地球同步卫星原理及用途
地球同步卫星

一.地球同步卫星的发明 二.地球同步卫星通信的原理 三.卫星通信系统的基本组成 四.同步卫星通信的优缺点 五.同步卫星的应用 六.结束
一、地球同步卫星的发明
1954年,科幻作家阿瑟· 克拉克提出通过人造卫星 传递通讯传播的构想。 1957年苏联发射了人类第一颗人造地球卫星。 1960年,贝尔实验室与美国航空航天局联合研制 出“低空通信卫星”,并将其发射上天。 1962年,贝尔实验室将被动式改为主动式,设计 出结构更为复杂、信号可放大和传输的通信卫星 Telstar1。
五、地球同步卫星的应用
同步轨道静止卫星主要用于陆地固定通信, 如电话通信、电视节目的转播等,但也用 于海上移动通信,不过,它不象陆上蜂窝 移动通信那样有那么多的基站,只有卫星 是一座大的基站,移动业务交换中心依然 设在岸上(称为岸站),海上移动终端之 间(即船舶与船舶之间)的通信,需经卫 星两跳后才能实现
以及电源设备等等。
四、地球同步卫星通信的特点
与其它通信手段相比,卫星通信具有许多 优点: 一是电波覆盖面积大,通信距离远,可实 现多址通信。 二是传输频带宽,通信容量大。 三是通信稳定性好、质量高。 卫星通信的成本与距离无关。
同步卫星通信的缺点
设备复杂,存在时延
存在通信盲区。
3 跟踪遥测指令分系统 跟踪遥测指令分系统负责对卫星进行 跟踪测量,控制其准确进入静止轨道上的 指定位置;定期对卫星进行轨道修正和位 置保持
4 地球站
地球站是微波无线电收、发信台
(站),用户通过他们接入卫星线路。主
要包括:天线、发射设备、功率放大器、
接收设备、信道终端设备、跟踪/伺服设备
1 空间分系统
空间分系统即通信卫星,起无线电中继
卫星接收原理和工作图纸

同步卫星地球同步卫星就是在离地面高度为35786万公里的赤道上空的圆形轨道上绕地球运行的人造卫星。
其角速度和地球自转的角速度相同,绕行方向一致,与地球是相对静止的无线电波的传播方式:地波、天波和沿直线传播的波地波沿地球表面附近的空间传播的无线电波叫地波。
地面上有高低不平的山坡和房屋等障物,根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。
地面上的障碍物一般不太大,长波可以很好地绕过它们。
中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领就很差了。
地球是个良导体,地球表面会因地波的传播引起感应电流,因而地波在传播过程中有能量损失。
频率越高,损失的能量越多。
所以无论从衍射的角度看还是从能量损失的角度看,长波、中波和中短波沿地球表面可以传播较远的距离,而短波和微波则不能。
地波的传播比较稳定,不受昼夜变化的影响,而且能够沿着弯曲的地球表面达到地平线以外的地方,所以长波、中波和中短波用来进行无线电广播。
由于地波在传播过程中要不断损失能量,而且频率越高(波长越短)损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。
长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所长波很少用于无线电广播,多用于超远程无线电通信和导航等。
天波依靠电离层的反射来传播的无线电波叫做天波。
什么是电离层呢?地球被厚厚的大气层包围着,在地面上空50千米到几百千米的范围内,大气中一部分气体分子由于受到太阳光的照射而丢失电子,即发生电离,产生带正电的离子和自由电子,这层大气就叫做电离层。
电离层对于不同波长的电磁波表现出不同的特性。
实验证明,波长短于10m的微波能穿过电离层,波长超过3000km的长波,几乎会被电离层全部吸收。
对于中波、中短波、短波,波长越短,电离层对它吸收得越少而反射得越多。
因此,短波最适宜以天波的形式传播,它可以被电离层反射到几千千米以外。
同步卫星的原理及应用

同步卫星的原理及应用1. 原理同步卫星是一种位于地球同一位置上的人造卫星,其运行速度与地球自转速度相同,可以保持与地球上某一特定地点长时间保持相对静止的位置关系。
同步卫星的原理是利用地球自转产生的离心力和引力平衡,从而使卫星能够保持在特定位置上。
1.1 离心力与引力平衡地球的自转会产生离心力,使地球上的物体产生向外的冲力,而地球的引力则使物体产生向内的牵引力。
当物体位于地球上某一特定纬度时,离心力与引力能够达到平衡,使物体保持相对静止的位置关系。
1.2 平衡轨道为了使卫星能够保持与地球上某一特定地点相对静止的位置关系,同步卫星需要位于特定的轨道上,这个轨道被称为平衡轨道。
根据卫星所处的纬度,平衡轨道可分为赤道静止轨道(GEO)和极地静止轨道(POLE)两种。
2. 应用同步卫星的特点使其具有广泛的应用领域,下面列举了一些常见的应用。
2.1 通信同步卫星常用于卫星通信系统中,通过与地面设备的通信,实现广播、电视传输、电话通信等功能。
由于同步卫星可以保持长时间相对静止的位置关系,因此可以提供稳定的通信覆盖范围,不受地理位置限制。
2.2 气象观测同步卫星可以搭载气象观测设备,用于监测地球的气象变化。
通过获取大范围的气象数据,可以为天气预报、气候研究等提供重要支持。
同步卫星的相对静止特性使其能够连续观测同一地区,提供更准确的气象信息。
2.3 导航与定位同步卫星常用于全球定位系统(GPS)中,通过卫星信号进行导航和定位。
由于同步卫星可以保持相对静止的位置关系,使得定位系统可以提供持续可靠的导航服务。
2.4 遥感与地球观测同步卫星可以搭载遥感设备,用于获取地球表面的图像和数据。
通过遥感技术,可以实现对地球表面的地质、地形、植被等特征进行监测和研究,为资源管理、环境保护等提供便利。
2.5 科学研究同步卫星在科学研究中有着广泛的应用。
例如,通过同步卫星可以观测太阳黑子、地球磁场变化等天体物理学与地球物理学的现象。
地球同步卫星原理及用途

地球同步卫星即地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星,星距离地球的高度约为36000 km,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即23时56分4 秒,卫星在轨道上的绕行速度约为3.1公里/秒,其运行角速度等于地球自转的角速度。
在地球同步轨道上布设3颗通讯卫星,即可实现除两极外的全球通讯。
同步卫星分类地球同步卫星分为同步轨道静止卫星、倾斜轨道同步卫星和极地轨道同步卫星。
原理及用途当同步轨道卫星轨道面的倾角为零度,即卫星在地球赤道上空运行时,由于运行方向与地球自转方向相同,运行周期又与地球同步,因此,人们从地球上仰望卫星,仿佛悬挂在太空静止不动,所以,把零倾角的同步轨道称作静止轨道,在静止轨道上运行的卫星称作静止卫星。
静止卫星上的天线所辐射的电波,对地球的覆盖区域基本是稳定的,在这个覆盖区内,任何地球站之间可以实现23.56小时不间断通信。
因此,同步轨道静止卫星主要用于陆地固定通信,如电话通信、电视节目的转播等,但也用于海上移动通信,不过,它不象陆上蜂窝移动通信那样有那么多的基站,只有卫星是一座大的基站,移动业务交换中心依然设在岸上(称为岸站),海上移动终端之间(即船舶与船舶之间)的通信,需经卫星两跳后才能实现,例如,如果甲船需同乙船联系,那么,甲船将信号发至卫星,经卫星一跳到达岸站上的移动业务交换中心,然后,岸站又将信号发至卫星,再经卫星一跳到达乙船。
倾斜轨道和极地轨道同步卫星从地球上看是移动的,但却每天可以经过特定的地区,因此,通常用于科研、气象或军事情报的搜集,以及两极地区和高纬度地区的通信。
地球同步卫星常用于通讯、气象、广播电视、导弹预警、数据中继等方面,以实现对同一地区的连续工作。
在遥感应用中,除了气象卫星外,一个突出的应用就是通过地球同步轨道上的4颗跟踪和数据中继卫星系统高速率地传送中低轨道地球观测卫星或航天飞机所获取的地球资源与环境遥感数据。
地球同步卫星

地球同步卫星地球同步卫星指的是在地球轨道上运行的卫星,它们完成从获取数据到传输信息的所有功能。
它们作为一类受到重视的卫星,在科学和军事用途,以及其他实用化目的方面,都分别拥有重要作用。
地球同步卫星经常被称为同步轨道卫星,它们可以沿着地球轨道转动,保持距离地球大约35789千米和24小时的轨道周期,从而可以获得一致的地球视野。
它们是由电脑控制的,可以在月球上的一次旋转中,每小时绕地球一周。
它们的轨道特征使地球同步卫星有效地完成所需的工作,并且运行更加可靠。
地球同步卫星的发射是一个复杂的过程,需要妥善的计划和准备,尤其是在动力学上的计算。
如果发射系统不能保持轨道的精确性,整个轨道计划将会失败,而地球同步卫星发射也必须满足准确性和可靠性的要求。
地球同步卫星的用途有许多,主要有监视、测量和通信等,同时也具有政治和军事意义。
首先,地球同步卫星可用于地球资源的监测,可以收集地球表面的多种信息,如陆地表面、山脉、海洋、城市和农耕地等,这些信息能为地球资源管理提供依据。
此外,它们也可以被用来监测气候变化,传输气象信息,以及地震和自然灾害等等。
其次,地球同步卫星可用于通信。
它们能够把声音、视频和数据信息传输到地球上,支持多种通信需求,还可以用于搜索和救援,以及航行定位和航行路径规划等。
最后,地球同步卫星也可被用于政治和军事目的。
地球同步卫星可以用来监视敌方,并进行侦察活动,甚至可以制造“太空眼”,以确保国家的安全。
地球同步卫星的发展及应用,不仅给科学技术带来极大的发展,而且由于它的重要性,为人类的空间活动提供了重要的参考。
它们的发明与发展,推动了科技的进步,使人类实现了跨越性的空间技术,提高了我们的生活水平,使人类有了更多可能性。
因此,地球同步卫星不仅在科学研究方面占据着重要的地位,而且在政治、军事,以及其他实用化应用中,也都有重要作用。
它们的发展将给未来的人类带来更多的机遇和挑战,从而改变我们的生活方式。
地球同步卫星是地球上一种重要的卫星,它可以收集地球资源的各种信息,用于通信和保护,以及政治和军事目的。
同步卫星的原理及发射过程

同步卫星的原理及发射过程
同步卫星的原理是利用地球的自转和卫星的运行轨道相互匹配,使卫星在地球上的某一点上停留不动,与地球自转同步。
这样可以使卫星对地球某一特定区域的监测和通信服务更为准确和稳定。
同步卫星发射过程包括:
1. 确定发射轨道:根据卫星的任务和要求,确定发射的轨道高度、位置和倾角等参数。
2. 制造和组装卫星:在确定好的轨道参数基础上,制造和组装符合要求的卫星。
3. 进行卫星测试:对卫星进行各项测试,确保其各个部件和系统正常工作。
4. 载体运输和组装:选择合适的运输和组装设备,将卫星组装到载体火箭上。
5. 进行发射准备:对火箭和卫星进行系统检查和测试,准备发射。
6. 发射火箭升空:点火发射火箭,使其运动到离地球的大气层足够高的地方。
7. 火箭分离和进入轨道:在合适的高度和速度,火箭分离并将卫星送入事先确定好的轨道。
8. 卫星定位和测试:卫星进入轨道后,对其系统和设备进行定位和测试,确保其正常工作。
9. 将卫星移动到预定位置:按照需要将卫星移动到预定位置,并进行精细调整和测试。
10. 进入工作状态:卫星到达预定位置并进入工作状态,为监测、通讯、导航等服务提供支持。
卫星接收原理和工作图纸

同步卫星地球同步卫星就是在离地面高度为35786 万公里的赤道上空的圆形轨道上绕地球运行的人造卫星。
其角速度和地球自转的角速度相同,绕行方向一致,与地球是相对静止的无线电波的传播方式:地波、天波和沿直线传播的波地波沿地球表面附近的空间传播的无线电波叫地波。
地面上有高低不平的山坡和房屋等障物,根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。
地面上的障碍物一般不太大,长波可以很好地绕过它们。
中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领就很差了。
地球是个良导体,地球表面会因地波的传播引起感应电流,因而地波在传播过程中有能量损失。
频率越高,损失的能量越多。
所以无论从衍射的角度看还是从能量损失的角度看,长波、中波和中短波沿地球表面可以传播较远的距离,而短波和微波则不能。
地波的传播比较稳定,不受昼夜变化的影响,而且能够沿着弯曲的地球表面达到地平线以外的地方,所以长波、中波和中短波用来进行无线电广播。
由于地波在传播过程中要不断损失能量,而且频率越高(波长越短)损失越大,因此中波和中短波的传播距离不大,一般在几百千米围,收音机在这两个波段一般只能收听到本地或邻近省市的电台。
长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所长波很少用于无线电广播,多用于超远程无线电通信和导航等。
天波依靠电离层的反射来传播的无线电波叫做天波。
什么是电离层呢?地球被厚厚的大气层包围着,在地面上空50 千米到几百千米的围,大气中一部分气体分子由于受到太的照射而丢失电子,即发生电离,产生带正电的离子和自由电子,这层大气就叫做电离层。
电离层对于不同波长的电磁波表现出不同的特性。
实验证明,波长短于10m 的微波能穿过电离层,波长超过3000km 的长波,几乎会被电离层全部吸收。
对于中波、中短波、短波,波长越短,电离层对它吸收得越少而反射得越多。
因此,短波最适宜以天波的形式传播,它可以被电离层反射到几千千米以外。
地球同步轨道卫星保持相对静止 原理 向心力 动力学

地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星。
由于与地球的运行的角速度相同,并且高度固定,因此,地球同步卫星相对地球是静止的。
从动力学角度看,地球同步卫星的运行受到两种力的影响:地球的万有引力和向心力。
其中,地球的万有引力是卫星受到的主要力,它使卫星向地球中心运动。
而向心力则是由卫星的运动产生的,它使卫星试图离开地球。
然而,由于地球同步卫星的运行轨道和速度的特殊性质,这两种力达到了平衡。
具体来说,地球同步卫星的轨道半径大于地球半径,所以其线速度比地球表面的线速度小,但它们的角速度相等,这就意味着卫星和地球自转的速度相同。
因此,虽然卫星在不断地绕地球运行,但由于其角速度与地球自转的角速度相同,所以从地球上看,卫星似乎是静止的。
此外,由于地球同步卫星的高度和速度都是固定的,因此它们受到的向心力和地球的万有引力也是平衡的。
这就是为什么地球同步卫星能够保持相对地球静止的原因。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询物理学专业人士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球同步卫星即地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星,星距离地球的高度约为36000 km,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即23时56分4秒,卫星在轨道上的绕行速度约为3.1公里/秒,其运行角速度等于地球自转的角速度。
在地球同步轨道上布设3颗通讯卫星,即可实现除两极外的全球通讯。
同步卫星分类
地球同步卫星分为同步轨道静止卫星、倾斜轨道同步卫星和极地轨道同步卫星。
原理及用途
当同步轨道卫星轨道面的倾角为零度,即卫星在地球赤道上空运行时,由于运行方向与地球自转方向相同,运行周期又与地球同步,因此,人们从地球上仰望卫星,仿佛悬挂在太空静止不动,所以,把零倾角的同步轨道称作静止轨道,在静止轨道上运行的卫星称作静止卫星。
静止卫星上的天线所辐射的电波,对地球的覆盖区域基本是稳定的,在这个覆盖区内,任何地球站之间可以实现23.56小时不间断通信。
因此,同步轨道静止卫星主要用于陆地固定通信,如电话通信、电视节目的转播等,但也用于海上移动通信,不过,它不象陆上蜂窝移动通信那样有那么多的基站,只有卫星是一座大的基站,移动业务交换中心依然设在岸上(称为岸站),海上移动终端之间(即船舶与船舶之间)的通信,需经卫星两
跳后才能实现,例如,如果甲船需同乙船联系,那么,甲船将信号发至卫星,经卫星一跳到达岸站上的移动业务交换中心,然后,岸站又将信号发至卫星,再经卫星一跳到达乙船。
倾斜轨道和极地轨道同步卫星从地球上看是移动的,但却每天可以经过特定的地区,因此,通常用于科研、气象或军事情报的搜集,以及两极地区和高纬度地区的通信。
地球同步卫星常用于通讯、气象、广播电视、导弹预警、数据中继等方面,以实现对同一地区的连续工作。
在遥感应用中,除了气象卫星外,一个突出的应用就是通过地球同步轨道上的4颗跟踪和数据中继卫星系统高速率地传送中低轨道地球观测卫星或航天飞机所获取的地球资源与环境遥感数据。
世界上第一颗地球同步卫星是1964年8月19日美国发射的“辛康”(syncom)3号。
中国于1984年4月8日、1986年2月1日和1988年3月7日分别发射3颗用于通信广播的地球同步卫星。
同步卫星的数据特点
①周期、角速度一定,与地球自转周期(T=23时56分4秒)、角速度相同;
②轨道平面在赤道平面上;
③距离地心的距离一定:h=4.225×10^4km;距离地面的高度为
3.6×10^4km
④环绕速度一定:v=3.08km∕s,环绕方向与地球自转方向相同;
⑤向心加速度大小一定:a=0.23m∕(s^2。