炎症反应在缺氧中的作用
呼吸窘迫综合征的病理生理机制

母亲感染
母亲患有感染性疾病,可能会影 响胎儿的肺部发育,增加患RDS 的风险。
诊断的依据和关键指标
呼吸音
呼吸音可呈现湿啰音、哮鸣音等,提 示肺部炎症或水肿。
胸部X线
可显示肺部透明度降低、肺纹理增粗 、肺泡塌陷等特征性改变。
血气分析
可检测血氧分压、二氧化碳分压、pH 值等指标,反映肺部气体交换能力。
呼吸窘迫综合征的病理生理机 制
呼吸窘迫综合征 (RDS) 是一种严重的呼吸系统疾病,主要发生在新生儿,尤其 是早产儿。RDS 的病理生理机制复杂,涉及肺表面活性物质缺乏、肺水肿、肺 血管通透性增加等多种因素。
by x
定义和概述
正常肺
正常肺部具有良好的气体交换功能,表面活性物质可以保持肺泡 的稳定,防止肺泡塌陷。
直接补充表面活性物质,帮助肺泡稳定,改善气体交换。
3
氧疗
补充氧气,提高血液氧含量,改善缺氧状况。
2
机械通气
通过呼吸机辅助呼吸,维持肺泡通气,提高血氧饱和度。
4
抗感染治疗
预防和治疗感染,减少感染引起的肺损伤。
综合治疗方案的制定
呼吸支持
根据患者情况选择机械通气、氧 疗、表面活性物质替代疗法等, 改善肺泡通气,提高血氧饱和度 。
3
血管通透性增加
血管内皮细胞间隙增大,血管通透性增加,液体和蛋白质渗出
到肺泡间隙。
胸膜腔积液的形成过程
毛细血管通透性增加
炎症反应或损伤导致胸膜血管通透性增加,液体渗出到胸膜腔 。
胸膜液吸收减少
胸膜腔内压升高或胸膜淋巴管阻塞会减少胸膜液的吸收。
胸膜腔积液
当液体渗出量大于吸收量时,胸膜腔内液体逐渐积聚,形成胸 膜腔积液。
简述缺氧对呼吸的影响及其机制

简述缺氧对呼吸的影响及其机制缺氧是指机体所处环境中氧气浓度低于正常范围的状态。
氧气是人体维持生命所必需的物质之一,对于正常的呼吸机能和细胞代谢至关重要。
缺氧对呼吸系统的影响是多方面的,并且涉及到多个机制。
缺氧会直接影响到呼吸中枢,导致呼吸节律的改变。
正常情况下,呼吸中枢位于延髓和脑干,受到来自体内和外界的多种信号调节。
当机体遭遇缺氧时,呼吸中枢会通过增加呼吸频率和深度来提高氧气摄取量。
这是通过中枢化学感受器对缺氧信号的感知和反馈机制实现的。
缺氧刺激会使中枢化学感受器敏感性增加,引发一系列化学反应,最终导致呼吸中枢的兴奋和呼吸频率的增加。
缺氧还会引起呼吸肌的代偿性改变。
呼吸肌主要包括膈肌和肋间肌,它们的收缩和松弛控制着肺的容积和压力变化,从而实现呼吸过程。
在缺氧的刺激下,呼吸肌会发生代偿性增强,以增加吸气力量和呼气力量,从而提高氧气摄取和二氧化碳排出。
缺氧还会影响到肺泡和肺血管的功能。
肺泡是气体交换的场所,血液中的氧气通过肺泡壁进入血液,而二氧化碳则从血液中进入肺泡被排出体外。
当机体缺氧时,肺泡壁的通透性会增加,使得氧气更容易通过肺泡壁进入血液,同时二氧化碳也更容易从血液中进入肺泡排出。
这是通过肺泡-毛细血管膜的结构和通透性调节实现的。
缺氧还会引发一系列的细胞和分子反应,从而影响呼吸系统的生理和病理过程。
缺氧会导致细胞氧化应激和炎症反应的增加,进而影响细胞的存活和功能。
此外,缺氧还会激活一些信号通路,如低氧诱导因子(HIF)通路,从而调节细胞的代谢、增殖和血管生成等过程。
这些细胞和分子反应的变化,进一步影响呼吸系统的结构和功能,从而导致一系列的生理和病理变化。
缺氧对呼吸系统的影响是多方面的,并且涉及到呼吸中枢、呼吸肌、肺泡和肺血管等多个层面的机制。
了解缺氧对呼吸的影响及其机制,有助于我们更好地理解呼吸系统的生理和病理过程,为预防和治疗呼吸系统疾病提供理论基础。
炎症反应在病理学中的作用和机制

炎症反应在病理学中的作用和机制炎症反应是机体对各种刺激因素(包括感染、组织损伤、缺血缺氧等)的一种紧急防御和修复反应。
炎症反应涉及到许多不同种类、不同来源的细胞和生物分子,其反应过程包括血管扩张、血管通透性增加、白细胞浸润、炎性介质释放等等。
在病理学中,炎症反应不仅是感染性和非感染性疾病的共同机制,也是很多疾病发展和治疗的关键因素。
一、炎症反应的作用炎症反应在机体的防御和修复中发挥着重要作用。
在感染的情况下,炎症反应可以引发机体的免疫反应,通过促进白细胞的活化和分泌炎性因子来清除病原体。
不仅如此,炎症反应还可以刺激血管扩张、增加血管通透性、提高局部渗透压,从而促进免疫细胞和养分的到达感染部位,加速感染的清除和损伤的修复。
此外,炎症反应在疾病过程中也发挥着重要作用。
在自身免疫性疾病中,机体错误地攻击自身正常组织,导致炎症反应的持续存在,进而对组织器官造成损伤。
在肿瘤的发生和发展中,炎症反应被认为是一个重要的促进因素。
虽然炎症反应可能有助于清除癌细胞和促进肿瘤的消退,但是由于长期的炎症反应也会破坏正常的细胞和组织,因此有时也被视为促进肿瘤发生的因素之一。
二、炎症反应的机制炎症反应通常被分为局部和全身两种类型。
在局部炎症反应中,损伤组织细胞可以释放许多炎症介质(如肿瘤坏死因子、白细胞介素、前列腺素等等),从而引发各种生物学反应,比如血管扩张、血管通透性增加、白细胞浸润等等。
这些反应又会进一步促进炎症介质的释放和传递,形成了一个复杂的正反馈环路,最终导致了炎症的发生和持续。
在全身炎症反应中,炎症反应在多个组织和器官之间进行着复杂的信息传递和调节。
全身炎症反应通常包括一个局部炎症反应的起始点,引导免疫细胞和炎症介质到达全身的巨噬细胞系统中,从而引发系统性的炎症反应。
系统性炎症反应可以引发全身性的机体代谢和免疫异常,导致机体免疫力的下降,血容量和微循环的改变,最终可能导致器官功能障碍综合征(multiple organ dysfunction syndrome,MODS)等严重的病理生理学后果。
在病理学中缺氧的名词解释

在病理学中缺氧的名词解释缺氧(Hypoxia)是指机体所处的环境缺乏充足的氧气供应,导致细胞、组织或器官无法正常获得足够的氧供应的生理状态。
无论是生理性的高原缺氧、睡眠呼吸暂停引起的间歇性低氧血症,还是病理性的心肺疾病引起的慢性低氧血症,缺氧都可能对机体造成严重的影响。
缺氧是病理学中一个重要的研究领域,它涉及着多个疾病的发展与机体对抗病理性刺激的抵抗能力。
在异常的缺氧状态下,细胞和组织会发生一系列的生理和形态学改变,进而导致机体功能的紊乱。
本文将从细胞层面、组织层面以及器官层面分别探讨缺氧对机体的影响,并介绍相关研究以及临床意义。
一、细胞层面细胞是生命的基本单位,缺氧对细胞的影响直接决定了机体的生存能力。
在缺乏氧气的环境下,细胞无法进行正常的氧化磷酸化反应,从而导致能量代谢的障碍。
细胞内氧气不足会抑制线粒体的呼吸链和三磷酸腺苷(ATP)的生成,使细胞无法维持正常的能量水平。
此外,缺氧还会引发细胞内产生大量的自由基,增加氧化应激,损伤细胞膜、DNA和蛋白质等重要生物分子。
细胞对缺氧的反应是复杂而多变的。
在短暂的缺氧状态下,细胞可以通过调节相关信号通路,如活化低氧诱导因子(HIF)等,来适应缺氧环境。
HIF的激活可以促进细胞产生更多的血管生成因子,增加新血管的形成,以改善氧气供应。
然而,长时间的缺氧状态会导致细胞功能的丧失和细胞凋亡的发生。
缺氧还会引起核内DNA损伤和染色体畸变,从而增加细胞突变的风险。
二、组织层面不同类型的组织对缺氧的敏感性不同,其中一些组织对缺氧更为敏感,如心肌、神经细胞等。
心肌细胞是高度依赖氧气供应的,缺氧会导致心肌细胞能力下降,甚至出现心肌缺血、心肌梗死等严重病变。
神经细胞对缺氧也非常敏感,由于神经细胞的高氧需求,缺氧可能导致神经功能紊乱、细胞死亡甚至神经系统疾病的发生。
在组织层面,缺氧可以引发炎症反应的产生,并激活免疫细胞的作用。
缺氧会诱导一系列炎性因子的释放,如肿瘤坏死因子α(TNF-α)、白细胞介素-1(IL-1)等。
加味柴芍六君汤减轻炎症反应在缺氧诱导的慢性萎缩性胃炎胃黏膜损伤中的保护作用研究

加味柴芍六君汤减轻炎症反应在缺氧诱导的慢性萎缩性胃炎胃黏膜损伤中的保护作用研究洪银洁;涂文玲;傅颐;陈静怡;朱景茹;甘慧娟;李旻【期刊名称】《中医药学报》【年(卷),期】2022(50)6【摘要】目的:探究加味柴芍六君汤逆转慢性萎缩性胃炎(CAG)大鼠胃黏膜病理改变的炎症相关生物学机制。
方法:将20只SD雄性大鼠随机分为正常组6只,造模组14只。
采用化学诱导+饥饱失常的方法建立CAG大鼠模型,共16周,造模结束后随机取2只造模组大鼠进行模型评价。
成模大鼠随机分为模型组和加味柴芍六君汤组,每组6只。
正常组和模型组给予等体积(10mL/kg)生理盐水灌胃,加味柴芍六君汤组给予0.69g/mL加味柴芍六君汤灌胃,干预4周。
观察胃黏膜病理形态变化,检测3组大鼠血清炎症因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)的含量及胃黏膜组织HIF-1αmR-NA表达水平。
结果:正常组胃固有层腺体排列整齐,未见腺体萎缩、减少;模型组大鼠胃黏膜固有层腺体排列紊乱,局部腺体萎缩、减少,腺腔增大,炎性细胞浸润,可见多处散在出血点;加味柴芍六君汤组腺体排列较整齐,腺体萎缩改善,仍可见散在出血点。
模型组大鼠血清IL-1β、IL-6含量显著升高(P<0.01),胃黏膜组织HIF-1αmRNA表达水平较正常组上升(P<0.05)。
加味柴芍六君汤组大鼠血清IL-1β、IL-6含量显著降低(P<0.01),HIF-1αmR NA表达水平较模型组显示出下降的变化趋势(P>0.05)。
结论:加味柴芍六君汤改善CAG胃黏膜组织病理的机制可能是通过降低血清IL-1β、IL-6含量,下调胃黏膜缺氧诱导因子-1α(HIF-1α)过表达,从而改善胃黏膜局部缺氧环境,减轻炎症反应。
【总页数】5页(P27-31)【作者】洪银洁;涂文玲;傅颐;陈静怡;朱景茹;甘慧娟;李旻【作者单位】福建中医药大学【正文语种】中文【中图分类】R256.3【相关文献】1.柴芍六君加味方抑制慢性萎缩性胃炎患者胃黏膜腺体萎缩及机制研究2.柴芍六君加味方抑制慢性萎缩性胃炎患者胃黏膜腺体萎缩及机制研究3.加味柴芍六君汤治疗慢性非萎缩性胃炎的疗效及对血清胃蛋白酶原、胃泌素17及免疫功能的影响4.基于网络药理学研究加味柴芍六君汤治疗慢性萎缩性胃炎的作用机制5.柴芍六君汤对肝郁脾虚型慢性萎缩性胃炎大鼠胃黏膜细胞增殖和凋亡因子的影响因版权原因,仅展示原文概要,查看原文内容请购买。
缺氧的损伤机制

缺氧的损伤机制
缺氧(缺氧性损伤)是指细胞或组织受到氧气供应不足的影响,导致细胞功能障碍甚至细胞死亡的过程。
缺氧性损伤可能发生在各种疾病状态下,如心肌梗塞、中风、休克等。
以下是缺氧引起损伤的主要机制:
1. 氧化应激
- 缺氧导致细胞内氧化还原平衡失调,产生过多的活性氧自由基,造成氧化应激。
活性氧自由基会损害蛋白质、脂质和核酸,导致细胞损伤和凋亡。
2. 线粒体功能障碍
- 缺氧会导致线粒体功能障碍,影响细胞内氧化磷酸化过程,降低三磷酸腺苷(ATP)合成能力,导致细胞能量供应不足,加剧细胞损伤。
3. 细胞凋亡
- 缺氧性损伤会激活凋亡信号通路,促使细胞进入凋亡程序,导致细胞死亡。
凋亡是一种受控的细胞死亡过程,与炎症反应不同,不会引发炎症反应。
4. 炎症反应
- 缺氧会引发炎症反应,促使炎性细胞释放炎性介质,导致细胞损伤和组织炎症。
长期的炎症反应会加重细胞损伤和组织损害。
5. 细胞代谢紊乱
- 缺氧影响细胞内代谢过程,阻碍葡萄糖和氧的正常利用,导致乳酸堆积和酸中毒,加剧细胞损伤和功能障碍。
6. 血管损伤
- 缺氧会导致血管内皮细胞损伤和血液流动受阻,降低氧气输送到组织的能力,加重组织缺氧和细胞损伤。
7. DNA损伤
- 缺氧会导致DNA损伤和细胞遗传物质的异常,影响细胞的正常功能和遗传稳定性。
缺氧性损伤的机制是一个复杂的过程,涉及多个细胞生物学和生理学过程的相互作用。
了解缺氧性损伤的机制有助于预防和治疗相关疾病,保护细胞和组织免受氧气供应不足的伤害。
简述缺氧的基本类型
简述缺氧的基本类型缺氧是指机体组织细胞缺乏氧气供应的状态。
缺氧可以发生在不同的环境和生理状况下,根据缺氧的原因和表现,可以将其分为多种基本类型。
1. 急性缺氧急性缺氧是指机体在短时间内暴露在缺氧环境中,导致氧气供应不足。
例如,高山缺氧是一种常见的急性缺氧情况。
当人们迅速升高到高海拔地区时,由于大气压力的降低,氧气分压也随之降低,导致机体组织细胞缺氧。
急性缺氧还可以发生在窒息、溺水等意外情况下,由于呼吸系统无法正常供应氧气,造成机体急性缺氧。
2. 慢性缺氧慢性缺氧是指机体在较长时间内暴露在缺氧环境中,导致氧气供应不足。
例如,长期生活在高海拔地区的人们,由于大气中氧气分压的降低,会导致机体长期处于慢性缺氧状态。
慢性缺氧还可以发生在慢性呼吸系统疾病患者身上,如慢性阻塞性肺疾病(COPD)患者,由于肺功能受损,氧气交换受限,导致机体长期处于慢性缺氧状态。
3. 局部缺氧局部缺氧是指机体某一部位的组织细胞缺乏氧气供应的状态。
局部缺氧可以发生在血液循环障碍的情况下,如血管狭窄、血栓形成等,导致该部位的血液供应不足,从而引起局部缺氧。
局部缺氧还可以发生在组织损伤或炎症反应中,由于血管通透性增加、血流灌注不足等原因,导致该部位的组织细胞缺氧。
4. 细胞缺氧细胞缺氧是指机体细胞内缺乏足够的氧气供应。
细胞缺氧可以发生在细胞内氧气供应不足或细胞无法正常利用氧气的情况下。
例如,贫血患者由于血液中的氧气携带能力降低,导致细胞缺氧。
细胞缺氧还可以发生在细胞内线粒体功能障碍的情况下,线粒体是细胞内能量产生的重要器官,若线粒体功能受损,将导致细胞无法正常利用氧气进行能量代谢,最终导致细胞缺氧。
缺氧对机体的影响是多方面的。
缺氧会导致机体能量代谢障碍,细胞内ATP产生减少,影响细胞的正常功能。
缺氧还会导致机体免疫功能下降,易感染病原体。
此外,缺氧还会引起机体一系列的适应反应,如血管收缩、心率加快等,以增加氧气供应量,从而维持机体的正常功能。
高压氧治疗对炎症性肠病的缓解效果
高压氧治疗对炎症性肠病的缓解效果炎症性肠病(Inflammatory Bowel Disease,IBD)是一类慢性、复发性的肠道炎症性疾病,主要包括溃疡性结肠炎和克罗恩病。
这些疾病以腹泻、腹痛、消化道出血和全身炎症反应等症状为主,给患者的生活和健康造成了严重影响。
目前,医学界对于炎症性肠病的治疗方法众多,其中高压氧治疗作为一种新兴的非药物治疗手段,具有一定的疗效。
本文将以高压氧治疗对炎症性肠病的缓解效果为主题,对该疗法的原理、临床应用和疗效进行探讨。
一、高压氧治疗的原理高压氧治疗是指将患者置于高压氧环境中,在纯氧气氛围中进行治疗。
通常氧气的浓度可达到100%,气压可以增加到1.1-4倍大气压,以提供更多的氧供给给患者。
高压氧治疗通过增加血浆中溶解氧的浓度,提高血氧饱和度,从而改善组织缺氧状态,促进新生血管的形成,抑制炎症介质的释放,增加细胞膜的稳定性等作用,从而对炎症性肠病的缓解具有积极的作用。
二、高压氧治疗在炎症性肠病中的应用高压氧治疗在炎症性肠病的应用主要包括两个方面。
一是作为辅助治疗手段,用于减轻疾病的症状和促进病情稳定。
二是作为维持治疗手段,用于延缓疾病的进展和减少复发发作。
近年来,高压氧治疗在炎症性肠病患者中的应用逐渐增加,临床疗效得到了一定的肯定和认可。
三、高压氧治疗对炎症性肠病的缓解效果高压氧治疗对炎症性肠病的缓解效果是通过多种途径产生的。
首先,高压氧环境可以提高血液中氧气的溶解度,增加氧气的扩散量,改善肠黏膜缺氧状态。
其次,通过抑制炎症介质的释放,减少炎症反应,降低肠道黏膜损伤程度,从而减轻疾病的症状和炎症水平。
此外,高压氧环境还可以促进血管新生和修复,改善肠道组织的血液循环,促进创面愈合和肠道功能的恢复。
这些机制共同作用,使得高压氧治疗在改善炎症性肠病症状、缓解病情进展方面取得了一定的成效。
四、高压氧治疗的不良反应与注意事项尽管高压氧治疗对炎症性肠病疗效显著,但仍需重视其不良反应与注意事项。
缺氧对呼吸影响的叙述
缺氧对呼吸影响的叙述缺氧是指机体组织细胞缺乏足够的氧气供应。
呼吸是人体获取氧气的主要途径,因此缺氧对呼吸系统有着重要的影响。
本文将从不同方面叙述缺氧对呼吸的影响。
缺氧会导致呼吸频率和深度增加。
当机体缺氧时,呼吸中枢会受到刺激,引起呼吸增快。
这是为了增加氧气的摄入量,以满足组织细胞对氧气的需求。
此外,缺氧还会导致呼吸深度增加,即每次呼吸的气量增加。
这是为了增加肺泡与血液之间的氧气交换面积,从而提高氧气的摄入量。
缺氧对呼吸肌肉的功能和调节起着重要作用。
呼吸肌肉包括膈肌和肋间肌。
缺氧会增加呼吸肌肉的收缩力和耐力,以增加呼吸的效率。
此外,缺氧还会通过调节中枢神经系统和神经肌肉接头的功能,改变呼吸的节律和协调性。
这些调节使呼吸能够适应不同程度的缺氧。
第三,缺氧会引起呼吸道的痉挛和炎症反应。
缺氧会导致支气管平滑肌收缩,使呼吸道阻力增加,呼吸困难。
此外,缺氧还会引起呼吸道粘液分泌增加,导致黏液堵塞和炎症反应,进一步加重呼吸困难。
第四,长期缺氧会导致呼吸系统的结构和功能改变。
长期缺氧会引起肺泡和血管的结构重构,导致肺泡纤维化和肺动脉高压。
这些改变会进一步降低氧气的摄入量,加重缺氧的程度。
此外,长期缺氧还会引起肺功能的下降,使呼吸效率更低。
缺氧还会对呼吸系统以外的其他系统产生影响。
缺氧会导致心血管系统的反应,引起心率加快和血压升高,以提供足够的氧气供应。
此外,缺氧还会影响中枢神经系统和代谢功能,导致头晕、乏力等全身症状。
缺氧对呼吸系统有着重要的影响。
它会引起呼吸频率和深度增加,改变呼吸肌肉的功能和调节,导致呼吸道的痉挛和炎症反应,影响呼吸系统的结构和功能,以及对其他系统产生影响。
了解缺氧对呼吸的影响,有助于预防和治疗与缺氧相关的疾病,保护呼吸系统的健康。
缺氧对人体健康的影响及其机制
缺氧对人体健康的影响及其机制氧气是维持生命的必要物质之一,人体中的每一个细胞都需要氧气来进行代谢活动。
然而,当我们的身体无法获得足够的氧气时,就会出现缺氧的状态。
缺氧是一种常见的生理变化,它可以出现在很多情况下,如高山、深海、空调房间等地方,甚至在我们的日常生活中也很常见。
虽然短时间的缺氧对身体不会造成太大的影响,但长时间的缺氧却可能对人体健康产生不容忽视的影响。
影响身体器官的功能缺氧对人体健康的影响有许多方面,其中最明显的就是会影响身体器官的功能。
由于我们的身体各个器官都需要氧气来运行和代谢,当缺氧发生时,这些器官就不会得到足够的氧气,从而导致它们的功能受到影响。
例如,如果缺氧发生在大脑中,就会导致头痛、眩晕、抽搐等症状的出现。
而如果缺氧发生在心脏部位,就会影响其收缩力和供血能力,从而导致心脏病、心肌缺血等疾病的发生。
影响身体的代谢除了对身体器官的功能有影响外,缺氧还会影响身体的代谢。
在缺氧的状态下,身体会出现代谢紊乱的现象,导致能量产生和消耗的平衡失调。
这样就会引起许多问题,比如肌肉无力、胃肠功能紊乱等。
影响人的记忆力和思维能力另一方面,长期的缺氧还可能对人的记忆力和思维能力产生影响。
因为大脑需要大量的氧气来进行代谢活动,当缺氧状态长时间持续时,就会导致大脑的功能受到影响。
这样就会出现一些类似于认知障碍、失忆等类的问题。
机制缺氧对人体健康的影响机制是多方面的,下面着重介绍缺氧与人体的细胞代谢和炎症反应的关系。
细胞代谢细胞内能量产生是维持生命的基础,而呼吸和氧气供给是能量产生的重要条件。
当人体暴露在缺氧环境中时,其中血液中的氧气浓度会下降,细胞中的微量元素、代谢产物、氧化还原电位等指标也都发生一定的变化。
这些细胞代谢过程的变化,进而会带来一系列的生理、生化和分子生物学的变化,导致机体的生理功能产生变化。
炎症反应缺氧环境下,体内抗氧化系统的能力下降,细胞代谢等正常生理过程发生紊乱,这都可能导致机体发生一定的炎症反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zebrafish Neuroglobin Is a Cell-Membrane-Penetrating Globin †Seiji Watanabe ‡and Keisuke Wakasugi*,‡,§Department of Life Sciences,Graduate School of Arts and Sciences,The Uni V ersity of Tokyo,3-8-1Komaba,Meguro-ku,Tokyo 153-8902,Japan,and Precursory Research for Embryonic Science and Technology (PRESTO),Japan Science andTechnology (JST),4-1-8Honcho,Kawaguchi,Saitama 332-0012,JapanRecei V ed February 18,2008;Re V ised Manuscript Recei V ed March 26,2008ABSTRACT :Neuroglobin (Ngb)is a recently discovered vertebrate heme protein that is expressed in thebrain and can reversibly bind oxygen.Mammalian Ngb is involved in neuroprotection under oxidative stress conditions,such as ischemia and reperfusion.We previously demonstrated that human ferric Ngb binds to the R subunit of heterotrimeric G proteins (G R i )and acts as a guanine nucleotide dissociation inhibitor (GDI)for G R i .Recently,we used a protein delivery reagent,Chariot,and demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity.In the present study,we found that chimeric ZHHH Ngb,in which module M1of human Ngb is replaced by that of zebrafish Ngb,protects PC12cells against oxidative stress-induced cell death even in the absence of ing fluorescein isothiocyanate (FITC)-labeled Ngb proteins,we demonstrated that both zebrafish and chimeric ZHHH Ngb can penetrate cell membranes in the absence of Chariot,suggesting that module M1of zebrafish Ngb can translocate into cells.This is the first report of a native cell-membrane-penetrating globin.Neuroglobin (Ngb)1is a heme protein,recently discovered in the mammalian brain,which can reversibly bind oxygen (O 2)(1-3).Mammalian Ngb is widely expressed in the cerebral cortex,hippocampus,thalamus,hypothalamus,cerebellum,and retina (1,4-8).It was recently suggested that mammalian Ngb might be involved in the neuronal response to hypoxia and ischemia (9-13).Expression of mammalian Ngb was reported to increase in response to neuronal hypoxia in V itro and to focal cerebral ischemia in V i V o (9,10).Neuronal survival following hypoxia or oxida-tive stress conditions can be reduced by inhibiting Ngb expression with an antisense oligodeoxynucleotide and enhanced by Ngb overexpression,supporting the notion that mammalian Ngb protects neurons from hypoxic -ischemic insults (9,11,13).Mammalian Ngb was reported to protect the brain from experimentally induced stroke in V i V o (10,12).We previously found that human ferric Ngb binds exclu-sively to the GDP-bound form of the R subunit of hetero-trimeric G protein (G R i )and acts as a guanine nucleotide dissociation inhibitor (GDI)by inhibiting the rate of exchange of GDP for GTP on G R i (14).In contrast,we showed that under normoxia,ferrous ligand-bound Ngb did not have aGDI activity (14).These findings led us to propose that human Ngb may be a novel oxidative stress-responsive sensor for signal transduction in the brain (14,15).Recently,we demonstrated that human Ngb competes with γsubunits of heterotrimeric G protein (G γ)for binding to G R i ,suggesting that the interaction of GDP-bound G R i with ferric Ngb liberates G γ(16).The enhancement of G γsignaling may promote cell survival by the activation of phosphoti-dylinositol 3-kinase (17).Moreover,we used a protein delivery reagent,Chariot (18),to investigate whether the GDI activity of human Ngb plays an important role in its neuroprotective activity under oxidative stress conditions and demonstrated that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity (19).Although Ngb was originally identified in mammalian species,it is also present in nonmammalian vertebrates,including the zebrafish,Danio rerio (20,21).Mammalian and fish Ngb proteins share about 50%amino acid sequence identity.Fish Ngb has similar oxygen-binding kinetics as mammalian Ngb (21).The genes of human and zebrafish Ngb are made of four exons interrupted by three introns,and exons 1,2,3,and 4encode compact protein structural “modules”,termedM1,M2,M3,andM4,respectively(20-23).Previously,we demonstrated that zebrafish ferric Ngb did not exhibit GDI activity and that a chimeric ZHHH Ngb,in which module M1of human Ngb is replaced by that of zebrafish,forms almost the same structure as human Ngb and acts as a GDI for G R i in a manner similar to human Ngb (22).Moreover,we showed that protein transduction of chimeric ZHHH but not zebrafish Ngb with Chariot rescued PC12cell death caused by hypoxia/reoxygenation (19).In the present study,we investigated,in the absence of Chariot,the protective effect of several Ngb proteins against cell death of PC12cells after hypoxia/reoxygenation.We†This work was supported in part by Grant-in-Aid 19570121for Scientific Research (C)(to K.W.)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan.*To whom correspondence should be addressed:Department of Life Sciences,Graduate School of Arts and Sciences,The University of Tokyo,3-8-1Komaba,Meguro-ku,Tokyo 153-8902,Japan.Telephone:81-3-5454-4392.Fax:81-3-5454-4392.E-mail:wakasugi@bio.c.u-tokyo.ac.jp.‡The University of Tokyo.§Japan Science and Technology (JST).1Abbreviations:Ngb,neuroglobin;G protein,guanine nucleotide-binding protein;GDI,guanine nucleotide dissociation inhibitor;PBS,phosphate-buffered saline;MTS,3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H -tetrazolium,inner salt;TBE,trypan blue exclusion;FITC,fluorescein isothiocyanate.Biochemistry 2008,47,5266–5270526610.1021/bi800286m CCC:$40.75 2008American Chemical SocietyPublished on Web 04/17/2008discovered that the chimeric ZHHH Ngb protects PC12cells against oxidative stress-induced cell death even in the absence of Chariot.We prepared fluorescein isothiocyanate (FITC)-labeled Ngb proteins and investigated their translo-cation into cells,demonstrating that both zebrafish and chimeric ZHHH Ngb can penetrate the cell membrane even in the absence of Chariot.EXPERIMENTAL PROCEDURESPreparation of Proteins.Plasmids for human Ngb,ze-brafish Ngb,and chimeric ZHHH Ngb,in which module M1of human Ngb was replaced by that of zebrafish Ngb,were prepared as described previously (14,22).Overexpression of each Ngb was induced in Escherichia coli strain BL 21(DE 3)following treatment with isopropyl- -D -thiogalacto-pyranoside,and each Ngb protein was purified as described previously (14,16,22,24-26).In brief,the soluble cell extracts were loaded onto DEAE sepharose anion-exchange columns equilibrated with 20mM Tris-HCl (pH 8.0).Ngb proteins were eluted from the columns with buffer containing 75mM NaCl and further purified by passage through Sephacryl S-200HR gel-filtration columns.Purified Ngb was dialyzed overnight against phosphate-buffered saline (PBS).Endotoxin was removed from the protein solutions by phase separation using Triton X-114(Sigma-Aldrich,St.Louis,MO)(27,28).Trace amounts of Triton X-114were removed by passage through Sephadex G25gel (GE Healthcare Bio-Sciences,Piscataway,NJ)equilibrated with PBS.Cell Culture.A rat pheochromocytoma PC12cell line (RCB0009)was obtained from the RIKEN Cell Bank (Ibaraki,Japan).PC12cells were maintained in culture in Dulbecco’s modified Eagle’s medium (DMEM)containing 4.5g/L glucose,10%(v/v)fetal bovine serum (FBS),10%(v/v)heat-inactivated horse serum,100units/mL penicillin,100µg/mL streptomycin,and 2mM glutamine (all from Invitrogen,Carlsbad,CA)in a humidified atmospherecontaining 5%CO 2at 37°C.The medium was changed twice weekly,and the cultures were split 1:8once everyweek.F IGURE 1:Protective effects of human Ngb (HNgb),zebrafish Ngb (ZNgb),and chimeric Ngb (CNgb),in the absence of Chariot,on PC12cell death induced by hypoxia/reoxygenation.Human Ngb (HNgb),zebrafish Ngb (ZNgb),or chimeric Ngb (CNgb)was applied to PC12cells without Chariot.Cell viabilities were measured by TBE (A)and MTS (B)assays.All data are expressed as means (standard error of means (SEM)from three independent experiments,each performed in tripricate.(/)p <0.05and (//)p <0.0005,compared to PBS without Chariot by one-way analysis of variation (ANOVA).Each value of chimeric Ngb with Chariot is shown by an arrow at the right side (19).F IGURE 2:Transduction of FITC-labeled human,zebrafish,or chimeric Ngb into PC12cells.FITC-labeled (green)human (HNgb),zebrafish (ZNgb),or chimeric (CNgb)Ngb was applied to PC12cells with or without Chariot and in the presence of FM4-64(red),a fluorescent marker of endocytosis.The cells were then incubated for another 6h under hypoxia (1%O 2),fixed in 4%(w/v)paraformaldehyde for 30min,and observed with fluorescencemicroscopy.F IGURE 3:Transduction of FITC-labeled human,zebrafish,or chimeric Ngb into HeLa cells.FITC-labeled (green)human (HNgb),zebrafish (ZNgb),or chimeric (CNgb)Ngb was applied to HeLa cells,seeded on glass,without Chariot and in the presence of FM4-64(red).The cells were then incubated for another 6h under normoxia.The living,unfixed cells were directly observed with fluorescence microscopy.Zebrafish Ngb as a Cell-Membrane-Penetrating Globin Biochemistry ,Vol.47,No.19,20085267HeLa cells (RCB0007)were also obtained from the RIKEN Cell Bank.HeLa cells were maintained in culture in DMEM containing 4.5g/L glucose,10%(v/v)FBS,100units/mL penicillin,100µg/mL streptomycin,and 2mM glutamine (all from Invitrogen)in a humidified atmosphere containing 5%CO 2at 37°C.The medium was changed twice weekly,and the cultures were split 1:8once every week.Hypoxia/Reoxygenation.We modified the method previ-ously reported (29-31)to examine PC12cell death caused by hypoxia/reoxygenation.In brief,the cells were plated on poly-D -lysine-coated 96-well tissue culture plates at a density of 1.0×105cells/mL in DMEM containing 2.0g/L glucose,2%(v/v)FBS,and 2mM glutamine for 24h.Each Ngb was transduced with or without Chariot (Active Motif,Carlsbad,CA)as described below.Hypoxia was induced in a multigas incubator (Astec,Fukuoka,Japan;set to 1%O 2,with 5%CO 2and 94%N 2)at 37°C for 24h.After the hypoxia,the culture medium was replaced with fresh DMEM containing 2.0g/L glucose,2%(v/v)FBS,and 2mM glutamine,and the cells were incubated at 37°C for 24h under normoxia (95%air/5%CO 2).Protein Transduction with Chariot.Protein transduction was performed using Chariot according to the instructions of the manufacturer.Each purified Ngb protein (3µg per well)was incubated in the absence or presence of diluted Chariot for 30min at room temperature.Then,the mixture was added to cells that had been washed in DMEM without serum.Fresh DMEM without serum was added,and the cells were incubated at 37°C for 1h;FBS was then added to a final concentration of 2%.The cells were incubated at 37°C for another 2h to allow for Ngb internalization.Cell-Viability Assays.Cell viability was measured by trypan blue exclusion (TBE)assays.Trypan blue was addedto the cultured cells,and percentages of blue-stained cells were calculated after counting at least 1000cells via phase-contrast microscopy.Cell viability was also measured using the CellTiter 96AQueous One Solution Cell Proliferation Assay Reagent (Promega,Madison,WI),containing [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sul-fophenyl)-2H -tetrazolium,inner salt (MTS)].The cultured cells were incubated with the MTS reagent at 37°C for 4h in a humidified,5%CO 2atmosphere.Then,the amount of colored formazan dye formed was quantified by measuring the absorbance at 490nm with an enzyme-linked immun-osorbent assay (ELISA)plate reader (BioRad,Hercules,CA).FITC Labeling of Ngb Proteins.Ngb was conjugated to fluorescein isothiocyanate (FITC;Dojindo,Kumamoto,Japan)according to the instructions of the manufacturer of the Fluoreporter FITC protein-labeling kit (Molecular Probes,Eugene,OR).FITC-labeled Ngb was purified using G25gel chromatography to eliminate free FITC.The concentrations of Ngb protein and FITC dye in the purified FITC-labeled Ngb were calculated on the basis of their absorbance at 413and 494nm,respectively.The molar ratio of dye/protein in the purified FITC-labeled Ngb was determined to be 0.9-1.3FITC dye molecules/Ngb protein.Obser V ation of Protein Translocation into Cells with Fluorescence Microscopy.PC12and HeLa cells were seeded at 2×104cells/mL in 35mm tissue culture dishes (Corning,Corning,NY)and 35mm glass-bottomed dishes (Matsunami Glass,Osaka,Japan),respectively.When cells were 60-70%confluent,FITC-labeled Ngb was added with or without Chariot in the presence of 1µM FM4-64(Molecular Probes,Eugene,OR),a general fluorescent marker of endocytosis.The cells were incubated under hypoxia (1%O 2)or normoxia at 37°C for 6or 24h.PC12cells were washed with cold PBS twice,fixed in 4%(w/v)paraformaldehyde for 30min,and analyzed by fluorescence microscopy (Olympus IX71,Tokyo,Japan).HeLa cells were washed with cold PBS twice,and the living,unfixed cells were directly observed with fluorescence microscopy.Fluorescent images were also collected by confocal laser scanning microscopy (Olympus,FV1000)in a sequential scanning mode.RESULTS AND DISCUSSIONChimeric ZHHH Ngb Protects PC12Cells against Oxida-ti V e Stress-Induced Cell Death in the Absence of Chariot.Recently,we used the protein delivery reagent,Chariot,to investigate whether the GDI activity of human Ngb plays an important role in its neuroprotective activity under oxidative stress conditions and demonstrated that the GDI activity of human Ngb is tightly correlated with itsneuro-F IGURE 4:Confocal images of FITC-labeled zebrafish Ngb in HeLa cells.FITC-labeled (green)zebrafish Ngb was applied to HeLa cells without Chariot and in the presence of FM4-64(red).The cells were then incubated for another 24h under normoxia.The living,unfixed cells were directly observed with confocal laser scanning fluorescencemicroscopy.F IGURE 5:Sequence alignment among module M1of fish and mammalian Ngb proteins.Multiple sequence alignment was performed using Clustal W with manual adjustments.Arg (R)and Lys (K)residues conserved among fish Ngb proteins are highlighted in yellow.Proline (P)residues in mammalian sequences are highlighted in red.The positions of R helices (A and B)of human Ngb (PDB code 1OJ6)are shown.Numbers on the left and right of the sequences correspond to those at the beginning and the end of the sequences,respectively.Gaps in the sequences are indicated by dashes.5268Biochemistry ,Vol.47,No.19,2008Watanabe and Wakasugiprotective activity(19).We showed that,in the presence of Chariot,protein transduction of human or chimeric ZHHH but not zebrafish Ngb resulted in a significant increase in cell viability(19).In the present study,we investigated the neuroprotective activities of human,zebrafish,and chimeric ZHHH Ngb in the absence of Chariot.Parts A and B of Figure1clearly show that the chimeric ZHHH Ngb protected PC12cells against cell death caused by hypoxia/reoxygen-ation even in the absence of Chariot.In contrast,the viabilities of cells incubated with human or zebrafish Ngb without Chariot were not significantly different from the control condition(PBS;Parts A and B of Figure1).These results suggest that chimeric ZHHH Ngb may efficiently cross biological membranes.Translocation of Zebrafish and Chimeric ZHHH Ngb into Cells.Wefirst tried to confirm that human Ngb protein was delivered into PC12cells by Chariot.Because FITC-labeled Ngb proteins easily attached,nonspecifically,to poly-D-lysine-coated dishes,dishes without poly-D-lysine were used for this experiment.As shown in Figure2,human Ngb was successfully delivered into PC12cells in the presence of Chariot.Part of the FITC-labeled Ngbfluorescence signal appeared punctate and co-localized with FM4-64,a general fluorescent marker of endocytosis,within cells(Figure2), suggesting partial localization of FITC-labeled Ngb proteins in endosomes prior to their release into the cytosol.In control experiments without Chariot,human Ngb was not translo-cated into PC12cells(Figure2).Next,we evaluated the ability of zebrafish and chimeric ZHHH Ngb proteins to be translocated into cells in the absence of Chariot.We demonstrated that FITC-labeled chimeric ZHHH and ze-brafish Ngb penetrated the cell membrane of PC12cells in the absence of Chariot(Figure2).When these results are taken together,they suggest that module M1of zebrafish Ngb has the ability to translocate into cells.The efficiency of chimeric ZHHH or zebrafish Ngb protein transduction did not depend upon hypoxic or normoxic conditions(data not shown).Moreover,we found that both zebrafish and chimeric Ngb but not human Ngb can be translocated also into HeLa cells in the absence of Chariot(Figure3).The transduction efficiencies of chimeric and zebrafish Ngb in HeLa cells were dependent upon their incubation time(data not shown). Confocal images of living,unfixed HeLa cells confirmed the intracellular presence of zebrafish Ngb(Figure4).In the present study,we showed that chimeric ZHHH and zebrafish Ngb proteins are cell-membrane-penetrating globins. Furthermore,our results suggest that module M1of zebrafish Ngb is essential for protein transduction of Ngb into cells, because both the zebrafish and chimeric Ngb proteins share the M1module of zebrafish Ngb.It has been reported that the BETA2/NeuroD protein and the human immunodefi-ciency virus type1(HIV-1)TAT(transactivator of transcrip-tion)protein can permeate several cells because of arginine (Arg)-and lysine(Lys)-rich protein transduction domain sequences in their structures(32-34).The module M1 sequence of zebrafish Ngb shares several conserved basic Arg and Lys residues with otherfish Ngb proteins(Figure 5).As shown in Figure5,the positions of some Lys residues in zebrafish Ngb are occupied by proline(Pro)residues in human Ngb,implying that Ngb might have undergone mutations of Lys to Pro during its evolutionary process from fish to human,thus inhibiting its ability to efficiently transverse cell membranes.Further studies are in progress using site-directed mutagenesis in zebrafish Ngb M1module to investigate the mechanism of chimeric ZHHH and zebrafish Ngb protein transduction.Wittenberg and Wittenberg observed an extracellular heme-protein in the choroid blood from perfused retina of two basal teleostfish species(bowfin and bluefish)(35).The hemochrome absorption spectra of these proteins were similar to those of fish Ngb.This heme protein may correspond to Ngb,implying thatfish Ngb may be secreted.Further research is necessary to investigate the physiological properties offish Ngb. Molecular Design of a No V el Cell-Membrane-Penetrating, Neuroprotecti V e Agent.In the present study,we demonstrated that chimeric ZHHH Ngb is a cell-membrane-penetrating, neuroprotective globin.Previously,it was reported that Ngb proteins were fused to the basic Arg-rich protein transduction domain of the HIV-1TAT protein,which possesses the ability to traverse biological membranes efficiently(36-38). The TAT-fused Ngb proteins entered cells(36-38),but the results of their neuroprotective properties are conflicting:Zhou et al.reported that a TAT-fused rat Ngb protected against apoptosis induced by hypoxia(38),whereas Peroni et al. demonstrated that treatment with a TAT-fused human Ngb failed to protect against oxygen and glucose deprivation(37). Fusion of human Ngb to the TAT sequence might block the binding site of human Ngb with G R i and/or induce changes in the human Ngb-G R i interaction because of the existence of many residues with positive charges in the TAT sequence.From our present results on chimeric ZHHH Ngb,as well as our previous results on several module-substituted proteins,we conclude that module substitutions will be useful for designing and producing novel functional proteins(22,26,39-43). REFERENCES1.Burmester,T.,Weich,B.,Reinhardt,S.,and Hankeln,T.(2000)A vertebrate globin expressed in the brain.Nature407,520–523.2.Dewilde,S.,Kiger,L.,Burmester,T.,Hankeln,T.,Baudin-Creuza,V.,Aerts,T.,Marden,M.C.,Caubergs,R.,and Moens,L.(2001) Biochemical characterization and ligand binding properties of neuroglobin,a novel member of the globin family.J.Biol.Chem.276,38949–38955.3.Watts,R.A.,III,and Hargrove,M.S.(2001)Human neuroglobin,a hexacorordinate hemoglobin that reversibly binds oxygen.J.Biol.Chem.276,30106–30110.4.Mammen,P.P.A.,Shelton,J.M.,Goetsch,S.C.,Williams,S.C.,Richardson,J. A.,Garry,M.G.,and Garry, D.J.(2002) Neuroglobin,a novel member of the globin family,is expressed in focal regions of the brain.J.Histochem.Cytochem.50,1591–1598.5.Reuss,S.,Saaler-Reinhardt,S.,Weich,B.,Wystub,S.,Reuss,M.H.,Burmester,T.,and Hankeln,T.(2002)Expression analysis of neuroglobin mRNA in rodent tissues.Neuroscience115,645–656.6.Zhang,C.,Wang,C.,Deng,M.,Li,L.,Wang,H.,Fan,M.,Xu,W.,Meng,F.,Qian,L.,and He,F.(2002)Full-length cDNA cloning of human neuroglobin and tissue expression of rat mun.290,1411–1419.7.Schmidt,M.,Gie l,A.,Laufs,T.,Hankeln,T.,Wolfrum,U.,andBurmester,T.(2003)How does the eye breathe?Evidence for neuroglobin-mediated oxygen supply in the mammalian retina.J.Biol.Chem.278,1932–1935.8.Wystub,S.,Laufs,T.,Schmidt,M.,Burmester,T.,Maas,U.,Saaler-Reinhardt,S.,Hankeln,T.,and Reuss,S.(2003)Localization of neuroglobin protein in the mouse brain.Neurosci.Lett.346, 114–116.9.Sun,Y.,Jin,K.,Mao,X.O.,Zhu,Y.,and Greenberg,D.A.(2001)Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury.Proc.Natl.Acad.Sci.U.S.A.98,15306–15311.Zebrafish Ngb as a Cell-Membrane-Penetrating Globin Biochemistry,Vol.47,No.19,2008526910.Sun,Y.,Jin,K.,Peel,A.,Mao,X.O.,Xie,L.,and Greenberg,D.A.(2003)Neuroglobin protects the brain from experimentalstroke in V i V A100,3497–3500. 11.Fordel, E.,Thijs,L.,Martinet,W.,Lenjou,M.,Laufs,T.,Bockstaele,D.V.,Moens,L.,and Dewilde,S.(2006)Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuro-blastoma cells against oxidative stress-induced cell death.Neurosci.Lett.410,146–151.12.Khan,A.A.,Wang,Y.,Sun,Y.,Mao,X.O.,Xie,L.,Miles,E.,Graboski,J.,Chen,S.,Ellerby,L.M.,Jin,K.,and Greenberg,D.A.(2006)Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia.Proc.Natl.Acad.Sci.U.S.A.103,17944–17948.13.Li,R.C.,Pouranfar,F.,Lee,S.K.,Morris,M.W.,Wang,Y.,andGozal,D.(2007)Neuroglobin protects PC12cells against102-amyloid-induced cell injury.Neurobiol.Aging,in press.14.Wakasugi,K.,Nakano,T.,and Morishima,I.(2003)Oxidizedhuman neuroglobin as a heterotrimeric G R protein guanine nucleotide dissociation inhibitor.J.Biol.Chem.278,36505–36512.15.Wakasugi,K.,Kitatsuji,C.,and Morishima,I.(2005)Possibleneuroprotective mechanism of human neuroglobin.Ann.N.Y.Acad.Sci.1053,220–230.16.Kitatsuji,C.,Kurogochi,M.,Nishimura,S.,Ishimori,K.,andWakasugi,K.(2007)Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry.J.Mol.Biol.368,150–160.17.Schwindinger,W.F.,and Robishaw,J.D.(2001)HeterotrimericG-protein γ-dimers in growth and differentiation.Oncogene20, 1653–1660.18.Morris,M.C.,Depollier,J.,Mery,J.,Heitz,F.,and Divita,G.(2001)A peptide carrier for the delivery of biologically active proteins into mammalian cells.Nat.Biotechnol.19,1173–1176.19.Watanabe,S.,and Wakasugi,K.(2008)Neuroprotective functionof human neuroglobin is correlated with its guanine nucleotide dissociation inhibitor mun.369,695–700.20.Awenius,C.,Hankeln,T.,and Burmester,T.(2001)Neuroglobinsfrom the zebrafish Danio rerio and the pufferfish Tetraodon nigro V mun.287,418–421. 21.Fuchs,C.,Heib,V.,Kiger,L.,Haberkamp,M.,Roesner,A.,Schmidt,M.,Hamdane,D.,Marden,M.C.,Hankeln,T.,and Burmester,T.(2004)Zebrafish reveals different and conserved features of vertebrate neuroglobin gene structure,expression pattern, and ligand binding.J.Biol.Chem.279,24116–24122.22.Wakasugi,K.,and Morishima,I.(2005)Identification of residuesin human neuroglobin crucial for guanine nucleotide dissociation inhibitor activity.Biochemistry44,2943–2948.23.Go,M.(1981)Correlation of DNA exonic regions with proteinstructural units in haemoglobin.Nature291,90–92.24.Wakasugi,K.,Nakano,T.,Kitatsuji,C.,and Morishima,I.(2004)Human neuroglobin interacts withflotillin-1,a lipid raft micro-domain-associated mun.318, 453–460.25.Wakasugi,K.,Nakano,T.,and Morishima,I.(2004)Associationof human neuroglobin with cystatin C,a cysteine proteinase inhibitor.Biochemistry43,5119–5125.26.Wakasugi,K.,and Morishima,I.(2005)Preparation and charac-terization of a chimeric zebrafish-human neuroglobin engineered by module mun.330, 591–597.27.Aida,Y.,and Pabst,M.J.(1990)Removal of endotoxin fromprotein solutions by phase separation using Triton X-114.J.Im-munol.Methods132,191–195.28.Liu,S.,Tobias,R.,McClure,S.,Styba,G.,Shi,Q.,and Jackowski,G.(1997)Removal of endotoxin from recombinant proteinpreparations.Clin.Biochem.30,455–463.29.Yoshimura,S.-I.,Banno,Y.,Nakashima,S.,Takenaka,K.,Sakai,H.,Nishimura,Y.,Sakai,N.,Shimizu,S.,Eguchi,Y.,Tsujimoto,Y.,and Nozawa,Y.(1998)Ceramide formation leads to caspase-3 activation during hypoxic PC12cell death.J.Biol.Chem.273, 6921–6927.30.Yamada,J.,Yoshimura,S.,Yamakawa,H.,Sawada,M.,Nakagawa,M.,Hara,S.,Kaku,Y.,Iwama,T.,Naganawa,T.,Banno,Y., Nakashima,S.,and Sakai,N.(2003)Cell permeable ROS scavengers,Tiron and Tempol,rescue PC12cell death caused by pyrogallol or hypoxia/reoxygenation.Neurosci.Res.45,1–8. 31.Koo,B.-S.,Lee,W.-C.,Chung,K.-H.,Ko,J.-H.,and Kim,C.-H.(2004)A water extract of Curcuma longa L.(Zingiberaceae) rescues PC12cell death caused by pyrogallol or hypoxia/reoxy-genation and attenuates hydrogen peroxide induced injury in PC12 cells.Life Sci.75,2363–2375.32.Schwarze,S.R.,Ho,A.,Vocero-Akbani,A.,and Dowdy,S.F.(1999)In vivo protein transduction:Delivery of a biologically active protein into the mouse.Science285,1569–1572.33.Futaki,S.(2005)Membrane-permeable arginine-rich peptides andthe translocation mechanisms.Ad V.Drug Deli V ery Re V.57,547–558.34.Noguchi,H.,Bonner-Weir,S.,Wei,F.-Y.,Matsushita,M.,andMatsumoto,S.(2005)BETA2/NeuroD protein can be transduced into cells due to an arginine-and lysine-rich sequence.Diabetes 54,2859–2866.35.Wittenberg,J.B.,and Wittenberg,B.A.(1975)A hemoproteinimplicated in oxygen transport into the eye offip.Biochem.Physiol.,Part A:Mol.Integr.Physiol.51,425–429.36.Mendoza,V.,Klein,D.,Ichii,H.,Ribeiro,M.M.,Ricordi,C.,Hankeln,T.,Burmester,T.,and Pastori,R.L.(2005)Protection of islets in culture by delivery of oxygen binding neuroglobin via protein transduction.Transplant Proc.37,237–240.37.Peroni,D.,Negro,A.,Ba¨hr,M.,and Dietz,G.P.H.(2007)Intracellular delivery of neuroglobin using HIV-1TAT protein transduction domain fails to protect against oxygen and glucose deprivation.Neurosci.Lett.421,110–114.38.Zhou,G.-Y.,Zhou,S.-N.,Lou,Z.-Y.,Zhu,C.-S.,Zheng,X.-P.,and Hu,X.-Q.(2008)Translocation and neuroprotective properties of TAT PTD Ngb fusion protein in primary cultured cortical neurons.Biotechnol.Appl.Biochem.49,25–33.39.Wakasugi,K.,Ishimori,K.,Imai,K.,Wada,Y.,and Morishima,I.(1994)“Module”substitution in hemoglobin subunits:Preparationand characterization of a“chimera R-subunit”.J.Biol.Chem.269, 18750–18756.40.Inaba,K.,Wakasugi,K.,Ishimori,K.,Konno,T.,Kataoka,M.,and Morishima,I.(1997)Structural and functional roles of modules in hemoglobin:Substitution of module M4in hemoglobin subunits.J.Biol.Chem.272,30054–30060.41.Wakasugi,K.,Ishimori,K.,and Morishima,I.(1997)“Module”-substituted globins:Artificial exon shuffling among myoglobin, hemoglobin R-and -subunits.Biophys.Chem.68,265–273. 42.Wakasugi,K.,Quinn,C.L.,Tao,N.,and Schimmel,P.(1998)Genetic code in evolution:Switching species-specific aminoacy-lation with a peptide transplant.EMBO J.17,297–305.43.Wakasugi,K.,Nakano,T.,and Morishima,I.(2005)Oxidativestress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase.Biochemistry44, 225–232.BI800286M5270Biochemistry,Vol.47,No.19,2008Watanabe and Wakasugi。