2020届黑龙江省大庆实验中学高三下学期复习考试数学(文)试题(解析版)

合集下载

黑龙江省大庆市2020届高三第三次高考模拟考试数学(文)试题参考答案

黑龙江省大庆市2020届高三第三次高考模拟考试数学(文)试题参考答案

2020年大庆市高三第三次质量检测文科数学参考答案 一、选择题:ABAAC BCABD CD13.1 14.1 15.2116.3520π17.解:(1)Q 四边形ABCD 是矩形,AD AB ⊥ ,又,AF AF AD α⊥∴⊥Q , .............2分AF AB A ⋂=,AD ABF 平面∴⊥,BF 在平面ABF 内,AD BF ∴⊥. .............4分(2) 连结,AC BD 交于点O ,连接OG , ...............6分则OG 是BDF ∆的中位线,//OG DF ,OG 在平面AGC 内,所以//DF AGC 平面. .............8分 (3)ABF DCE F ABCD E FCD F ABCD F ECD V V V V V -----=+=+ ...............10分11134331414332=⨯⨯⨯+⨯⨯⨯⨯=. ...............12分 18(1)因为12n n S a +=-,①当2n ≥时,12n n S a -=-,② .............................2分由①-②得1n n na a a +=-,即12n na a +=, .......................................................4分当1n =时,2124a a =+=,21422a a ==,所以数列{}n a 为等比数列,其首项为12a =,公比为2,所以112n nn a a q -==; ....................6分(2)由(Ⅰ)得,22log 121n n b a n =+=+,所以()2n T n n =+,所以()11111222k T k k k k ⎛⎫==- ⎪++⎝⎭, ............................................8分 所以11111111111...2324112nk kT n n n n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑............10分 31114212n n ⎛⎫=-+ ⎪++⎝⎭.....................12分 19.解:(1)由题意,根据分层抽样的方法,可得n1000=45450,解得n =100, 所以男生人数为:100550551000⨯=人.n =100,男生人数为:55人;....2分 (2)2×2列联表为:...................4分 K 2=100×(45×15−30×10)275×25×45×55=3.030<3.841.所以没有95%的把握认为选择科目与性别有关. ..................6分(3)选择物理与选择历史的女生人数的比为2:1,所以按分层抽样有4人选择物理,设为a ,b ,c ,d ,2人选择历史,设为A ,B , ..............8分 从中选取3人,共有20种选法,可表示为abc,abd, acd,bcd,abA,abB,acA,acB,adA,adB,bcA,bcB,bdA,bdB,cdA,cdB,aAB,bAB,cAB,dAB. ............10分 其中有2人选择历史的有aAB,bAB,cAB,dAB 4种, 故这3人中有2人选择历史的概率为41.205p == ..........12分20 解:(I )设椭圆的方程为,则①, ∵抛物线的焦点为(0, 1), ................1分∴ ② 由①②解得.∴椭圆的标准方程为. ..........................2分 (II)如图,由题意知的斜率存在且不为零,设方程为 (#),将①代入,整理,得分 由得 则 .....................6分(3)方法1:)0(12222>>=+b a b y a x 22==a c e y x 42=1102222=+ba 1 ,222==b a 1222=+y x l l )0)(2(≠-=k x k y 1222=+y x )28(8)12(2222=-+⋅-+k x k x k 0>∆.2102<<k )22,0()0,22(⋃-∈k设、,则 令, 则, 由此可得 ,,.....)1(,且 .......8分 , (2).....)3( 由)1(得:)2()2(21-=-x x λ,......................(*) (*)代入)2(得:22214)2)(1(kx +-=-+λ...........)4( (*)代入)3(得:222212)2(kx +=-λ ...........)5( 由2)4()5(整理得 , ....................10分 即∵ ,∴ ,解得 又∵, ∴,∴OBE 与OBF 面积之比的取值范围是(, 1). ..........12分),(11y x E ),(22y x F ,122812822212221⎪⎪⎩⎪⎪⎨⎧+-=+=+k k x x k k x x OBFOBE S S ∆∆=λBF BE =λ⋅=λ2221--=x x λ10<<λ221214)2()2(k x x +-=-+-22121212124)(2)2()2(kx x x x x x +=++-=-⋅-812)1(22+=+k λλ.21)1(422-+=λλk 2102<<k 2121)1(402<-+<λλ.223223+<<-λ10<<λ1223<<-λ∆∆223-(3)方法2; 设、,则有212<<x x则2221212121--=⨯⨯=x x y OB y OB ,.....(**)......................8分由解的12)21(24,12)21(2422222221+--=+-+=k k k x k k k x 代入(**)得 24241242242222+-+-=-----=k k k λ ..............10分设=t ,因为则20<<t ,所以241++-=t λ,易知此函数为减函数 则1223<<-λ.∴OBE 与OBF 面积之比的取值范围是(, 1)...........12分21.解:(1)当0m =时,()x f x xe =-,()(1)x x x f x e xe x e '=--=-+ ------------------------2分所以(1)2k f e '==-,因为(1)f e =-所以切线方程为2(1)y e e x +=--, 整理得:20ex y e +-= -----------------4分 (2)()4x m x e x -<+,因为0x e >,所以4xx m x e +<+(0x >)恒成立 设4()x x h x x e+=+,则2(4)33()11x x x x x xe x e x e x h x e e e -+----'=+=+= ---------6分 设()3,x s x e x =--则()1x s x e '=-0>(0x >).),(11y x E ),(22y x F OBFOBE S S ∆∆=λ0)28(8)12(2222=-+⋅-+k x k x k 242k -.2102<<k ∆∆223-所以()s x 在(0,)+∞上单调递增,又05.44817.429)23(23<-≈-=e s ,03352945.5335)35(35>--≈--=e s ,所以存在)35,23(0∈x 使得0()0s x =, 当0(0,)x x ∈时,()0s x <,即0)(<'x h ;当0(,)x x ∈+∞时,()0s x >即0)(>'x h .所以()h x 在0(0,)x 上单调递减,0(,)x +∞上单调递增.所以00min 004()()x x h x h x x e +==+.----8分 因为00000()0,30, 3.x x s x e x e x =--=∴=+ 所以000min 000000441()()133x x x h x h x x x x x x e ++==+=+=++++,)35,23(0∈x ------------10分 设311)(+++=x x x g ,当)35,23(∈x 时,0)3(11)(2>+-='x x g ,所以)(x g 在)35,23(上单调递增.则)35()()23(g x g g <<,即342121)(18492<<<<x g .所以3)(20<<x h 因为m Z ∈,所以2m ≤,所以m 的最大值为2. ----------------------12分 22.解(1)曲线C 的普通方程为622=+y x ...............................................2分因为2)3cos(=+πθρ ,所以04sin 3cos =--θρθρ 所以直线l 的直角坐标方程为043=--y x ...................................4分 (2)点P 的坐标为(4,0)设直线m 的参数方程为⎩⎨⎧=+=θθsin cos 4t y t x (t 为参数,θ为倾斜角)..........6分联立直线m 与曲线C 的方程得:010cos 82=++θt t设A 、B 对应的参数分别为2,1t t ,则⎪⎩⎪⎨⎧>-=∆=-=+040cos 6410cos 822121θθt t t t所以34cos 82121==+=+=+θt t t t PB PA ...................................................8分6560,23cos ππθ或的倾斜角为故直线且满足得m >∆±=..............................................................................10分23.解:(1)当1a =-时,()2,1,112,11,2, 1.x f x x x x x x -≤-⎧⎪=+--=-<<⎨⎪≥⎩....................2分由1)(-≥x f ,得21-≥x .故不等式1)(-≥x f 的解集为1,2⎡⎫-+∞⎪⎢⎣⎭.......................4分(2)因为“x R ∀∈,()21f x a <+”为假命题,所以“x R ∃∈,12)(+≥a x f ”为真命题,..........................................................6分 因为1)()1(1)(-=+-+≤+-+=a a x x a x x x f所以1)(max -=a x f ,...............................................................................................8分 则121+≥-a a ,所以22)12()1(+≥-a a ,即220a a +≤,解得02≤≤-a ,即a 的取值范围为[]2,0-...............................10分。

2020届黑龙江省大庆实验中学高三下学期第二次线上测试数学(文)试题(解析版)

2020届黑龙江省大庆实验中学高三下学期第二次线上测试数学(文)试题(解析版)

2020届黑龙江省大庆实验中学高三下学期第二次线上测试数学(文)试题一、单选题1.已知集合{}2,1,0,1,2,3U =--,{}2|30M x x x =-+<,{}1,0,1,2N =-,则集合()U C M N =I ( ) A .{}1- B .{}1,0-C .{}1,2D .{}0,1,2【答案】D【解析】首先解出集合N ,再根据补集、交集的定义即可得出答案 【详解】因为不等式230x x -+<解得3x >或0x <,故{}{}2|30|03M x x x x x x =-+<=<>或,所以{}0,1,2,3U C M =,则(){}0,1,2U C M N =I.故选:D 【点睛】本题主要考查了集合的交集与补集,以及一元二次不等式的解法,属于基础题。

2.设复数z 满足|1|z i i =-+(i 为虚数单位),则复数z =( )A .iB iC .1D .12i --【答案】A【解析】利用复数的代数形式的乘除运算化简,求出数复数z ,即可得到答案. 【详解】复数z 满足|1|z i i =-+,则z i =,所以复数z i =.故选:A. 【点睛】本题考查复数的模、共轭复数的概念,考查运算求解能力.3.设向量a r ,b r 满足22a b ==r r ,且231a b +=r r ,则向量b r 在向量a r 方向上的投影为( ) A .-2 B .-1C .1D .2【答案】B【解析】首先把231a b +=r r 两边同时平方,再根据投影的定义即可求出向量b r 在向量ar 方向上的投影。

【详解】将231a b +=r r 平方得,2241291a a b b +⋅+=r r r r ,即441291a b ⨯+⋅+=r r,则2a b ⋅=-r r ,则向量b r 在向量a r方向上的投影为212b a a⋅-==-r rr .故选:B 【点睛】本题主要考查了向量的模,以及投影,即向量b r 在向量a r方向上的投影为:cos b θ⋅r 。

【精准解析】黑龙江省大庆实验中学2020届高三综合训练(四)数学(文)试题

【精准解析】黑龙江省大庆实验中学2020届高三综合训练(四)数学(文)试题

大庆实验中学2020届高三综合训练(四)数学(文)试题 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.已知复数(1)z i i =⋅-,则||z =( )A.12B.22C. 12【答案】D 【解析】 【分析】由复数的运算法则,求得1z i =+,再结合复数模的计算公式,即可求解. 【详解】由题意,复数(1)1z i i i =⋅-=+,所以22112z =+=故选:D.【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中解答中熟记复数的运算法则和复数模的计算公式是解答的关键,意在考查计算能力,属于容易题. 2.设集合{}2|120A x x x =+-<,{|23}B x x =+<,则A B =( )A. {|7}x x <B. {|23}x x -<C. {|23}x x -<<D.{|43}x x -<<【答案】B 【解析】 【分析】求解一元二次不等式和根式不等式,即可求得集合,A B ,再求交集即可. 【详解】容易得{|43}A x x =-<<,{|27}B x x =-<, 所以{|23}AB x x =-<故选:B.【点睛】本题考查集合交集的运算,属基础题.3.已知01a b <<<,则下列结论正确的是( ) A. a b b b < B. b b a b <C. a b a a <D. a a b a <【答案】B 【解析】 【分析】根据条件对,a b 赋值,令14a =,12b =,计算选项的值即可比较出大小. 【详解】取14a =,12b =,则a a =12b a =,b b =,ab =a b b b <,故排除A ;a b a a >,故排除C ;a a b a >,故排除D ;由幂函数的性质得:b b a b <. 故选:B.【点睛】本题考查不等式比较大小,涉及特殊值法计算,属于基础题. 4.为了得到3()sin 24f x x π⎛⎫=+⎪⎝⎭的图象,可以将()cos2g x x =的图象( ) A. 向右平移4π个单位 B. 向左平移4π个单位 C. 向右平移8π个单位 D. 向左平移8π个单位 【答案】D 【解析】 【分析】由题意利用诱导公式、函数sin()y A x ωϕ=+的图象变换规律,得出结论. 【详解】为了得到函数33()sin 2sin 248f x x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,可以将函数()cos 2sin 2sin 224g x x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移8π个单位.故选:D .【点睛】本题主要考查诱导公式、函数sin()y A x ωϕ=+的图象变换规律,属于基础题. 5.为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A. 是否倾向选择生育二胎与户籍有关B. 是否倾向选择生育二胎与性别有关C. 倾向选择生育二胎的人群中,男性人数与女性人数相同D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数 【答案】C 【解析】 【分析】由题意,通过阅读理解、识图,将数据进行比对,通过计算可得出C 选项错误.【详解】由比例图可知,是否倾向选择生育二胎与户籍、性别有关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为0.812096⨯=人,女性人数为0.68048⨯=人,男性人数与女性人数不相同,故C 错误,故选C .【点睛】本题主要考查了条形图的实际应用,其中解答中认真审题,正确理解条形图所表达的含义是解答的关键,着重考查了阅读理解能力、识图能力,属于基础题.6.已知椭圆()2222:10x y C a b a b+=>>的长轴长是短轴长的2倍,焦距等于23C的方程为( )A. 2214x y +=B. 22163x y +=C. 22142x y +=D.22143x y += 【答案】A 【解析】【分析】根据题意可得2a b =,2c =222a b c =+即可求解. 【详解】由长轴长是短轴长的2倍,所以24a b =,即2a b =, 焦距等于2c =c =由222a b c =+,解得1b =,2a =,所以椭圆的标准方程:2214x y +=.故选:A【点睛】本题主要考查了椭圆的几何性质、椭圆的标准方程,属于基础题. 7.已知等差数列{}n a 的前n 项和为n S ,且28114,33a a S +==,则20a =( ) A. 19B. 18C. 17D. 20【答案】C 【解析】 【分析】用基本量法求解.即把已知条件用1a 和d 表示并解出,然后再由通项公式得解.【详解】由题意281111284111011332a a a d S a d +=+=⎧⎪⎨⨯=+⨯=⎪⎩,解得121a d =-⎧⎨=⎩. ∴20219117a =-+⨯=. 故选:C .【点睛】本题考查等差数列的通项公式和前n 项和公式,解题方法是基本量法.8.已知sin 21cos αα=+,则tan α=( )A. 43-B. 34-C.43D. 2【答案】A 【解析】 【分析】利用正弦、余弦的二倍角公式表示sin 21cos αα=+,可求出tan 22α=,再利用正切函数的二倍角公式可求出tanα的值.【详解】解:∵22sin cossin22tan21cos22cos2αααααα===+,∴22tan42tan31tan2ααα==--,故选:A.【点睛】本题考查正余弦函数以及正切函数的二倍角公式,考查学生的转化能力和计算能力,属于基础题.9.如图,平面四边形ABCD中,E,F是AD,BD中点,2AB AD CD===,22BD=,90BDC∠=︒,将ABD△沿对角线BD折起至A BD'△,使平面A BD'⊥平面BCD,则四面体A BCD'中,下列结论不正确的是()A. //EF平面A BC' B. 异面直线CD与A B'所成的角为90°C. 异面直线EF与A C'所成的角为60°D. 直线A C'与平面BCD所成的角为30°【答案】C【解析】【分析】运用线面平行的判定定理可判断A正确;由面面垂直的性质定理,结合异面直线所成角可判断B正确;由异面直线所成角和勾股定理的逆定理可判断C错误;由线面角的求法,可判断D 正确.【详解】对于A:因为E,F分别为A D'和BD两边中点,所以//EF A B',又EF⊄平面A BC',所以//EF平面A BC',故A正确;对于B:因为平面A BD'⊥平面BCD,交线为BD,且CD BD⊥,所以CD⊥平面A BD',即CD A B⊥',故B正确;对于C:取CD边中点M,连接EM,FM,则//EM A C',所以FEM ∠或其补角为异面直线EF 与A C '所成角, 又1EF =,122EM A C ='=,132FM BC ==,即90FEM ∠=︒,故C 错误;D :连接A F ',可得A F BD '⊥,由面面垂直的性质定理可得A F '⊥平面BCD , 连接CF ,可得A CF ∠'为A C '与平面BCD 所成角,由21sin 222A F A CF A C '∠'===', 则直线A C '与平面BCD 所成的角为30°,故D 正确. 故选:C.【点睛】本题考查异面直线所成角的求法,线面角的求法和线面平行的判断,考查转化思想和运算能力,属于基础题.10.如图所示,在ABC ∆中,AD DB =,点F 在线段CD 上,设AB a =,AC b =,AF xa yb =+,则141x y ++的最小值为( )A. 622+B. 63C. 642+D. 322+【答案】D 【解析】 【分析】用AD ,AC 表示AF ,由C ,F ,D 三点共线得出x ,y 的关系,消去y ,得到141x y ++关于x 的函数()f x ,利用导数求出()f x 的最小值. 【详解】解:2AF xa yb x AD y AC =+=+.∵C ,F ,D 三点共线,∴21x y +=.即12y x =-.由图可知0x >.∴21412111x x y x x x x ++=+=+--. 令()21x f x x x+=-,得()()22221'x x f x x x +-=-,令()'0f x =得1x =或1x =(舍).当01x <<时,()'0f x <,当1x >时,()'0f x >.∴当1x =时,()f x取得最小值)111f=-3=+故选D .【点睛】本题考查了平面向量的基本定理,函数的最值,属于中档题. 11.已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,满足222cos cos cos A B C -+1sin sin A C =+,且sin sin 1A C +=,则ABC ∆的形状为( )A. 等边三角形B. 等腰直角三角形C. 顶角为150的等腰三角形D. 顶角为120的等腰三角形【答案】D 【解析】 【分析】先利用同角三角函数基本关系得222sin sin sin sin sin A C B A C +-=-,结合正余弦定理得222122a cb ac +-=-进而得B ,再利用sin sin 13A A π⎛⎫+-= ⎪⎝⎭化简得sin 13A π⎛⎫+= ⎪⎝⎭,得A 值进而得C ,则形状可求【详解】由题()2221sin 1sin 1sin 1sin sin A B C A C ---+-=+即222sin sin sin sin sin A C B A C +-=-,由正弦定理及余弦定理得222122a cb ac +-=-即()12cos ,0,23B B B ππ=-∈∴=故 sin sin 13A A π⎛⎫+-=⎪⎝⎭整理得sin 13A π⎛⎫+= ⎪⎝⎭ ,故,66A B ππ=∴=故ABC ∆为顶角为120的等腰三角形 故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题12.双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,P 为双曲线左支上一点,且()110PF OF OP ⋅+=(O 为坐标原点),2112cos 13PF F ∠=,则双曲线C 的离心率为( ) A. 2 B.53C.135D.137【答案】D 【解析】 【分析】取1PF 的中点为M ,则()112OM OF OP =+,根据题意可得1PF OM ⊥,则12PF PF ⊥,由215cos 13PF F ∠=可求出a ,c ,从而求得离心率. 【详解】如图,取1PF 的中点为M ,则()112OM OF OP =+, 由()110PF OF OP ⋅+=,得10PF OM ⋅=,即1PF OM ⊥. 因为OM 为12PF F ∆的中位线,所以12PF PF ⊥. 由2112cos 13PF F ∠=,设212PF =,则1213F F =,15PF =, 所以2127a PF PF =-=,12213c F F ==,得C 离心率为137c a =.故选:D【点睛】本题考查垂直关系的向量表示,中位线的性质,双曲线的几何性质,属于中档题.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.设x,y满足约束条件220220x yx yy x+-≤⎧⎪-+≥⎨⎪≥⎩,则32z x y=-的最大值是________.【答案】2 3【解析】【分析】画出满足约束条件的可行域,利用z的几何意义,利用直线平移法即可求出最大值.【详解】不等式组表示的平面区域如图中阴影部分所示,当目标函数过22,33⎛⎫⎪⎝⎭时取得最大值,即max222 32333z=⨯-⨯=.故答案为:2 3【点睛】本题考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,常用数形结合问题来求,本题属于基础题.14.某四棱锥的三视图如图所示,则该四棱锥的体积为________.【答案】2 【解析】 【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度、判断出位置关系,由直观图能求出该四棱锥的体积.【详解】解:根据三视图可知几何体是一个四棱锥,底面是一个直角梯形,AD AB ⊥、//AD BC ,2AD AB ==、1BC =,PA ⊥底面ABCD ,且2PA =,∴该四棱锥的体积为:1121222332ABCD V S PA +=⨯⨯=⨯⨯⨯=梯形.故答案为:2.【点睛】本题考查几何体的体积的求法,考查几何体三视图等基础知识,考查运算求解能力、空间想象能力,属于中档题. 15.将函数()sin 36f x x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),再将所得到的图象向右平移()0m m >个单位长度,得到函数()g x 的图象.若()g x 为奇函数,则m 的最小值为_______. 【答案】3π 【解析】 【分析】利用图象变换求得函数()y g x =的解析式,由函数()y g x =为奇函数,可得出关于m 的代数式,进而可求得正数m 的最小值. 【详解】将函数()sin 36f x x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变), 得到函数11sin 3sin 6626y x x ππ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭的图象, 再将所得函数图象向右平移()0m m >个单位长度,得到()()111sin sin 26262g x x m x m ππ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭的图象,由于函数()y g x =为奇函数,则()162m k k Z ππ-=∈,()23m k k Z ππ∴=-∈, 当0k =时,正数m 取得最小值3π. 故答案为:3π. 【点睛】本题考查利用三角函数图象变换求函数解析式,同时也考查了利用正弦型函数的奇偶性求参数,考查计算能力,属于中等题.16.已知函数3()121f x x x =-+,2213,0()3(2)3,02x x g x x x ⎧-+>⎪=⎨-++≤⎪⎩,若函数[()]y f g x a =-有6个零点(互不相同),则实数a 的取值范围为________. 【答案】[10,17) 【解析】 【分析】原题等价于[()]f g x a =有6个不同的零点.先作出函数()f x 的图象,得到当(15,17)m ∈-时,()f x m =有三个解;再作出函数()g x 的图象,得到当[3,4]t ∈-时,()g x t =有两个解,求出(3),(4)f f -的值即得解.【详解】因为[()]y f g x a =-有6个零点(互不相同), 所以[()]f g x a =有6个不同的零点.3()121f x x x =-+,所以2()312=3(2)(2)f x x x x '=-+-,所以函数()f x 在(2,),(,2)+∞-∞-单调递增,在(2,2)-单调递减. 所以函数()f x 的图象如图所示,当(15,17)m ∈-时,()f x m =有三个解. 函数()g x 的图象如图所示,当[3,4]t ∈-时,()g x t =有两个解, 当3x =-时,(3)2736110f -=-++=; 当4x =时,(4)6448117f =-+=;若函数[()]y f g x a =-有6个零点(互不相同),则实数a 的取值范围为[10,17). 故答案为:[10,17).【点睛】本题主要考查利用导数研究函数的单调性,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题都必须作答,第22、23题为选考题,考生根据要求作答 (一)必考题:共60分17.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在PD 上.(1)若E 为PD 的中点,证明://PB 平面AEC ;(2)若1PA =,22PD AB ==,三棱锥E ACD -的体积为3,试求:PE ED 的值. 【答案】(1)证明见解析(2):1:2PE ED = 【解析】 【分析】(1) 连接BD 交AC 于O ,连接EO ,再证明EO PB 即可. (2) 根据三棱锥E ACD -的体积为39可求得E 到平面ABCD 的距离为23,再根据PA ⊥平面ABCD 且1PA =即可求得:PE ED .【详解】证明:(1)连接BD 交AC 于O ,连接EO , ∵ABCD 为矩形,∴O 为BD 的中点, 又E 为PD 的中点,∴EO PB , ∵EO平面AEC ,PB平面AEC ,∴PB 平面AEC .(2)由题设3AD =,1CD =,∴ADC 的面积为32. ∵棱锥E ACD -3∴E 到平面ABCD 的距离h 3133=,即23h =. ∵PA ⊥平面ABCD ,∴平面PAD ⊥平面ABCD ,过E 在平面PAD 内作EF AD ⊥,垂足为F ,则EF ⊥平面ABCD , 而PA ⊥平面ABCD ,于是EFPA .∵1PA =,∴:2:3ED PD =.则:1:2PE ED =【点睛】本题主要考查了线面平行的证明以及根据三棱锥体积求解比例的问题,需要根据题意求出对应的高,再根据垂直于同一平面的两条直线互相平行的性质分析.属于中档题. 18.已知等差数列{}n a 中,公差0d >,且满足:2345a a ⋅=,1414a a +=. (1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为nS ,令()16nS f n n =+()*N n ∈,求()f n 的最大值. 【答案】(1)43n a n =-;(2)181. 【解析】 【分析】(1)利用等差数列的通项公式即可求解.(2)首先利用裂项求和法求出n S ,再利用基本不等式即可求解. 【详解】(1)由题设知:2314234514a a a a a a ⋅=⎧⎨+=+=⎩,∴2359a a =⎧⎨=⎩或2395a a =⎧⎨=⎩ ∵0d >,∴25a =,39a =. ∴43n a n =- (2)∵()()111111434144341n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭∴1111111...41559434141n n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦ ∴()211411616164651681465n nS n n f n n n n n n n+====≤++++++(当2n =时取等号) 【点睛】本题考查了等差数列的通项公式、裂项求和法、基本不等式求最值,属于基础题. 19.某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人5次数学考试的成绩,统计结果如下表:(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由. (2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰. 方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被润汰.已知学生甲、乙都只会5道备选题中的3道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.【答案】(1)见解析;(2)选方案二 【解析】 【分析】(1)可以用两种方法决定参赛选手,方法一:先求平均数再求方差,根据成绩的稳定性决定选手;方法二:从统计的角度看,看甲乙两个选手获得85以上(含85分)的概率的大小决定选手;(2)计算出两种方案学生乙可参加复赛的概率,比较两个概率的大小即得解.【详解】(1)解法一:甲的平均成绩为180********835x ++++==;乙的平均成绩为29076759282835x ++++==, 甲的成绩方差()25211150.85i i s x x==-=∑;乙的成绩方差为()25221148.85i i s x x==-=∑;由于12x x =,2212s s >,乙的成绩较稳定,派乙参赛比较合适,故选乙合适. 解法二、派甲参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率135P =,乙获得85分以上(含85分)的概率225P =因为12P P >故派甲参赛比较合适,(2)5道备选题中学生乙会的3道分别记为a ,b ,c ,不会的2道分别记为E ,F . 方案一:学生乙从5道备选题中任意抽出1道的结果有:a ,b ,c ,E ,F 共5种,抽中会的备选题的结果有a ,b ,c ,共3种. 所以学生乙可参加复赛的概率135P =. 方案二:学生甲从5道备选题中任意抽出3道的结果有(),,a b c ,(),,a b E ,(),,a b F ,(),,a c E ,(),,a c F ,(),,a E F ,(),,b c E ,(),,b c F ,(),,b E F ,(),,c E F ,共10种,抽中至少2道会的备选题的结果有:(),,a b c ,(),,a b E ,(),,a b F ,(),,a c E ,(),,a c F ,(),,b c E ,(),,b c F 共7种,所以学生乙可参加复赛的概率2710P =因为12P P <,所以学生乙选方案二进入复赛的可能性更大.【点睛】本题主要考查平均数和方差的计算,考查古典概型的概率的计算和决策,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线260x -+=相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线()()20y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.【答案】(1)22162x y +=;(2)定点为7(,0)3E ,59EA EB ⋅=-. 【解析】试题分析:(1)求得圆O 的方程,由直线和圆相切的条件:d r =,可得a 的值,再由离心率公式,可得c 的值,结合,,a b c 的关系,可得b ,由此能求出椭圆的方程;(2)由直线(2)y k x =-和椭圆方程,得()222213121260kxk x k +-+-=,由此利用韦达定理、向量的数量积,结合已知条件能求出在x 轴上存在点E ,使EA EB ⋅为定值,定点,则可求解. 试题解析:(1)由e =得c a =,即c =① 又以原点O 为圆心,椭圆C 的长轴长为半径的圆为222x y a +=,且与直线260x -+=相切,所以a ==2c =,所以2222b a c =-=,所以椭圆C 的标准方程为22162x y +=.(2)由()221{622x y y k x +==-得()222213121260k x k x k +-+-=, 设()11A x y ,,()22B x y ,,所以21221213k x x k +=+,212212613k x x k -=+,根据题意,假设x 轴上存在定点()0E m ,, 使得()2EA EA AB EA AB EA EA EB +⋅=+⋅=⋅为定值, 则()()()()11221212EA EB x m y x m y x m x m y y ⋅=-⋅-=--+,,()()()()22221212124k x x k m x x k m =+-++++()()222231210613m m k m k -++-=+要使上式为定值,即与k 无关,()223121036m m m -+=-, 得73m =. 此时,22569EA EA AB m +⋅=-=-,所以在x 轴上存在定点703E ⎛⎫⎪⎝⎭,使得2EA EA AB +⋅为定值,且定值为59-.【点睛】本题考查直线与圆锥曲线的综合问题, 椭圆的标准方程,考查满足条件的定点是否存在的判断与求法,属于中档题,解决存在性问题应注意以下几点:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径. 21.已知函数()f x kx =,ln ()xg x x=. (1)求函数ln ()xg x x=的单调区间; (2)若不等式()()f x g x ≥区间(0,)+∞上恒成立,求实数k 的取值范围;(3)求证:4444ln 2ln 3ln 4ln 12342n n e++++< 【答案】(1)函数ln ()xg x x=的单调递增区间为(0,)e ,单调递减区间为(,)e +∞(2)12k e ≥(3)见解析.【解析】试题分析:(1)求出()'g x ,由()'0g x >,结合函数的定义域解得x 的范围,就是函数的增区间;(2)问题转化为k 大于等于()h x 的最大值,利用导数求得函数()h x 有最大值,且最大值为12e ,得到12k e≤;(3)先判断()42ln 1122x x x e x <⋅≥,得4444222ln 2ln 3ln 4ln 1111......234223n n e n ⎛⎫++++<+++ ⎪⎝⎭,用放缩法证明222111...123n +++<,即得要证的不等式. 试题解析:(1)∵()ln xg x x=,故其定义域为()0,+∞, ∴()21ln xg x x -'=,令()0g x '>,得0x e <<,令()0g x '<,得x e >. 故函数()ln xg x x=的单调递增区间为()0,e ,单调递减区间为(),e +∞.(2)∵0x >,ln x kx x ≥,∴2ln x k x ≥,令()2ln xh x x=又()312ln xh x x-'=,令()0h x '=解得x =当x 在()0,+∞内变化时,()h x ',()h x 变化如下表由表知,当x =()h x 有最大值,且最大值为12e ,所以,12k e≥ (3)由(2)知2ln 12x x e ≤,∴42ln 11•2x x e x ≤(2x ≥) ∴444222ln2ln3ln 111123223n n e n ⎛⎫+++<+++ ⎪⎝⎭()22211111111111111123122312231n n n n n n ⎛⎫⎛⎫⎛⎫+++<+++=--++-=-< ⎪⎪ ⎪⨯⨯--⎝⎭⎝⎭⎝⎭∴444222ln2ln3ln 11111232232n n e n e⎛⎫+++<+++< ⎪⎝⎭ 即444ln2ln3ln 1232n n e+++< 【方法点晴】本题主要考查利用导数研究函数的单调性、证明不等式以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.本题(2)是利用方法 ① 求得k 的最大值.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线3:14x tl y t=⎧⎨=+⎩(t 为参数),以原点O 为极点,x 轴为正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos24ρθ=-. (1)求曲线C 的直角坐标方程;(2)点()0,1P ,直线l 与曲线C 交于M ,N ,求11PM PN+的值. 【答案】(1)22144-=y x (2)15【解析】【分析】(1)直接利用转换关系,极坐标方程与直角坐标方程进行转化.(2)借助直线参数方程中t 的几何意义,利用一元二次方程根与系数的关系的应用求出结果.【详解】解:(1)∵曲线C 的极坐标方程为2cos24ρθ=-,即2222cos sin 4ρθρθ-=-. ∴曲线C 的直角坐标方程为224x y -=-,即22144-=y x . (2)将直线3:14x t l y t=⎧⎨=+⎩(t 为参数),令'=5t t 转换为:35415x t y t ''⎧=⎪⎪⎨⎪=+⎪⎩('t 为参数),代入曲线22144-=y x , 得到:'2'740750t t +-=, 所以''12407t t +=-,''12757t t =-('1t 和'2t 为M 和N 对应的参数), 则''12''1211t t PM PN t t -+==15=. 故11PM PN +. 【点睛】本题考查考查直角坐标方程、极坐标方程、参数方程的互化,考查直线参数方程中t 的几何意义的运用,考查运算求解能力,考查函数与方程思想.属于中档题.[选修4-5:不等式选讲]23.已知函数()|25||21|f x x x =--+.(1)求不等式()1f x >的解集;(2)若不等式,()|42||||4|f x x t m t m ++>--++对任意x ∈R ,任意t R ∈恒成立,求m 的取值范围.【答案】(1)3,4⎛⎫-∞ ⎪⎝⎭;(2)(,1)-∞ 【解析】【分析】(1) 利用零点分区间法去掉绝对值符号分类讨论求并集 ()2不等式等价变形,由三角不等式()|25||21|6h x x x =-++≥,|||4||(4)||4|t m t m t m t m m m --++--++=++得到6|4|m m >++求解【详解】解:(1)由题可知:()56,21544,2216,2x f x x x x ⎧->⎪⎪⎪=-+-≤≤⎨⎪⎪<-⎪⎩不等式()1f x >等价于1,261x ⎧-⎪⎨⎪>⎩或15,22441x x ⎧-<<⎪⎨⎪-+>⎩或5,261,x ⎧⎪⎨⎪->⎩即12x -或1324x -<< 所以不等式()1f x >的解集为3,4⎛⎫-∞ ⎪⎝⎭. (2)()|42||||4|f x x t m t m ++>--++等价于|25||21||||4|x x t m t m -++>--++. 令()|25||21|h x x x =-++,则()|25(21)|6h x x x --+=,当且仅当()()25210x x -+≤时,即15,22x ⎡⎤∈-⎢⎥⎣⎦时取得等号. 所以min ()6h x =.而|||4||(4)||4|t m t m t m t m m m --++--++=++,所以6|4|m m >++,所以646m m m -<+<-,解得1m <,即m 的取值范围为(,1)-∞.【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题. (1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式a b a b a b -+把不等式恒成立问题转化为函数最值问题.。

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(文)试题(解析版)

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(文)试题(解析版)
详解:因 ,所以 ,
因此
选D.
点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如 . 其次要熟悉复数相关基本概念,如复数 的实部为 、虚部为 、模为 、对应点为 、共轭为
3.设等差数列 前 项和为 ,若 ,则 ( )
A. 4B. 6C. 10D. 12
【答案】C
【解析】
由题意 ,Leabharlann , ,所以 ,故选C.点睛:解决等差数列的通项与前 项和问题,基本方法是基本量法,即用首项 和公差 表示出已知并求出,然后写出通项公式与前 项和公式,另一种方法就是应用等差数列的性质解题,可以减少计算量,增加正确率,节约时间,这是高考中尤其重要有用,象本题应用了以下性质:数列 是等差数列,(1)正整数 , , 时也成立;(2) ;(3)等差数列 中抽取一些项,如 仍是等差数列.
考点:异面直线所成的角.
9.若双曲线 ( , )的一条渐近线被圆 截得的弦长为2,则双曲线的离心率为( )
A. B. C. D.
【答案】D
【解析】
【分析】
求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得 , 的关系,即可得到所求的离心率.
【详解】双曲线 的一条渐近线方程设为 ,
绝密★启用前
黑龙江省大庆实验中学
2020届高三毕业班下学期5月第一次高考模拟考试
数学(文)试题
(解析版)
2020年5月
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.
1.已知集合 ,集合 ,则 ( )
A. B.
C. D.
【答案】A
【解析】

黑龙江省大庆实验中学2020年高考数学模拟试题(5)文(含解析)

黑龙江省大庆实验中学2020年高考数学模拟试题(5)文(含解析)

2020年黑龙江省大庆实验中学高考数学模拟试卷(文科)(5)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣|x|)},则A∩(∁R B)=()A.(1,2)B.[1,2)C.(﹣1,1)D.(1,2]2.已知命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;命题q:“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2<3x”,则下列命题为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q3.已知i是虚数单位,若复数,则z2+z+1的值为()A.﹣1 B.1 C.0 D.i4.设向量=(2,1),=(0,﹣2).则与+2垂直的向量可以是()A.(3,2)B.(3,﹣2)C.(4,6)D.(4,﹣6)5.已知双曲线上有一点M到左焦点F1的距离为18,则点M到右焦点F2的距离是()A.8 B.28 C.12 D.8或286.等比数列{a n}的各项均为正数,且a1+2a2=4,a42=4a3a7,则a5=()A.B.C.20 D.407.现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是()A.①B.①② C.②③ D.①②③8.已知a>0,b>0,,则的最小值为()A.4 B. C.8 D.169.如图所示是一个算法程序框图,在集合A={x|﹣10≤x≤10,x∈R}中随机抽取一个数值作为x输入,则输出的y的值落在区间[﹣5,3]内的概率为()A.0.8 B.0.6 C.0.5 D.0.410.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线x=对称且f(﹣)=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f(x0+),则ω的最小值是()A.2 B.4 C.6 D.811.在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,﹣1),则|PA|+|PB|的最大值为()A.5 B.4 C.3 D.212.已知函数f(x)=x﹣e x(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[﹣1,2],总存在x0∈[﹣1,1],使得g(x0)=f(x1)成立,则实数m的取值范围为()A.(﹣∞,﹣e]∪[e,+∞﹚B.[﹣e,e]C.﹙﹣∞,﹣2﹣]∪[﹣2+,+∞﹚D.[﹣2﹣,﹣2+]二、填空题(共4小题,每小题5分,满分20分)13.已知点A(1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m的取值范围是.14.已知实数x,y满足,则的取值范围是.15.如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为的半O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长为.16.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n﹣1)+F(n﹣2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n},b2020= .三、解答题(共5小题,满分60分)17.已知数列{a n}为等差数列,其中a2+a3=8,a5=3a2.(1)求数列{a n}的通项公式;(2)记,设{b n}的前n项和为S n.求最小的正整数n,使得.18.已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:(1)试问这3年的前7个月中哪个月的月平均利润较高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.月份x 1 2 3 4利润y(单位:百万元) 4 4 6 6相关公式: ==, =﹣x.19.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=AA1=1,D是棱AA1上的点,DC1⊥BD.(Ⅰ)求证:D为AA1中点;(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.20.已知抛物线C:y2=2px(p>0)的焦点F与椭圆C': =1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.21.已知函数f(x)=axe x﹣(a﹣1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).(1)当a=﹣1时,求f(x)的单调区间;(2)若f(x)仅有一个极值点,求a的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=.(1)求曲线C的普通方程;(2)若直线l与曲线C交于不同两点A,B,求tanα的取值范围.[选修4-5]23.已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式m2﹣m<f(x),∀x∈R都成立,求实数m的取值范围.2020年黑龙江省大庆实验中学高考数学模拟试卷(文科)(5)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣|x|)},则A∩(∁R B)=()A.(1,2)B.[1,2)C.(﹣1,1)D.(1,2]【考点】1H:交、并、补集的混合运算.【分析】求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出集合B,找出R中不属于B的部分,求出B的补集,找出A与B补集的公共部分即可.【解答】解:由集合A中的不等式x2﹣x﹣2<0,解得:﹣1<x<2,∴A=(﹣1,2),由集合B中的函数y=ln(1﹣|x|),得到1﹣|x|>0,即|x|<1,解得:﹣1<x<1,∴B=(﹣1,1),又全集R,∴C R B=(﹣∞,﹣1]∪[1,+∞),则A∩(C R B)=[1,2).故选B2.已知命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;命题q:“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2<3x”,则下列命题为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【考点】2E:复合命题的真假.【分析】分别判断出p,q的真假,再判断出复合命题真假即可.【解答】解:命题p:若a,b是实数,则a>b是a2>b2的充分不必要条件;是假命题;比如:a=1,b=﹣2,“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2≤3x”,故命题q:“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2<3x”是假命题,故¬p∧¬q是真命题,故选:D.3.已知i是虚数单位,若复数,则z2+z+1的值为()A.﹣1 B.1 C.0 D.i【考点】A5:复数代数形式的乘除运算.【分析】先求出z2的值,然后代入z2+z+1计算.【解答】解:∵,∴=,则z2+z+1=.故选:C.4.设向量=(2,1),=(0,﹣2).则与+2垂直的向量可以是()A.(3,2)B.(3,﹣2)C.(4,6)D.(4,﹣6)【考点】9T:数量积判断两个平面向量的垂直关系.【分析】求出+2=(2,﹣3),由此利用向量垂直的性质能求出与+2垂直的向量的可能结果.【解答】解:∵向量=(2,1),=(0,﹣2).∴+2=(2,﹣3),∵(2,﹣3)•(3,2)=6﹣6=0,∴与+2垂直的向量可以是(3,2).故选:A.5.已知双曲线上有一点M到左焦点F1的距离为18,则点M到右焦点F2的距离是()A.8 B.28 C.12 D.8或28【考点】KC:双曲线的简单性质.【分析】求得双曲线的a,b,c,运用双曲线的定义,可得||MF1|﹣|MF2||=2a=10,解方程可得所求值,检验M在两支的情况即可.【解答】解:双曲线的a=5,b=3,c==,由双曲线的定义可得||MF1|﹣|MF2||=2a=10,即为|18﹣|MF2||=10,解得|MF2|=8或28.检验若M在左支上,可得|MF1|≥c﹣a=﹣5,成立;若M在右支上,可得|MF1|≥c+a=+5,成立.故选:D.6.等比数列{a n}的各项均为正数,且a1+2a2=4,a42=4a3a7,则a5=()A.B.C.20 D.40【考点】8G:等比数列的性质.【分析】根据通项公式列方程组解出首项和公比,再计算a5.【解答】解:设公比为q,则q>0,由题意得:,解得,∴a5=2×=,故选A.7.现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是()A.①B.①② C.②③ D.①②③【考点】L7:简单空间图形的三视图.【分析】根据题意,画出编号为①、②、③的三棱锥的直观图,判断是否存在侧面与底面互相垂直的情况即可.【解答】解:编号为①的三棱锥,其直观图可能是①,其侧棱VC⊥底面ABC,∴侧面VAC⊥底面ABC,满足条件;编号为②的三棱锥,其直观图可能是②,其侧面PBC⊥平面ABC,满足条件;编号为③的三棱锥,其直观图可能为③,其中不存在侧面与底面互相垂直的情况.综上,满足题意的序号是①②.故选:B.8.已知a>0,b>0,,则的最小值为()A.4 B.C.8 D.16【考点】7F:基本不等式.【分析】先求出ab=1,从而求出的最小值即可.【解答】解:由,有ab=1,则,故选:B.9.如图所示是一个算法程序框图,在集合A={x|﹣10≤x≤10,x∈R}中随机抽取一个数值作为x输入,则输出的y的值落在区间[﹣5,3]内的概率为()A.0.8 B.0.6 C.0.5 D.0.4【考点】EF:程序框图.【分析】可得x的取值共21中可能,由程序框图可得x共17个,由概率公式可得.【解答】解:集合A={x|﹣10≤x≤10,x∈R}中随机地取一个数值共有21种可能,再由程序框图可知y=,要使y值落在区间[﹣5,3]内,需x=0或或,解得x=0,或x=﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,x=1,2,3,4,5,6,7,8,共17个,∴所求概率P=≈0.8.故选:A.10.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线x=对称且f(﹣)=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f(x0+),则ω的最小值是()A.2 B.4 C.6 D.8【考点】HW:三角函数的最值;H6:正弦函数的对称性.【分析】由题意直线x=是对称轴,对称中心为(﹣,0),根据三角函数的性质可求ω的最小值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0)的图象关于x=对称且f(﹣)=0,∴ω+φ=kπ+…①,﹣ω+φ=kπ…②,ωx0+φ≤+2kπ且(ωx0+φ)≥﹣+2kπ…③由①②解得ω=4,φ=kπ+,(k∈Z)当k=0时,ω=4,φ=,③成立,满足题意.故得ω的最小值为4.故选B.11.在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,﹣1),则|PA|+|PB|的最大值为()A.5 B.4 C.3 D.2【考点】K4:椭圆的简单性质.【分析】根据椭圆的方程,算出它的焦点坐标为B(0,﹣1)和B'(0,1).因此连接PB'、AB',根据椭圆的定义得|PA|+|PB|=|PA|+(2a﹣|PB'|)=4+(|PA|﹣|PB'|).再由三角形两边之差小于第三边,得到当且仅当点P在AB'延长线上时,|PA|+|PB|=4+|AB'|=5达到最大值,从而得到本题答案.【解答】解:∵椭圆+=1,∴焦点坐标为B(0,﹣1)和B'(0,1),连接PB'、AB',根据椭圆的定义,得|PB|+|PB'|=2a=4,可得|PB|=4﹣|PB'|,因此|PA|+|PB|=|PA|+(4﹣|PB'|)=4+(|PA|﹣|PB'|)∵|PA|﹣|PB'|≤|AB'|∴|PA|+|PB|≤2a+|AB'|=4+1=5.当且仅当点P在AB'延长线上时,等号成立.综上所述,可得|PA|+|PB|的最大值为5.故选:A.12.已知函数f(x)=x﹣e x(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[﹣1,2],总存在x0∈[﹣1,1],使得g(x0)=f(x1)成立,则实数m的取值范围为()A.(﹣∞,﹣e]∪[e,+∞﹚B.[﹣e,e]C.﹙﹣∞,﹣2﹣]∪[﹣2+,+∞﹚D.[﹣2﹣,﹣2+]【考点】3R:函数恒成立问题.【分析】利用导数求出函数f(x)在[﹣1,1]上的值域,再分类求出g(x)在[﹣1,1]上的值域,把对于任意的x1∈[﹣1,1],总存在x0∈[﹣1,1],使得g(x0)=f(x1)成立转化为两集合值域间的关系求解.【解答】解:由f(x)=x﹣e x,得f′(x)=1﹣e x,当x∈[﹣1,0)时,f′(x)>0,当x∈(0,1]时,f′(x)<0,∴f(x)在[﹣1,0)上为增函数,在(0,1]上为减函数,∵f(﹣1)=﹣1﹣,f(0)=﹣1,f(2)=1﹣e.∴f(x)在[﹣1,1]上的值域为[1﹣e,﹣1];当m>0时,g(x)=mx+1在[﹣1,1]上为增函数,值域为[1﹣m,1+m],要使对于任意的x1∈[﹣1,1],总存在x0∈[﹣1,1],使得g(x0)=f(x1)成立,则[1﹣e,﹣1]⊆[1﹣m,1+m],∴,解得m≥e;当m=0时,g(x)的值域为{1},不合题意;当m<0时,g(x)=mx+1在[﹣1,1]上为减函数,值域为[1+m,1﹣m],对于任意的x1∈[﹣1,1],总存在x0∈[﹣1,1],使得g(x0)=f(x1)成立,则[1﹣e,﹣1]⊆[1+m,1﹣m],∴,解得m≤﹣e.综上,实数m的取值范围为(﹣∞,﹣e]∪[e,+∞﹚.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.已知点A(1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m的取值范围是(2,+∞).【考点】J7:圆的切线方程.【分析】过点A可作圆x2+y2+mx+1=0的两条切线,即为A在圆外,把已知圆的方程化为标准方程后,找出圆心坐标和半径r,列出关于m的不等式,同时考虑﹣1大于0,两不等式求出公共解集即可得到m的取值范围.【解答】解:把圆的方程化为标准方程得:(x+)2+y2=﹣1,所以圆心坐标为(﹣,0),半径r=,由题意可知A在圆外时,过点A可作圆x2+y2+mx+1=0的两条切线,所以d>r即1+m+1>0,且﹣1>0,解得:m>2,则m的取值范围是(2,+∞).故答案为:(2,+∞).14.已知实数x,y满足,则的取值范围是[,] .【考点】7C:简单线性规划.【分析】由约束条件作出可行域,再由的几何意义,即可行域内的动点与定点O(0,0)连线的斜率求解.【解答】解:由约束条件作出可行域如图,的几何意义为可行域内的动点与定点O(0,0)连线的斜率,联立方程组求得A(3,﹣1),B(3,2),又,.∴的取值范围是[,].故答案为:[,].15.如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为的半O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长为 2 .【考点】LF:棱柱、棱锥、棱台的体积.【分析】设AB=a,BB1=h,求出a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,利用导数,得到该正四棱柱体积的最大值,即可得出结论.【解答】解:设AB=a,BB1=h,则OB=,连接OB1,OB,则OB2+BB12=OB12=3,∴+h2=3,∴a2=6﹣2h2,故正四棱柱的体积是V=a2h=6h﹣2h3,∴V′=6﹣6h2,当0<h<1时,V′>0,1<h<时,V′<0,∴h=1时,该四棱柱的体积最大,此时AB=2.故答案为:2.16.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n﹣1)+F(n﹣2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n},b2020= 1 .【考点】F4:进行简单的合情推理.【分析】由题意可得数列从第三项开始,后一项为前两项的和,再分别除以3得到一个新的数列,该数列的周期为8,即可求出答案.【解答】解:1,1,2,3,5,8,13,21,34,55,89,144,233,377,…,此数列被3整除后的余数构成一个新数列{b n},则{b n},1,1,2,0,2,2,1,0,1,1,2,0,2,2,…,其周期为8,故b2020=b227×8+1=b1=1,故答案为:1三、解答题(共5小题,满分60分)17.已知数列{a n}为等差数列,其中a2+a3=8,a5=3a2.(1)求数列{a n}的通项公式;(2)记,设{b n}的前n项和为S n.求最小的正整数n,使得.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式可得首项和公差的方程,解方程可得首项和公差,进而得到通项公式;(2)求得==﹣,运用数列的求和方法:裂项相消求和,再解不等式,即可得到所求n的最小值.【解答】解:(1)设等差数列{a n}的公差为d,依a2+a3=8,a5=3a2,有,解得a1=1,d=2,从而{a n}的通项公式为;(2)因为==﹣,所以=.令,解得n>1008,故n的最小值为1009.18.已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:(1)试问这3年的前7个月中哪个月的月平均利润较高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.月份x 1 2 3 4利润y(单位:百万元) 4 4 6 6相关公式:==, =﹣x.【考点】BK:线性回归方程.【分析】(1)结合图象读出结论即可;(2)根据图象累加判断结论即可;(3)分别求出对应的系数,的值,代入回归方程即可.【解答】解:(1)由折线图可知5月和6月的平均利润最高.…(2)第1年前7个月的总利润为1+2+3+5+6+7+4=28(百万元),…第2年前7个月的总利润为2+5+5+4+5+5+5=31(百万元),…第3年前7个月的总利润为4+4+6+6+7+6+8=41百万元),…所以这3年的前7个月的总利润呈上升趋势.…(3)∵,,1×4+2×4+3×6+4×6=54,∴,…∴,…∴,…当x=8时,(百万元),∴估计8月份的利润为940万元.…19.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=AA1=1,D是棱AA1上的点,DC1⊥BD.(Ⅰ)求证:D为AA1中点;(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.【考点】MI:直线与平面所成的角;LX:直线与平面垂直的性质.【分析】(Ⅰ)由已知可得AC,BC,CC1两两互相垂直,分别CA、CB、CC1所在直线为x,y,z 轴,建立空间直角坐标系,结合DC1⊥BD,利用向量垂直的坐标运算求得D的竖坐标,可得D 为AA1的中点;(Ⅱ)求出面BDC的法向量,利用向量法能求出直线BC1与平面BDC所成角正弦值.【解答】证明:(Ⅰ)由已知可得AC,BC,CC1两两互相垂直,分别以CA、CB、CC1所在直线为x,y,z轴,建立空间直角坐标系,∵AC=BC=AA1=1,D是棱AA1上的点,∴D(1,0,h),C1(0,0,2),B(0,1,0),B1(0,1,2),∴=(﹣1,0,2﹣h),=(1,﹣1,h),∵DC1⊥BD,∴,得﹣1+h(2﹣h)=0,解得h=1,∴D为AA1的中点;解:(Ⅱ) =(0,﹣1,2),设面BDC的一个法向量为=(x,y,z),则,取x=1,得=(1,0,﹣1),设直线BC1与平面BDC所成角为θ,则sinθ===.∴直线BC1与平面BDC所成角正弦值大小为.20.已知抛物线C:y2=2px(p>0)的焦点F与椭圆C': =1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.【考点】K8:抛物线的简单性质.【分析】(1)依题意F(1,0),故,则2p=4,可得抛物线C的方程.将A(x0,2)代入抛物线方程,解得x0,即可得|AF|的值(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0,则=(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16=40,解得λ.【解答】解:(1)依题意,椭圆中,a2=6,b2=5,故c2=a2﹣b2=1,故,则2p=4,可得抛物线C的方程为y2=4x.将A(x0,2)代入y2=4x,解得x0=1,故.(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0.所以,①且,又,则(1﹣x1,﹣y1)=λ(x2﹣1,y2),即y1=﹣λy2,代入①得,消去y2得,易得B(﹣1,0),则,则===(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16,当16m4+40m2+16=40,解得,故.21.已知函数f(x)=axe x﹣(a﹣1)(x+1)2(a∈R,e为自然对数的底数,e=2.7181281…).(1)当a=﹣1时,求f(x)的单调区间;(2)若f(x)仅有一个极值点,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)根据导数和函数的单调性的关系即可求出,(2)先求导,再令f'(x)=0得到x=﹣1或ae x﹣2a+2=0(*),根据ae x﹣2a+2=0(*)无解即可求出a的范围.【解答】解:(1)由题知,f(x)=﹣xe x+2(x+1)2,f'(x)=﹣e x﹣xe x+4(x+1)=(x+1)(4﹣e x),由f'(x)=0得到x=﹣1或x=ln4,而当x<ln4时,(4﹣e x)>0,x>ln4时,(4﹣e x)<0,列表得:x (﹣∞,﹣1)﹣1 (﹣1,ln4)ln4 (ln4,+∞)f'(x)﹣0 + 0 ﹣f(x)↘极大值↗极小值↘所以,此时f(x)的减区间为(﹣∞,﹣1),(ln4,+∞),增区间为(﹣1,ln4);(2)f'(x)=ae x+axe x﹣2(a﹣1)(x+1)=(x+1)(ae x﹣2a+2),由f'(x)=0得到x=﹣1或ae x﹣2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=,故由≤0得0<a≤1,由于这两种情况都有,当x<﹣1时,f'(x)<0,于是f(x)为减函数,当x>﹣1时,f'(x)>0,于是f(x)为增函数,∴仅x=﹣1为f(x)的极值点,综上可得a的取值范围是[0,1].[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=.(1)求曲线C的普通方程;(2)若直线l与曲线C交于不同两点A,B,求tanα的取值范围.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的普通方程.(2)直线l的参数方程消去参数t,能化为普通方程,代入C的普通方程,得(4k2+3)x2+16kx+4=0,由此利用根的判别式能求出tanα的取值范围.【解答】解:(1)∵曲线C的极坐标方程为ρ2=.∴24=ρ2(7﹣cos2θ+sin2θ),∵ρ2=x2+y2,ρcosθ=x,ρsinθ=y,∴曲线C的普通方程为24=7(x2+y2)﹣x2+y2,即=1.(2)∵直线l的参数方程是(t为参数),将直线l的参数方程消去参数t,化为普通方程得y=kx+2(其中k=tanα),代入C的普通方程并整理得(4k2+3)x2+16kx+4=0,故△=162k2﹣16(4k2+3)>0,解得k<﹣或k>,∴tanα的取值范围是(﹣∞,﹣)∪(,+∞).[选修4-5]23.已知函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若不等式m2﹣m<f(x),∀x∈R都成立,求实数m的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)原不等式等价于①,或②,或③.分别求得①、②、③的解集,再取并集,即得所求.(2)利用绝对值三角不等式求得f(x)的最小值为2,可得 m2﹣m<2,由此解得实数m的取值范围.【解答】解:(1)原不等式等价于①,或②,或③.解①求得,解②求得,解③求得,因此不等式的解集为.(2)∵f(x)=|2x﹣1|+|2x﹣3|≥|2x﹣1﹣(2x﹣3)|=2,∴m2﹣m<2,解得﹣1<m<2,即实数m的取值范围为(﹣1,2).。

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题理含解析

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题理含解析

黑龙江省大庆实验中学2020届高三数学下学期复习考试试题 理(含解析)第Ⅰ卷(选择题共60分)一、单选题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅- 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( )A. {|1}x x ≥B. {|12}x x ≤<C. {}1D. {}0,1【答案】D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可.【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =.故选D.【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 3.已知焦点在x 轴上的椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( ) A. 221167x y +=B. 221716x y +=C. 2251162x y +=D.2212516x y += 【答案】A 【解析】由题意知,2a=8,∴a=4,又34e =,∴c=3,则b 2=a 2﹣c 2=7. 当椭圆的焦点在x 轴上时,椭圆方程为221167x y +=;故答案为221167x y +=.故答案为A .4.如图所示的2个质地均匀的游戏盘中(图①是半径为2和4的两个同心圆组成的圆盘,O 为圆心,阴影部分所对的圆心角为90︒;图②是正六边形,点Р为其中心)各有一个玻璃小球,依次摇动2个游戏盘后(小球滚到各自盘中任意位置都是等可能的)待小球静止,就完成了一局游戏,则一局游戏后,这2个盘中的小球至少有一个停在阴影部分的概率是( )A.116B.1124C.1324D.516【答案】B 【解析】【分析】根据几何概型面积型可分别计算出两个图中小球落在阴影部分的概率,由独立事件概率乘法公式和对立事件概率公式可求得结果.【详解】图①小球落在阴影部分的概率为:212213214464P πππ-⋅⋅=⋅=⋅ 图②小球落在阴影部分的概率:213P =∴至少有一个小球停在阴影部分的概率为31131111111632424⎛⎫⎛⎫--⨯-=-= ⎪ ⎪⎝⎭⎝⎭本题正确选项:B【点睛】本题考查几何概型概率问题的求解,涉及到独立事件概率乘法公式和对立事件概率公式的应用.5.在正方体1111ABCD A B C D -中,M N ,分别在是线段11AB BC ,的中点,以下结论:①直线BD 丄直线MN ;②直线MN 与直线AC 异面;③直线MN 丄平面11BDD B ;④122MN AA =,其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】 【分析】在平面ABCD 内作出MN 的平行直线EF ,根据中位线得到//EF AC ,由此得到②错误.根据AC ⊥平面11BDD B 得到①③正确,利用中位线及勾股定理证得④正确.由此得出正确的个数为3个.【详解】过M 作MF AB ⊥交AB 于F ,过N 作NE BC ⊥交BC 于E ,连接11,,,EF ACBD B D .由于,M N分别为11,AB BC 的中点,故1111//////22NE CC BB MF ,故四边形MNEF 为矩形,故//MN EF ,由于//EF AC ,故②判断错误.由于1,AC BD AC BB ⊥⊥,所以AC ⊥平面11BDD B ,所以MN BD ⊥且直线MN 丄平面11BDD B ,即①③正确.由勾股定理得12AC AA =,故11222EF AC AA ==,故④判断正确.综上所述,正确的个数为3个,故选C.【点睛】本小题主要考查空间两条异面直线垂直的判断,考查直线与直线平行的判断,考查线面垂直的证明,属于基础题.要判断两条异面直线垂直,往往是通过线面垂直来证明,要证明线线平行,可以考虑用中位线来证明,要证明线面垂直则需要证明垂直平面内两条相交直线来证明. 6.设2(sin 56cos56)2a =-,cos50cos128cos 40cos38b =+,cos80c =,则a b c ,,的大小关系是( )A. a b c >>B. b a c >>C. c a b >>D. a c b >>【答案】B 【解析】2(sin 56cos56)sin(5645)sin112a =-=-= ,cos(9040)cos(9038)cos 40cos38sin 40sin 38cos 40cos38cos 78sin12b =-++=-+== ,cos80sin10c == ,sin12sin11sin10,b a c >>∴>> ,选B.7.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =,1233OC OA OB =+,若M 是线段AB 的中点,则OC OM ⋅的值为( ). A. 3 B. 23C. 2D. 3【答案】D 【解析】 【分析】判断出OAB ∆是等边三角形,以,OA OB 为基底表示出OM ,由此求得OC OM⋅的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =,所以OAB ∆是等边三角形.由于M 是线段AB的中点,所以1122OM OA OB=+.所以OC OM⋅12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭22111623OA OA OB OB =+⋅⋅+21422cos603323=+⨯⨯⨯+=. 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.8.定义在R 上的可导函数()f x ,其导函数记为()f x ',满足()2(2)2f x x f x +=-+,且当1x ≤时,恒有()2f x x '+>.若3()(1)32f m f m m --≥-,则实数m 的取值范围是( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭B. (],1-∞C. [)1,+∞D. 1,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】 【分析】由()2f x x '+>,构造函数21()()22g x f x x x =+-,易得当1x ≤,()g x 为增函数,且由题设可得()(2)g x g x =-,所以函数()g x 的图象关于直线1x =对称,结合()g x 与()f x 的关系,函数的对称性与单调性性质,即可求解. 【详解】令21()()22g x f x x x =+-, 则()()2g x f x x ''=+-.∵当1x ≤时,恒有()2f x x '+>,即()0g x '>, ∴当1x ≤时,函数()g x 为增函数. 而21(2)(2)2(2)(2)2g x f x x x -=-+---, 21(2)(2)22g x f x x ∴-=--+——①(2)()22f x f x x -=+-——②把②代入①得:2(2)1()22f x xg x x +--= ∴()(2)g x g x =-.∴函数()g x 的图象关于直线1x =对称,∴函数()g x 在(],1-∞上为增函数,在[)1,+∞为减函数. 由3()(1)32f m f m m --≥-, 得2211()2(1)2(1)(1)22f m m m f m m m +-≥-+---, 即()(1)g m g m ≥-,∴|1||11|m m -≤--,解得12m ≥. ∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 故选:A【点睛】本题考查构造函数以及函数的导数、函数的对称性、单调性的综合运用,考查了理解辨析能力与运算求解能力,属于难题.9.已知函数()cos 33a x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,得到曲线()y g x =,则不等式()1g x ≤的解集是( )A. ()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ()3,124k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. ()37,84k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D. ()52,262k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】A 【解析】 【分析】把()f x 化为sin ,cos x x 的式子,然后由偶函数定义可求得a ,由图象平移变换得()g x ,再解不等式()1g x ≤即可.【详解】因为()11cos sin 22a x x x x f x ⎛⎫⎫=++ ⎪⎪ ⎪⎪⎝⎭⎭13cos sin 2222a x a x ⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭为偶函数,所以()()f x f x -=,0=,解得1a =-,所以()2cos f x x =-. 将曲线()2y f x =向左平移12π个单位长度后,得到曲线2cos 2()2cos 2126y x x ππ⎛⎫=-+=-+ ⎪⎝⎭, 则()2cos 26g x x π⎛⎫=-+⎪⎝⎭.由()1g x ≤,得2cos 216x π⎛⎫-+≤ ⎪⎝⎭,得1cos 262x π⎛⎫+≥- ⎪⎝⎭,则()22222363k x k k Z πππππ-≤+≤+∈,得()5124x k k k Z ππππ≤≤+∈-. 不等式()1g x ≤的解集是()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 故选:A.【点睛】本题考查三角函数的图象及其性质,考查两角和与差的正弦、余弦公式,考查图象变换,考查推理论证能力与运算求解能力. 10.已知过点(0,2)-与曲线323()62a f x x x x =-+-(0)x >相切的直线有且仅有两条,则实数a 的取值范围是( )A. {}2B. (2,)+∞C.)+∞D.【答案】C 【解析】 【分析】先设出切点坐标323,62a P t t t t ⎛⎫-+- ⎪⎝⎭(0)t >,再求出()f x 的导数,由导数的几何意义知,()f t '是切线的斜率,写出切线方程,因切线过点(0,2)-,将点(0,2)-代入切线方程整理后可得324340t at -+=,由题意知关于t 的方程有324340t at -+=两个不等的正实数根,设32()434h t t at =-+(0)t >,结合函数求零点的知识,即可求解.【详解】∵323()62a f x x x x =-+-, ∴2()336f x x ax '=-+-.设切点323,62a P t t t t ⎛⎫-+- ⎪⎝⎭(0)t >,则有2()336f t t at '=-+-,所以过点P 的切线方程为()32236336()2a y t t t t at x t ⎛⎫--+-=-+-- ⎪⎝⎭,又点(0,2)-在切线上,所以()322326336()2a t t t t at t ⎛⎫---+-=-+-- ⎪⎝⎭, 整理得324340t at -+=,由题意得方程324340t at -+=有两个不等的正实数根.设32()434h t t at =-+(0)t >,则2()1266(2)h t t at t t a '=-=-,要使32()434h t t at =-+(0)t >的图象与t 轴的正半轴有两个不同的交点,则需0a >. 所以函数()h t 在0,2a ⎛⎫⎪⎝⎭上单调递减, 在,2a ⎛⎫+∞⎪⎝⎭上单调递增, 所以3min()4024a a h t h ⎛⎫==-+< ⎪⎝⎭,解得a >.即实数a的取值范围是)+∞.答案:)+∞【点睛】本题考查导数几何意义的运用,考查过某点的曲线的切线方程及已知函数零点个数,求参数范围的问题,考查理解辨析能力及运算求解能力,属于中档题.11.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.12.设双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,右焦点为(c,0)F ,弦PQ 过F 且垂直于x轴,过点P 、点Q 分别作为直线AQ 、AP 的垂直,两垂线交于点B ,若B 到直线PQ 的距离小于2()a c +,则该双曲线离心率的取值范围是( ) A. 3)B. 3)C. (3,2)D.(3,)+∞【答案】B 【解析】【详解】由题意,B 在x 轴上,22,,,b bP c Q c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∴2AQ b a k a c=-, ∴22BPa ack b-=-, 直线BQ 的方程为()222b a acy x c a b--=--, 令y =0,可得()42b xc a a c =+-, ∵B 到直线PQ 的距离小于2(a +c ),∴()()422b a c a a c -<+-,∴b <,∴c <,∴e < ∵e >1,∴1e <<故选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在大题卡相应位置上. 13.已知随机变量X 服从正态分布()24,N σ,()60.78P X <=,则()2P X ≤=__________.【答案】0.22. 【解析】 【分析】正态曲线关于x =μ对称,根据对称性以及概率和为1求解即可. 【详解】()()2160.22P X P X ≤=-<=【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题. 14.已知()f x 是定义在R 上的偶函数,且在区间( , 0]-∞上单调递增,若实数a 满足3log (2)(a f f >,则a 的取值范围是___.【答案】( 【解析】 【分析】根据函数的奇偶性以及在区间(],0-∞上的单调性确定出()0,∞+上的单调性,再根据函数值之间的关系,将其转化为自变量之间的关系,求解出a 的范围即可.【详解】因为()f x 是R 上的偶函数且在(],0-∞上递增,所以()f x 在()0,∞+上递减, 又因为()(3log 2af f >,所以3log 20a a ⎧<⎪⎨>⎪⎩, 所以31log 2220a a ⎧⎪<⎨⎪>⎩,所以31log 20a a ⎧<⎪⎨⎪>⎩,所以(a ∈.故答案为:(.【点睛】本题考查根据函数的单调性和奇偶性求参数范围,难度一般.已知函数值的大小关系,可通过函数的单调性将其转变为自变量之间的关系.15.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.=,则222a cb ac +-的取值范围为______.【答案】()()0,2【解析】 【分析】把已知式用正弦定理化边为角,由两角和的正弦公式和诱导公式化简,可求得cos C ,即C 角,从而得B 角的范围,注意2B π≠,由余弦定理可得结论.=,所以()()2cos cos cos cos 0a C B B C =⋅≠,所以()2sin cos cos A B C C B =,即()2sin cos A C C B A =+=,又sin 0A >,所以cos 2C =, 则6C π=,因为cos 0B ≠,所以50,,226B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,而2222cos a c b B ac +-=,故()()2220,2a c b ac+-∈.故答案为:()()0,2.【点睛】本题考查正弦与余弦定理的应用,考查运算求解能力.本题是一个易错题,学生容易忽略cos B 不能等于0.16.如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积.若1(),2,2f M x y ⎛⎫= ⎪⎝⎭,且18a x y +≥恒成立,则正实数a 的最小值是_____【答案】642-【解析】 【分析】由垂直关系可知PC ⊥平面PAB ,进而求得三棱锥P ABC -体积,通过体积桥可得421x y +=;利用()1142a a x y x y x y ⎛⎫+=++ ⎪⎝⎭可构造出符合基本不等式的形式,得到14242aa a x y+≥++,由恒成立关系可得关于a 的不等式,解不等式求得最小值. 【详解】,,PA PB PC 两两垂直 PC ∴⊥平面PAB1113211332P ABC C PAB PAB V V S PC --∆∴==⋅=⨯⨯⨯⨯=,即1212x y ++= 421x y ∴+=()11242442424224242a a y ax y axx y a a a a x y x y x y x y⎛⎫∴+=++=+++≥++⋅=++ ⎪⎝⎭(当且仅当24y axx y=,即2y ax =时取等号) 又18ax y+≥恒成立,42428a a ∴++≥,解得:642a ≥- ∴正实数a 的最小值为642-【点睛】本题考查与立体几何有关的新定义运算中的最值问题的求解;关键是能够对“1”进行灵活应用,配凑出符合基本不等式的形式,利用基本不等式求得式子的最值,进而根据恒成立的关系得到不等式,从而求得结果.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤. (一)必考题:共60分.17.已知四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PB AD ⊥,PAD △是边长为2的正三角形底面ABCD 是菱形,点M 为PC 的中点(1)求证:PA 平面MDB ; (2)求二面角A PB C --的余弦值. 【答案】(1)见解析;(2)10【解析】 【分析】(1) 连结AC ,交BD 于O ,利用中位线定理证明MO PA ∥,结合线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用坐标求出平面PAB 和平面PBC 的法向量,即可求解. 【详解】(1)连结AC ,交BD 于O ,连接MO ,由于底面ABCD 为菱形,∴O 为AC 中点 又M 为PC 的中点,∴MO PA ∥,又MO ⊂面MDB ,PA ⊄面MDBPA ∴平面MDB(2)过P 作PE AD ⊥,垂足为E ,由于PAD ∆为正三角形,E 为AD 的中点.由于侧面PAD ⊥面ABCD ,由面面垂直的性质得PE ⊥面ABCD ,由AD PE AD PB ⊥⊥,,得AD PEB ⊥∴60AD EB EAB ︒⊥∴∠= 以E 为坐标原点,EP 为z 轴,EA 为x 轴,EB 为y 轴,建立空间直角坐标系.则(1,0,0),3,0),(3,0),3)A B C P -(3,0)AB =-,(1,0,3)PA =设平面PAB 的法向量为1111(,,)n x y z =,平面PBC 的法向量为2222(,,)n x y z = 由10n AB ⋅=及10n PA ⋅=得111100x x ⎧-+=⎪⎨=⎪⎩,取1x =PAB的一个法向量为)同理可求得平面PBC 的一个法向量(0,1,1),由法向量的方向得知所求二面角的余弦值为1212n n n n ⋅-=-=. 【点睛】本题主要考查了线面平行以及二面角,(2)问中关键是建立空间直角坐标系来求解二面角的余弦值,属于中档题.18.已知数列{}n a 满足112a =,121nn n a a a +=+()*N n ∈. (1)求数列{}n a 的通项公式; (2)证明:222212312n a a a a ++++<.【答案】(1)12n a n=;(2)详见解析 【解析】 【分析】 (1)由121n n n a a a +=+,两边取倒数可得1112n n a a +-=,可知数列1na 为等差数列,从而可求出1na 的表达式,进而可得到n a 的表达式;(2)利用放缩法,可得2211111441n a n n n ⎛⎫=⋅<- ⎪-⎝⎭(2n ≥,*N n ∈),进而可证明结论. 【详解】(1)由112a =,121nn na a a +=+,可知0n a >,对121n n n a a a +=+的等号两端同时取倒数得1112n n a a +=+,则1112n n a a +-=,所以数列1na 为等差数列,且首项为2,公差为2,故12n n a =, 所以12n a n=. (2)依题可知222111111111244141n a n nn n n n ⎛⎫⎛⎫==⋅<⋅⋅=- ⎪ ⎪--⎝⎭⎝⎭(2n ≥,*N n ∈), 所以222212311111111442231n a a a a n n ⎛⎫++++<+-+-++- ⎪-⎝⎭1111114424n n⎛⎫=+-=- ⎪⎝⎭, 故222212312n a a a a ++++<.【点睛】本题考查数列通项公式的求法,考查利用放缩法证明数列不等式,考查学生的计算能力与推理能力,属于中档题.19.设椭圆22221x x ab +=(a >b >0)的左焦点为F ,上顶点为B . 点A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQ AOQ PQ=∠(O 为原点) ,求k 的值. 【答案】(Ⅰ)22194x y +=;(Ⅱ)12或1128.【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a =3,b =2.则椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由题意可得5y 1=9y 2.由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,可得1y =.由方程组20y kx x y =⎧⎨+-=⎩,,可得221k y k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128.详解:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由4AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0, 由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+. 由5y 1=9y 2,可得5(k +1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.20.第七届世界军人运动会于2019年10月18日至2019年10月27日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会之后我国举办的规模最大的国际体育盛会.来自109个国家的9300余名军体健儿在江城武汉同场竞技、增进友谊.运动会共设置射击、游泳、田径、篮球等27个大项、329个小项.经过激烈角逐,奖牌榜的前6名如下:某大学德语系同学利用分层抽样的方式从德国获奖选手中抽取了9名获奖代表.(1)请问这9名获奖代表中获金牌、银牌、铜牌的人数分别是多少人?(2)从这9人中随机抽取3人,记这3人中银牌选手的人数为X,求X的分布列和期望;(3)从这9人中随机抽取3人,求已知这3人中有获金牌运动员的前提下,这3人中恰好有1人为获铜牌运动员的概率.【答案】(1)金牌人数为2人、银牌人数为3人、铜牌人数为4人;(2)分布列见解析,()1E X ;(3)47.【解析】【分析】(1)根据分层抽样的抽取规则,结台各奖牌的获奖人数,即可计算出这9名获奖代表中获金牌、银牌、铜牌的人数;(2)随机变量X的可能取值分别为0,1,2,3,分别计算出对应概率,列出分布列,求期望即可;(3)依题意,可分为2金1铜和1金1银1铜两种情况讨论,再结合条件概率公式,即可求解.【详解】(1)由题意可知,德国获奖运动员中, 金牌、银牌、铜牌的人数比为2:3:4,所以这9名获奖运动员中金牌人数为2人、银牌人数为3人、铜牌人数为4人; (2)X 的可能取值为0,1,2,3,则:3639C 205(0)C 8421P X ====,123639C C 4515(1)C 8428P X ====,213639C C 183(2)C 8414P X ====,33391(3)84C P X C ===,X 的分布列为:1531()1231281484E X ∴=⨯+⨯+⨯=. (3)记事件A 为“3人中有获金牌运动员”, 事件B 为“这3人中恰好有1人为获铜牌运动员”,37397()112C P A C =-=,()2111223439C C C 1()C 3C P AB +==,()4(|)()7P AB P B A P A ==. 【点睛】本题考查了分层抽样,考查了离散型随机变量的概率分布列和数学期望及条件概率,主要考查分析解决问题和解决问题的能力及运算求解能力,属于中档题.21.已知a R ∈,函数()ln xa e f x a x x-=+.(1)讨论函数()f x 的单调性;(2)若1a =,且()()()2111x e F x x mx f x x ⎛⎫-=-+-- ⎪⎝⎭在()0,2m ∈时有极大值点()001x x ≠,求证:()01F x >.【答案】(1)见解析;(2)见解析【解析】【分析】(1)对()f x 求导,分1a ≤,1a e <<,a e >,a e =进行讨论,可得函数()f x 的单调性;(2)将1a =代入()F x ,对()F x 求导,可得()2(1)ln F x x m x '=--,再对()2(1)ln F x x m x '=--求导,可得函数()F x 有唯一极大值点101,x x x =,且0000002(1)()2(1)ln 0(01)ln 2x m F x x m x m x x -'=--=⇒=<<<. 可得222000000000222()1(2ln )ln ln x x x F x x x x x x --=-+=--,设2()2ln h x x x =--,对其求导后可得0()1F x >.【详解】解:(1)222()(1)(1)(1)()()x x x x a e x a e a x e x x a e f x x x x x -⋅---+---'=+==, 又0x ,1x e ∴>,1a ∴≤时,0x a e -<,所以可解得:函数()f x 在(0,1)单调递增,在(1,)+∞单调递减;经计算可得,1a e <<时,函数()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增,(1,)+∞单调递减;a e >时,函数()f x 在(0,1)单调递减,(1,ln )a 单调递增,(ln ,)a +∞单调递减; a e =时,函数()f x 在(0,)+∞单调递减.综上:1a ≤时,函数()f x 在(0,1)单调递增,(1,)+∞单调递减;1a e <<时,函数()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增,(1,)+∞单调递减; a e =时,函数()f x 在(0,)+∞单调递减;a e >时,函数()f x 在(0,1)单调递减,(1,ln )a 单调递增,(ln ,)a +∞单调递减.(2)若1a =,则221()(1)(1())(1)(1ln )x e F x x mx f x x mx x x -=-+--=-+-, ()2(1)ln F x x m x '∴=--,设()2(1)ln ,(0)H x x m x x =-->,则()2m H x x '=-, 当(0,)2m x ∈时,()0()H x H x '<⇒单调递减,即()F x '单调递减, 当(,)2m x ∈+∞时,()0()H x H x '>⇒单调递增,即()F x '单调递增. 又因为02,01,2m m <<∴<<由(1)0F '=可知:()02m F '<, 而2222()2(1)ln 20m m m m F e em e e ----'=--=⋅>,且201m e e -<=, 21(,)2m m x e -∴∃∈,使得1()0F x '=,且1(0,)x x ∈时,()0,()F x F x '>单调递增, 1(,1)x x ∈时,()0,()F x F x '<单调递减,(1,)x ∈+∞时,()0,()F x F x '>单调递增, 所以函数()F x 有唯一极大值点101,x x x ∴=, 且0000002(1)()2(1)ln 0(01)ln 2x m F x x m x m x x -'=--=⇒=<<<. 220000000002(1)()(1)(1ln )(1)(1ln )ln x x F x x mx x x x x -∴=-+⋅-=-+⋅- 220000221ln x x x x -=-+. 所以222000000000222()1(2ln )ln ln x x x F x x x x x x --=-+=--, 设2()2ln h x x x =--(01x <<),则22212()0x h x x x x -'=-=>, ()h x ∴在(0,1)单调递增,()(1)0h x h ∴<=,0()0h x ∴<,又因为0ln 0x <, 0()10F x ∴-> 0()1F x ∴>.【点睛】本题主要考查导数、函数的单调性等知识,考查方程与函数、分类与整合的数学思想,考查学生的推理论证能力与运算求解能力.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.选修4—4:坐标系与参数方程22.[选修4-4:坐标系与参数方程]以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为12sin cos ρθθρ⎛⎫=++ ⎪⎝⎭. (1)写出曲线C 的参数方程;(2)在曲线C 上任取一点P ,过点P 作x 轴,y 轴的垂直,垂足分别为A ,B ,求矩形OAPB 的面积的最大值.【答案】(1)12cos 12sin x y θθ=+⎧⎨=+⎩.(2)max 3S =+.【解析】分析:(1)先根据222,cos ,sin x y x y ρρθρθ=+==将曲线C 的极坐标方程化为直角坐标方程,再写出圆的参数方程,(2)根据题意得()()12cos 12sin S θθ=++,再根据同角三角函数关系得213222S t ⎛⎫=+- ⎪⎝⎭,sin 4t cos πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,最后根据二次函数性质求最值.详解:(1)由12sin cos ρθθρ⎛⎫=++ ⎪⎝⎭得()22sin cos 1ρρθρθ=++,所以22222x y x y +=++,即()()22114x y -+-=,故曲线C 参数方程1212x cos y sin θθ=+⎧⎨=+⎩(θ为参数); (2)由(1)可设点P 的坐标为()12cos ,12sin θθ++,[)0,2θπ∈,则矩形OAPB 的面积为()()12cos 12sin S θθ=++ 12sin 2cos 4sin cos θθθθ=+++.令sin 4t cos πθθθ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,212sin t cos θθ=+, 22131222222S t t t ⎛⎫=++-=+- ⎪⎝⎭,故当t =时,max 3S =+点睛:利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.椭圆参数方程:cos (sin x a y b θθθ=⎧⎨=⎩为参数), 圆参数方程:cos (sin x r y r θθθ=⎧⎨=⎩为参数),直线参数方程:00cos (sin x x t t y y t θθ=+⎧⎨=+⎩为参数) 选修4—5:不等式选讲23.已知函数()|1|||f x x x a =+-+.(1)若1a =-,求不等式()1f x -的解集;(2)若“x R ∀∈,()|21|f x a <+”为假命题,求a 的取值范围.【答案】(1)1,2⎡⎫-+∞⎪⎢⎣⎭(2)[]2,0-【解析】【分析】 (1))当1a =-时,将函数()f x 写成分段函数,即可求得不等式的解集. (2)根据原命题是假命题,这命题的否定为真命题,即“x R ∃∈,()21f x a +”为真命题,只需满足()max |21|f x a +即可.【详解】解:(1)当1a =-时,()2,1,112,11,2, 1.x f x x x x x x -≤-⎧⎪=+--=-<<⎨⎪≥⎩ 由()1f x -,得12x.故不等式()1f x -的解集为1,2⎡⎫-+∞⎪⎢⎣⎭.(2)因为“x R ∀∈,()21f x a <+”为假命题,所以“x R ∃∈,()21f x a +”为真命题,所以()max |21|f x a +.因为()|1||||(1)()||1|f x x x a x x a a =+-++-+=-,所以()max |1|f x a =-,则|1||21|a a -+,所以()()22121a a -+, 即220a a +≤,解得20a -,即a 的取值范围为[]2,0-.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.。

大庆实验中学2020届高三综合训练(二)数学(文)试题答案

大庆实验中学2020届高三综合训练(二)数学(文)试题答案

PB / /OE ,
由 PB 平面 A C E, OE 平面 A C E PB / / 平面 A C E
(2)取 AB 中点 F ,连结 PF ,由 PAB 为正三角形,则 PF AB ,
面 PAB 面 ABCD ,面 PAB 面 ABCD AB ,
PF 平面 ABCD ,且 PF
3
2Tn 20
1 24 (2n 9) 2n1 (2n 7) 2n (2n 5) 2n1 ,②
令① ② Tn 10 8 2 24 2n (2n 5) 2n1
24 1 2n3
2 2
2n 5 2n1 3 4 2n
7 n21
1 2
可得 Tn
34
2
2
2
x a 1 5a 1 5a 1 ,
2
2
2
当 x 1 a 时,等号成立,∴ f x 的值最小为 5a 1 . …………8 分
2
2
∴ 1 5a 2 , 解得 a 2 或 a 6 .……………………………………9 分
2
5
5

实数
a
的取值范围是
,
2 5
6 5
,

…………10
c,e , c, f , d, e , d, f , e, f ,15 种可能,
其中满足要求的有 6 种,由古典概型可知 P 6 2 . 15 5
18.解:(1)连结 BD 交 AC 于点 O ,连结 OE
BC / / AD BO = BC 1 , OD AD 3
由 PD 4PE , 则 PE BO 1 ED OD 3
大庆实验中学 2020 届 高三综合训练(二) 数学(文)参考答案
1
2

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(理)试题(解析版)

黑龙江省大庆实验中学2020届高三毕业班下学期5月第一次高考模拟考试数学(理)试题(解析版)
5.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是顶角为 的等腰三角形(另一种是顶角为 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金 中, .根据这些信息,可得 ( )
A. B. C. D.
【答案】B
【解析】
【分析】
由题意画出图形,可得四边形 为矩形,则 ,结合 , , ,列式可得 关于 的三角函数,利用辅助角公式化简后求解椭圆离心率的取值范围.
【详解】设椭圆的另一焦点为 ,连接 , , ,
设椭圆的焦距为 ,由题意则四边形 为矩形,∴ ,
, .
结合椭圆定义,可知 ,即 ,则 ,
A. B. C. D.
【答案】D
【解析】
【分析】
在 ,由正弦定理可知: ,即可求得 值,根据诱导公式化简 ,即可求得答案.
【详解】在 ,由正弦定理可知:



.
故选:D.
【点睛】本题主要考查了根据正弦定理和诱导公式求三角函数值,解题关键是掌握正弦定理公式和熟练使用诱导公式,考查了分析能力和计算能力,属于中档题.
对于事件 ,甲获得冠军,包含两种情况:前两局甲胜和事件 ,
, ,故选A.
【点睛】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题.
10.已知 , , ,则a,b,c的大小关系是( )
A. B. C. D.
【详解】∵点 和 在直线 的两侧,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届黑龙江省大庆实验中学高三下学期复习考试数学(文)试题一、单选题1.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限.详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅-Q 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 2.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =I ( ) A .{|1}x x ≥ B .{|12}x x ≤<C .{}1D .{}0,1【答案】D【解析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ , 所以{}0,1A B =I . 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围.3.已知焦点在x 轴上的椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .221167x y +=B .221716x y +=C .2216428x y +=D .2212864x y +=【答案】A【解析】由椭圆的长轴长及离心率的值,可求出,,a b c ,进而结合椭圆的焦点在x 轴上,可得出椭圆的标准方程. 【详解】由题意知,28a =,∴4a =,又34e =,∴3c =,则2227b a c =-=. 因为椭圆的焦点在x 轴上时,所以椭圆方程为221167x y+=.故选:A . 【点睛】本题考查椭圆标准方程的求法,考查学生的计算求解能力,属于基础题.4.如图所示的2个质地均匀的游戏盘中(图①是半径为2和4的两个同心圆组成的圆盘,O 为圆心,阴影部分所对的圆心角为90︒;图②是正六边形,点Р为其中心)各有一个玻璃小球,依次摇动2个游戏盘后(小球滚到各自盘中任意位置都是等可能的)待小球静止,就完成了一局游戏,则一局游戏后,这2个盘中的小球至少有一个停在阴影部分的概率是( )A .116B .1124C .1324D .516【答案】B【解析】根据几何概型面积型可分别计算出两个图中小球落在阴影部分的概率,由独立事件概率乘法公式和对立事件概率公式可求得结果. 【详解】图①小球落在阴影部分的概率为:212213214464P πππ-⋅⋅=⋅=⋅图②小球落在阴影部分的概率:213P =∴至少有一个小球停在阴影部分的概率为31131111111632424⎛⎫⎛⎫--⨯-=-= ⎪ ⎪⎝⎭⎝⎭本题正确选项:B 【点睛】本题考查几何概型概率问题的求解,涉及到独立事件概率乘法公式和对立事件概率公式的应用.5.长方体1111ABCD A B C D -中12,1AB AA AD ===,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A .1010B .3010C .21510D .310【答案】B【解析】建立坐标系如图所示.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),1BC u u u u r =(-1,0,2),AE u u u r=(-1,2,1). cos 〈1BC u u u u r ,AE u u u r〉==3010. 所以异面直线BC 1与AE 所成角的余弦值为3010. 6.设2(sin 56cos56)2a =-o o ,cos50cos128cos 40cos38b =+o o o o ,cos80c o =,则a b c ,,的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >>【答案】B【解析】56cos56)sin(5645)sin11a =-=-=o o o o o ,cos(9040)cos(9038)cos 40cos38sin 40sin 38cos 40cos38cos 78sin12b =-++=-+==o o o o o o o o o o o o,cos80sin10c ==o o ,sin12sin11sin10,b a c >>∴>>o o o Q ,选B.7.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r的值为( ).AB.C .2 D .3【答案】D【解析】判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r,由此求得OC OM ⋅u u u r u u u u r的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =u u u r,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r.所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB=+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.8.已知可导函数()f x 的定义域为(,0)-∞,其导函数()f x '满足()2()1xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞- B .(2021,0)- C .(2021,2020)-- D .(2020,0)-【答案】C【解析】由题可得当(,0)x ∈-∞时,2()2()x f x xf x x -'<,进而构造函数2()()f x g x x=,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集.【详解】由题意知,当(,0)x ∈-∞时,()2()1xf x f x '->,可得2()2()x f x xf x x -'<,设2()()f x g x x =,则243()2()1()0x f x xf x g x x x-=<''<,所以()g x 在(,0)-∞上单调递减.不等式2(2020)(2020)(1)0f x x f +-+-<,等价于2(2020)(1)(1)(2020)f x f g x +<-=-+,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:C. 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x=是解决本题的关键,属于中档题.9.已知函数()cos 33a x x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,得到曲线()y g x =,则不等式()1g x ≤的解集是( )A .()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()3,124k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()37,84k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D .()52,262k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【答案】A【解析】把()f x 化为sin ,cos x x 的式子,然后由偶函数定义可求得a ,由图象平移变换得()g x ,再解不等式()1g x ≤即可. 【详解】 因为()11cos sin 22a x x x x f x ⎛⎫⎫=+ ⎪⎪ ⎪⎪⎝⎭⎭13cos sin 22a x x ⎛⎫=-++ ⎪⎝⎭⎝⎭为偶函数,所以()()f x f x -=,所以022a +=,解得1a =-,所以()2cos f x x =-. 将曲线()2y f x =向左平移12π个单位长度后,得到曲线2cos 2()2cos 2126y x x ππ⎛⎫=-+=-+ ⎪⎝⎭, 则()2cos 26g x x π⎛⎫=-+⎪⎝⎭.由()1g x ≤,得2cos 216x π⎛⎫-+≤ ⎪⎝⎭,得1cos 262x π⎛⎫+≥- ⎪⎝⎭,则()22222363k x k k Z πππππ-≤+≤+∈,得()5124x k k k Z ππππ≤≤+∈-.不等式()1g x ≤的解集是()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 故选:A. 【点睛】本题考查三角函数的图象及其性质,考查两角和与差的正弦、余弦公式,考查图象变换,考查推理论证能力与运算求解能力.10.已知函数()ln f x ax x b =+在(1,1)处的切线方程过(3,5),则函数()f x 的最小值为( ) A .21e-B .1C .2e-D .11e-【答案】A【解析】由()f x 过点(1,1),可求出b ,进而对()f x 求导,可得到()f x 在(1,1)处的切线方程,再结合切线方程过(3,5),可求出a 的值,从而可得到()f x 的表达式,进而判断单调性,可求出最小值. 【详解】∵()ln f x ax x b =+过点(1,1),∴()1ln11f a b =+=,解得1b =, ∵()()ln 1f x a x '=+,∴()()1ln11f a a '=+=,则()f x 在(1,1)处的切线方程为()11y a x =-+, ∵()11y a x =-+过(3,5),∴2a =, ∴()2ln 1f x x x =+,∴()()2ln 1f x x '=+,令()0f x ¢=得1e x =,∴()f x 在10e ⎛⎫ ⎪⎝⎭,上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,∴()f x 的最小值为1212ln 11e e e ef ⎛⎫=+=- ⎪⎝⎭. 故选:A. 【点睛】本题考查切线方程,考查导数的几何意义,考查利用函数的单调性求最值,考查学生的计算求解能力,属于中档题.11.若实数满足约束条件,则的最大值是( )A .B .1C .10D .12【答案】C【解析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.12.设双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,右焦点为(c,0)F ,弦PQ 过F 且垂直于x 轴,过点P 、点Q 分别作为直线AQ 、AP 的垂直,两垂线交于点B ,若B 到直线PQ 的距离小于2()a c +,则该双曲线离心率的取值范围是( ) A .3) B .3)C .3,2)D .3,)+∞【答案】B 【解析】【详解】 由题意,B 在x 轴上,22,,,bb Pc Q c aa ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭,∴2AQ b a ka c=-,∴22BPa ack b-=-, 直线BQ 的方程为()222b a acy x c a b--=--, 令y =0,可得()42b xc a a c =+-, ∵B 到直线PQ 的距离小于2(a +c ),∴()()422b a c a a c -<+-,∴b <,∴c <,∴e < ∵e >1,∴1e <<故选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题13.甲、乙两支足球队进行一场比赛,,,A B C 三位球迷赛前在一起聊天.A 说:“甲队一定获胜.”B 说:“甲队不可能输.”C 说:“乙队一定获胜.”比赛结束后,发现三人中只有一人的判断是正确的,则比赛的结果不可能是______.(填“甲胜”“乙胜”“平局”中的一个) 【答案】甲胜【解析】分析若甲队获胜,可得出矛盾,即得解. 【详解】若甲队获胜,则A ,B 判断都正确,与三人中只有一人的判断是正确的矛盾,故甲不可能获胜. 故答案为:甲胜【点睛】本题考查了推理和证明中的合情推理,考查了学生推理证明,综合分析的能力,属于基础题.14.已知()f x 是定义在R 上的偶函数,且在区间( , 0]-∞上单调递增,若实数a满足3log (2)(a f f >,则a 的取值范围是___.【答案】(【解析】根据函数的奇偶性以及在区间(],0-∞上的单调性确定出()0,∞+上的单调性,再根据函数值之间的关系,将其转化为自变量之间的关系,求解出a 的范围即可. 【详解】因为()f x 是R 上的偶函数且在(],0-∞上递增,所以()f x 在()0,∞+上递减,又因为()(3log 2af f >,所以3log 20a a ⎧<⎪⎨>⎪⎩, 所以31log 2220a a ⎧⎪<⎨⎪>⎩,所以31log 20a a ⎧<⎪⎨⎪>⎩,所以(a ∈.故答案为:(. 【点睛】本题考查根据函数的单调性和奇偶性求参数范围,难度一般.已知函数值的大小关系,可通过函数的单调性将其转变为自变量之间的关系.15.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.=,则222a cb ac+-的取值范围为______.【答案】()()0,2U【解析】把已知式用正弦定理化边为角,由两角和的正弦公式和诱导公式化简,可求得cos C ,即C 角,从而得B 角的范围,注意2B π≠,由余弦定理可得结论.【详解】因为2cos cos a B C-=,所以()()2cos cos cos cos 0a C B B C =⋅≠,所以()2sin 3sin cos 3sin cos A B C C B -=,即()2sin cos 3sin 3sin A C C B A =+=,又sin 0A >,所以3cos 2C =, 则6C π=,因为cos 0B ≠,所以50,,226B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U , 而2222cos a c b B ac +-=,故()()2223,00,2a c b ac+-∈-U .故答案为:()()3,00,2-U . 【点睛】本题考查正弦与余弦定理的应用,考查运算求解能力.本题是一个易错题,学生容易忽略cos B 不能等于0.16.如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积。

相关文档
最新文档