分)解答时每小题必须给出必要(2 a = 1 ,求: a + ②解:由已知得: (a + )2 = (a - )2+ 4 ⨯ a ⨯ 2a > 0a = 32 = 2的演算过程或推理步骤.25.图①是一个长为 2m 、宽为 2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.nnmmmnn m nm①m n(1)请用两种不同的方法求图②中阴影部分的面积. 2 分) ②方法 1:(m - n)2方法 2:(m + n)2 - 4mn(2)观察图②请你写出下列三个代数式:(a + b )2 ,( a - b )2 , ab 之间的等量关系.(m - n)2 = (m + n)2 - 4mn;(2 分)(3)根据(2)题中的等量关系,解决如下问题:① 已知: a - b = 5, a b = -6, 求:(a + b ) 的值;(4 分)② 已知: a > 0, a - 2 2a 的值;(4 分)①解:由已知得:(a + b ) (a - b )+ 4ab= 52 + 4 ⨯ (-6)= 12 2 a a a= 12 + 4 ⨯ 2 = 9a > 0,∴ a + 2∴ a + 226.如图:已知AB//CD,EF⊥AB于点O,∠FGC=125°,求∠EFG的度数.下面提供三种思路:(1)过点F作FH//AB;(2)延长EF交CD于M;(3)延长GF交AB于K.请你利用三个思路中的两个思路,将图形补充完整,求∠EFG的度数.解(一):利用思路(1)过点F作FH//AB…….(1分) EF⊥AB∴∠B OF=900………………….(2分)FH//AB∴∠H FO=∠BOF=900……….(3分)AB//CD∴FH//CD……………………….(4分)∠FGC+∠1=1800∠FGC=1250∴∠1=550……………………………….(5分)∴∠F EG=∠1+∠HFO=550+900=1450……………………….(6分)解(二):利用思路(2)延长EF交CD于M…….(1分)EF⊥AB∴∠B OF=900………………………….(2分)CD//AB∴∠C MF=∠BOF=900……………….(3分)∠FGC=1250∴∠1=550……………………………….(4分)∠1+∠2+∠GMF=1800∴550+∠2+900=1800∠2=35……………….(5分)∠GFO+∠2=1800∴∠G FO=1450……….(6分)解(二):利用思路(3)延长GF交AB于K…….(1分)EF⊥AB∴∠B OF=900……………….(2分)CD//AB∴∠1+∠CGF=1800………….(3分)∠FGC=1250∴∠1=550……………………….(4分)∠1+∠2+∠BOF=1800∴550+∠2+900=1800∠2=35……………………….(5分)∠GFO+∠2=1800∴∠G FO=1450……………….(6分)。
人教版数学七年级下册第一次月考试卷含答案解析

七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
最新七年级下学期第一次月考数学试卷(含答案)

七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
最新】人教版七年级下册数学第一次月考试题及答案

最新】人教版七年级下册数学第一次月考试题及答案七年级第一次月考数学试题一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2=145°,∠3=35°。
2.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,DC/BD=6.4,AD=3.6,AC=6,点A到BC 的距离是2.4,点A,B两点间的距离是8.4.3.把命题“平行于同一条直线的两条直线平行”,改写成“如果两条直线在同一条直线上,那么它们平行”的形式为。
4.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=50°。
5.如图,已知直线a∥b,∠4=40°,则∠2=140°。
6.如图,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=125°,则∠MND=55°。
7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=100°。
8.如图,AB∥CD,BC∥DE,则∠B与∠D的关系是对应角相等。
9.XXX将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90°。
10.如图,DH∥EG∥BC,且DC∥EF,则图中与∠1相等的角有两个,分别是∠3和∠4.二、单项选择题(每小题3分,共18分)11.下列各图中,∠1和∠2是对顶角的是(B)。
12.如图,点A到直线CD的距离是指哪一条线段的长(D)。
13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是(B)。
14.如图,下列条件中能判定AB∥CD的是(C)。
15.在如图所示的长方体中,和棱AB平行的梭有(C)。
16.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:1=∠2(已知)。
七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
七年级下学期第一次月考数学试卷(含答案)

七年级下学期第一次月考数学试卷一、选择题:(每小题2分,共24分)1. 下列方程中,属于一元一次方程的是( ) A .x =0 B .112-+xx C .x -3y =5 D .m 2+2m +3=0 2. 方程错误!未找到引用源。
有一组解是错误!未找到引用源。
,则错误!未找到引用源。
的值是( )A .1B .-1C .0D .2 3. 若x =2是关于x 的方程2x +a =3的解,则a 的值是( ) A .1 B .-1 C .5 D .7 4. 方程x+y =3的正整数解的个数是( )A .1B .2C .3D .4 5. 在以下各对数中,是方程⎩⎨⎧=+=-51y x y x 的解的是( )A .⎩⎨⎧==32y xB .⎩⎨⎧-==32y xC .⎩⎨⎧=-=23y xD .⎩⎨⎧==23y x6. 已知代数式ba ayx +3与235y x -是同类项,则b a -的值是( )A .1B .2C .3D .4 7. 下列方程中解是3=x 的方程是( )A .21=+xB .21=-xC .13=xD .63=x 8. 下列变形正确的是( )A .如果2x =5,那么52=x ; B .如果2x -3=7,那么2x =7+3; C .如果-3(x -2)=x +1,那么-3x -6=x +1; D .如果1612=--x x ,那么113=--x x . 9. 若方程a x 536+=与方程1152=+x 的解相同,则=a ( )A .2B .-2C .3D .-3 10.一个饲养场中,鸡与猪的头数和为90,鸡与猪的腿数和为320,设鸡为x 只,猪为y 头,则列方程组为( )A .⎩⎨⎧=+=+9024320y x y x B .⎩⎨⎧=+=+3204290y x y xC .⎩⎨⎧=+=+9042320y x y x D .⎩⎨⎧=+=+3202490y x y x11.如图,由8个大小一样的小长方形组成的大长方形的周长为46cm ,则大长方形的面积是( )A .120cm 2B .160cm 2C .180cm 2D .200cm 212.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是( )A .8B .7C .6D .5二、填空题:(每小题3分,共24分)13.请你构造一个解为2=x 的一元一次方程,可以是 . 14.方程1121=-x 的解是 . 15.当=m 时,代数式1-m 与42+m 互为相反数. 16.若0)3(2=-++y y x ,则=-y x . 17.代数式2-x 比3大5,则x 的值为________.18.某商品按定价的八折出售,售价为14.4元,则原定价为 元. 19.去年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91, 那么李老师是_________号回家的. 20.若方程组⎩⎨⎧=+=+122y x my x 的解满足x -y =5,则m 的值为 .三、解答题:21.解下列方程:(4×4分=16分)(1)x x -=-33 (2)5)2()1(2=---x x 解: 解: (3)x x =+132 (4)1322=--x x 解: 解:22.(2×5分)请用两种方法解方程组⎩⎨⎧=+=-425y x y x解: 解:23.(8分)如图,在3×3的方格内,填写了一些代数式和数.(1)在图(3)中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图(4)中的方格内. 解:2-34y图(3)3 2xy 2 -3图(4)324.已知⎩⎨⎧-==23y x 是方程组⎩⎨⎧=-=+15by ax by ax 的解,求a 2014+b 2015的值.(6分)解:25.(6分)列方程(组)解应用题:七年级3班在召开期末总结表彰会前,班主任安排班长小颖去商店买奖品,下面是小颖与售货员的对话:小颖:阿姨,您好!售货员:同学,你好,想买点什么?小颖:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见! 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗? 解:26.(6分)如图,在长方形ABCD 中,AB =12厘米,BC =6厘米.点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间,那么: (1)如图1,当t 为何值时,△QAP 为等腰直角三角形? (2)如图2,当t 为何值时,△QAB 的面积等长方形ABCD 的面积的41? (3)如图3,P 、Q 到达B 、A 后继续运动,P 点到达C 点后都停止运动.当t 为何值时,线段AQ 的长等于线段CP 的长的一半. 解:(1)(2)(3)图1ABP图2ABP 图3ABP Q参 考 答 案一、选择题:(每小题2分,共24分)1~4题:AABB 5~8题: DDBB 9~12题: CBAD二、填空题:(每小题3分,共24分)13. 略 14. x =4 15. -1 16. -617. 10 18. 18 19. 16 20. -4三、解答题:21. (1) x =3 (2)x =3 (3) x =3 (4)x =2 22.⎩⎨⎧-==23y x23. ⎩⎨⎧=-=11y x24. ⎩⎨⎧-==11b a a 2014+b 2015=025. 解:设钢笔每支x 元,笔记本每支y 元,根据题意,得错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年七年级数学第一次月考模拟考试(考试时间100分钟 总分150分)一、选择题(每小题4分,共48分) 1.如图,下列图案可能通过平移得到 的是( )2.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( )A.65°B.55°C.45°D.35°3.下列说法正确的是( )A. 81的算术平方根是9B. 81的平方根是-9C. -81的平方根是9D. 49的算术平方根是±7 4.下列实数1,3π,78-,0,2, 3.15-,9,33中,无理数有( ) A. 1个 B.2个 C.3个 D.4个5下列说法中正确的是( )A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和06.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.77.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( )A.c b aB.b a cC.c a bD.a b c8.下列各组数中互为相反数的是( )A. 2-2与(-2)B. 328--与C. 122--与D. 22-||与 9.一个正方形的面积是13,估计它的边长在( ) A.2到3之间 B. 3到4之间 C. 4到5之间D.5到6之间 10.如图所示,AB ∥CD ,∠α的度数为( )A.75°B.80°C.85°D.9511. 27-的立方根与81的平方根之和为( )A.0B. 6C. 0或-6D. 0或6 12.下列图形中,由AB ∥CD ,能使∠1=∠2成立的是( )13.如右图,下列能判定AB ∥CD 的条件有( )个. A B C DA B C D 第2题图第10题图 54D3E 21C B A (13题图)(1) ︒=∠+∠180BCD B ; (2)21∠=∠;(3) 43∠=∠; (4) 5∠=∠B .A .1B .2C .3D .4 14.如图,与∠1互为同旁内角的角共有( )个.A .1B .2C .3D .4 15.一个人从点A 出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么 ∠ABC 等于( )A.75°B.105°C.45°D.135°16.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是( )A. 22x +B. 2x +C. 22x -D. 22x +17.下列说法正确的个数是( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a ∥b ,b ∥c ,则a ∥c 。
A.1个B.2个C.3个D.4个18.下列说法中正确的是( ). A .在同一平面内,两条直线的位置只有两种:相交和垂直.B .有且只有一条直线垂直于已知直线.C .如果两条直线都与第三条直线平行,那么这两条直线也互相平行.D .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.19.代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 1个B 、2个C 、3个D 、4个20.若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、 21 C2 D 、不能确定 21.下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 无理数是无限不循环小数22、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37(14题图)二、填空题(每小题4分,共24分)1、若2)2(1-+-n m =0,则m =________,n =_________。
2、的平方根是 ,121的算术平方根是 。
绝对值小于π的整数有_______。
ππ-+-43= __________。
3、比较大小:32 25。
若 a a -=2,则a______0。
4、如图,已知B 、C 、E 在同一条直线上,且CD ∥AB ,若∠A=105°,∠B =40°,则∠ACE= 。
5、如图,AB ∥CD ,BC ∥DE ,若∠B=50°,则∠D 的度数是 。
6、.用“×”定义新运算:对于任意实数a 、b ,都有21a b b ⊗=+,例如:2744117⊗=+=,那么20153⊗= ;当m 为实数时,(2)m m ⊗⊗= 。
7、如图,一个含有30°角的直角三角形的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2= 。
8、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG=55°,则∠1=_______,∠2=_______.9、设a 是大于1的实数,若 32,312,++a a a 在数轴上对应的点分别记作A 、B 、C ,则A 、B 、C 三点在数轴上从左至右的顺序是 .三、解答题。
(共78分)1、(10分)计算。
(1)3-)216(21)22(273--++- (2)331272⨯+⨯3232(-2)(-4)(-4)(-)- (3)23)4(27-+-ππ (4)631226---+- 2、(10分)求x 。
(1)16)1(252=-x (2)33(2)810x +-=3、(8分)分别根据已知条件进行推理,得出结论,并说明理由。
(1)∵AB ∥CD (已知),∴∠ =∠ ,∠ =∠( )(2)∵AD ∥BC (已知),∴∠ =∠ ,∠ =∠ 。
( )第15题图 第16题图第18题图(18题图) B A C D E F G M N 12(3)∵AD ∥BC (已知),∴∠BAD+∠ =180° ( ) ∵AB ∥CD (已知), ∴∠BCD+∠ =180°( )∴∠ =∠ (同角的补角相等)。
4、(8分)如图所示,已知∠1=40°,OE ⊥CD,OF ⊥AB,求∠BOE 的度数。
5、(10分)如图,∠1=100°,∠2=100°,∠3=120°,求∠4的度数。
6、(10分)已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由。
7、(10分)画图并回答:(1)如图所示,点P 在∠AOC 的边OA 上。
①过点P 画OA 的垂线交OC 于B.②画点P 到OB 的垂线PM 交OB 于G.(2)指出上述作图中哪一条线段的长度表示P 到OB 边的距离。
(3)指出上图中与∠O 互余的角。
8、(12分)如图,已知直线1l ∥2l ,直线3l 和直线1l 、2l 交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化。
若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?9、(7分)观察:52252458522=⨯==-,即52252-2=1033103910271033=⨯==-,即10331033=-猜想 2655- 等于什么,并通过计算验证你的猜想. 第24题图第26题第235 第22题1答案:D B A A B C C C D B13.+414.<15.145°16.130°17.10 26 18. 115°19 -22326.第六章实数(2)一、选择题(每小题3分,共30分)1.下列各式中无意义的是( )A. 61- B. 21-)( C.12+a D.222-+-x x 2.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③94的平方根是32 ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个2.下列说法中正确的是( )B.立方根是它本身的数只有1和0 B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.641的立方根是( ) A.21± B.41± C.41 D.21 5.现有四个无理数5,6,7,8,其中在实数2+1 与3+1 之间的有( ) A.1个 B.2个 C.3个 D.4个6.实数7- ,-2,-3的大小关系是( )A. 237---B. 273---C. 372---D.723---7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.78.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( )B.c b a B.b a cC.c a bD.a b c9.已知x 是169的平方根,且232x y x =+,则y 的值是( )A.11 B .±11 C. ±15 D.65或3143 10.大于52-且小于23的整数有( )A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)11. 3-绝对值是 ,3- 的相反数是 .12. 81的平方根是 ,364 的平方根是 ,-343的立方根是 ,256的平方根是 .13. 比较大小:(1)10 π;(2) 33 2;(3)101 101;(4)14.当 时,3345223+-+++-x x x 有意义。
15.已知212+++b a =0,则 ab = . 16.最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 ,不超过380-的最大整数是 .17.已知 ,3,312==b a 且0 ab ,则 b a +的值为 。
18.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .19.设a 是大于1的实数,若 312,32,++a a a 在数轴上对应的点分别记作A 、B 、C ,则A 、B 、C 三点在数轴上从左至右的顺序是 .20.若无理数m 满足14 m ,请写出两个符合条件的无理数 .三、解答题(共40分)21.(8分)计算:(1))(25.08-⨯-; (2)4002254-+ ;(3)32333111)()(-+-+- ; (4)33332734312512581---+-- ;22.(12分)求下列各式中的x 的值:(1) ()9-242=x ; (2)()25122=-x ; (1)()375433-=-x ; (4)()08123=+-x ; 23.(6分)已知实数a 、b 、c 在数轴上的对应点如图所示,化简:c b a c b a a -+-+--24.(7分)若a 、b 、c 是有理数,且满足等式332232+-=++c b a ,试计算()20112010b c a +- 的值。