求椭圆的标准方程
椭圆的标准方程推导

椭圆的标准方程推导椭圆是平面上一个动点F到两个定点A和B的距离之和等于常数2a的动点P的轨迹。
这个轨迹可以通过数学方法进行描述,其中最常用的方法就是通过椭圆的标准方程来进行推导。
接下来,我们将通过几何推导和代数推导两种方法来推导椭圆的标准方程。
几何推导:首先,我们来看一下椭圆的定义。
如上所述,椭圆是动点到两个定点的距离之和等于常数的轨迹。
设椭圆的两个焦点为F1和F2,两个焦点之间的距离为2c,椭圆的长轴长度为2a,短轴长度为2b。
那么,根据椭圆的定义,动点P到两个焦点的距离之和等于常数2a,即PF1 + PF2 = 2a。
接下来,我们可以利用动点P到两个焦点的距离公式来进行推导。
根据动点到两个焦点的距离公式,我们有PF1 = √(x c)² +y²,PF2 = √(x + c)² + y²。
将这两个距离之和等于2a代入,得到√(x c)² + y² + √(x + c)² + y² = 2a。
接着,我们对上式进行整理,得到√(x c)² + y² = 2a √(x+ c)² + y²。
然后对该式两边进行平方,得到(x c)² + y² = (2a √(x + c)² + y²)²。
再次整理得到(x c)² + y² =(2a)² 2(2a)√(x + c)² + (x + c)² + y²。
最后,我们再次对上式进行整理,得到(x c)² + y² =(2a)² 4a√(x + c)² + (x + c)²。
这就是椭圆的标准方程的几何推导过程。
代数推导:除了几何推导外,我们还可以通过代数方法来推导椭圆的标准方程。
首先,我们可以设定椭圆的焦点为F1(-c, 0)和F2(c, 0),动点P(x, y)到两个焦点的距离之和等于常数2a。
求椭圆的标准方程的方法

求椭圆的标准方程的方法
椭圆的标准方程表示为:
((x - h)²/ a²) + ((y - k)²/ b²) = 1
其中(h, k) 是椭圆中心的坐标,a 是椭圆的长半轴长度,b 是椭圆的短半轴长度。
要获得椭圆的标准方程,可以按照以下步骤进行:
确定椭圆的中心坐标(h, k)。
这可以通过观察给定的椭圆的图形或通过给定的信息来确定。
确定椭圆的长半轴长度a。
长半轴是从中心到椭圆上离中心最远的点的距离。
可以通过测量或计算来确定。
确定椭圆的短半轴长度b。
短半轴是从中心到椭圆上离中心最近的点的距离。
可以通过测量或计算来确定。
使用上述值将坐标(h, k)、长半轴长度a 和短半轴长度 b 代入椭圆的标准方程((x - h)²/ a ²) + ((y - k)²/ b²) = 1 中。
通过这些步骤,您就可以得到椭圆的标准方程。
请注意,当椭圆的长半轴与短半轴相等时,即a = b,方程简化为圆的标准方程。
求椭圆的方程

求椭圆的方程椭圆是大家非常熟悉的几何图形,可以说是几何学中最重要的图形之一。
在实际生活中,椭圆可以用在许多场合,比如设计农业园艺的果园形状,制作一些装饰品等等。
然而,要求给出椭圆的方程,可能对一些人来说是一个很有挑战性的问题。
下面我们就来简单了解一下求椭圆的方程的方法。
一、直线和椭圆相交的情况当一条直线和椭圆相交时,我们必须先求出这条直线的方程。
方程求出之后,将其代入椭圆的方程中,得到一个关于x和y的二次方程,化简之后,我们就能得到椭圆的方程了。
二、两条直线和椭圆相交的情况当存在两条直线和椭圆相交时,我们需要先求出这两条直线的方程。
这两条直线的方程代入椭圆的方程可以得到一个以y为自变量的二次方程。
这时我们要将这个方程转化成标准的二次方程,并求出其判别式,这样就能求出椭圆的方程了。
三、通过点和切线的方法求椭圆的方程这种方法的前提是我们已经知道椭圆上的一个点和与该点相切的一条直线的方程。
根据切线的性质,我们可以求得切点处的切线斜率。
再根据椭圆的定义,可以得到经过该点的法线斜率。
我们已知切线斜率和法线斜率,根据两点式就可以算出该法线与椭圆的交点坐标。
将该点代入椭圆标准方程求得的结果为:(x-x0)²/a²+(y-y0)²/b²=1。
四、通过椭圆焦点、中心点和离心率求椭圆方程椭圆的标准方程是根据其焦点、中心点和离心率推导出来的。
首先,我们要求出椭圆的中心点,这可以通过椭圆上的两点和中垂线来求解。
然后,我们要求出椭圆的一组焦点,这可以通过椭圆的离心率和中心点来求解。
最后,我们根据中心点和一组焦点的坐标,可以推导出椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1。
五、利用线性代数方法求椭圆方程线性代数方法求椭圆的方程需要使用矩阵的概念,它使用二次型的方法得出椭圆方程。
该方法不涉及几何构造,而是将椭圆看做一个矩阵的特征向量,从而得出椭圆的方程。
椭圆方程的公式

椭圆方程的公式椭圆方程是数学中一个非常重要的概念,它在物理、工程、计算机科学等领域都有广泛的应用。
本文将介绍椭圆方程的公式及其应用。
一、椭圆方程的定义椭圆方程是一个二元二次方程,其一般形式为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中A、B、C、D、E、F均为实数,且A、C不同时为0。
二、椭圆方程的标准形式椭圆方程可以通过变量替换和平移来化为标准形式:(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1其中(x0,y0)为椭圆中心点坐标,a、b为椭圆长轴和短轴的长度。
三、椭圆方程的参数椭圆方程的参数包括中心坐标、长轴和短轴长度、离心率等。
1. 中心坐标:椭圆的中心坐标为(x0,y0)。
2. 长轴和短轴长度:长轴的长度为2a,短轴的长度为2b。
3. 离心率:椭圆的离心率为e,e的值介于0和1之间,表示椭圆长轴与短轴长度之比。
四、椭圆方程的性质1. 对称性:椭圆方程具有关于x轴和y轴的对称性。
2. 焦点和直径:椭圆方程有两个焦点F1和F2,它们之间的距离为2c,c^2=a^2-b^2。
椭圆的长轴是过焦点F1和F2的直径。
3. 弦和法线:椭圆方程上任意一点P的切线与椭圆长轴的夹角是β,法线与椭圆长轴的夹角是α。
弦是连接椭圆上任意两点的线段,弦的中垂线与长轴的夹角是β/2,法线与弦的夹角是α-β/2。
五、椭圆方程的公式1. 椭圆方程的离心率公式:e=sqrt(1-b^2/a^2)2. 椭圆焦点的坐标公式:F1(x0-c,y0),F2(x0+c,y0)3. 椭圆长轴和短轴长度公式:a^2=c^2+b^2b^2=a^2-c^24. 椭圆周长公式:C=4aE(e)其中E(e)是第二类椭圆积分,可以用级数或逼近公式计算。
5. 椭圆面积公式:S=πab六、椭圆方程的应用椭圆方程在物理、工程、计算机科学等领域都有广泛的应用,以下是一些例子:1. 圆轨道的近似:当椭圆的离心率e足够小时,它近似为一个圆,因此可以用椭圆方程来描述圆形轨道。
《椭圆》方程典型例题20例(含标准答案解析]
![《椭圆》方程典型例题20例(含标准答案解析]](https://img.taocdn.com/s3/m/26e3c9fb3186bceb19e8bb56.png)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49s i n 3s i n34222+--=θθb b b 3421s i n 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
椭圆标准方程推导

椭圆标准方程推导椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。
我们来推导椭圆的标准方程。
设椭圆的长轴为2a,短轴为2b,椭圆的中心为原点O(0,0),F1(-c,0),F2(c,0)。
取椭圆上一点P(x,y),则PF1的距离为|PF1| = |x + c|,PF2的距离为|PF2| = |x c|。
根据椭圆的定义,有|PF1| + |PF2| = 2a,即 |x + c| + |x c| = 2a。
根据绝对值的性质,我们可以得到以下两种情况:1. 当x ≥ -c时,|x + c| + |x c| = 2a化简为2x = 2a,即x = a。
2. 当x < -c时,|x + c| + |x c| = 2a化简为-x c + x c = 2a,即x = -a。
由此可得椭圆的顶点坐标为A(a,0)和A(-a,0)。
再设椭圆上一点P(x,y),则PA的距离为|PA| = |x a|。
根据勾股定理,有|PF1|² = |PA|² + |AF1|²,即(x + c)² = (x a)² + b²。
展开得x² + 2cx + c² = x² 2ax + a² + b²。
化简得2ax + c² = a² + b²。
同理,可得椭圆的标准方程为:\[\frac{x²}{a²} + \frac{y²}{b²} = 1\]至此,我们完成了椭圆标准方程的推导。
通过以上推导,我们可以得出椭圆的标准方程,进而求出椭圆的焦点、离心率等重要参数,为后续的椭圆相关问题的研究和计算提供了基础。
希望本文对您有所帮助,谢谢阅读!。
椭圆的定义及标准方程

返回
1.已知中心在原点的椭圆 C 的右焦点为 F(1,0),离心率等于12,则椭圆
C 的方程是( )
A.x32+y42=1
B.x42+
y2 =1 3
C.x42+y32=1
D.x42+y2=1
解析: 依题意,所求椭圆的焦点位于 x 轴上,
且 c=1,e=ac=12⇒a=2,b2=a2-c2=3,
因此椭圆 C 的方程是x42+y32=1.
答案: C
返回
2.已知椭圆ax22+by22=1(a>b>0)的一个焦点是圆 x2+y2-6x+8=0 的圆心, 且短轴长为 8,则椭圆的左顶点为( )
A.(-3,0) B.(-4,0) C.(-10,0) D.(-5,0)
解析: ∵圆的标准方程为(x-3)2+y2=1,∴圆心坐标是(3,0), ∴c=3.又 b=4,∴a= b2+c2=5. ∵椭圆的焦点在 x 轴上,∴椭圆的左顶点为(-5,0).故选 D. 答案: D
2 A.3
B.1
4 C.3
D.53
解析:(1)设椭圆 E:ax22+by22=1(0<b<1),知 a=1,
因为|AF1|+|AF2|=2a=2,|BF1|+|BF2|=2a=2,
与焦点有关 的线段注意 定义的应用
两式相加得|AF1|+|AF2|+|BF1|+|BF2|=4,
所以|AF2|+|BF2|=4-(|AF1|+|BF1|)=4-|AB|.
的点到焦点距离的最大值为 a+c,最小值为 a-c. (2)椭圆的通径(过焦点且垂直于长轴的弦)长为2ab2,通径是最短的焦点弦. (3)P 是椭圆上不同于长轴两端点的任意一点,F1,F2 为椭圆的两焦点,则
椭圆及其标准方程

椭圆及其标准方程椭圆是一个非常重要的几何图形,它在数学和物理学中都有着广泛的应用。
在本文中,我们将探讨椭圆的定义、性质以及其标准方程。
首先,让我们来看一下椭圆的定义。
椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点P的集合。
这两个定点被称为焦点,而常数2a 则被称为椭圆的长轴长度。
椭圆还有一个与长轴垂直的短轴,其长度为2b。
椭圆的形状可以由长轴和短轴的长度来描述,而这个描述也可以用椭圆的标准方程来表示。
接下来,让我们来看一下椭圆的标准方程。
椭圆的标准方程可以写成(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。
如果椭圆的长轴与x轴平行,那么它的标准方程可以简化为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。
如果椭圆的长轴与y轴平行,那么它的标准方程可以简化为(y-k)^2/a^2 + (x-h)^2/b^2 = 1。
通过这个标准方程,我们可以轻松地确定椭圆的中心、长轴、短轴以及焦点的位置。
除了标准方程之外,椭圆还有许多重要的性质。
例如,椭圆上任意一点到两个焦点的距离之和等于常数2a,这个性质被称为椭圆的焦点性质。
此外,椭圆还具有对称性,关于长轴和短轴都有对称轴。
这些性质使得椭圆在数学和物理学中有着广泛的应用,例如在天体运动、工程设计以及密码学中都可以看到椭圆的身影。
总之,椭圆是一个非常重要的几何图形,它具有许多重要的性质和应用。
通过椭圆的标准方程,我们可以轻松地描述和理解椭圆的形状和位置。
希望本文对您理解椭圆有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.5求椭圆的标准方程
一、教学内容与解析
(一)教学内容:求椭圆的标准方程
(二)内容解析:圆锥曲线是高考必考的内容,一般会有一个小题和一个大题,圆、椭圆、双曲线、抛物线都是考察的热点,解析几何是用方程的思想解决几何问题,所以本节课学习的重点是求椭圆的标准方程,解决重点的核心是求出椭圆方程中,,
a b c的值.
二、教学目标与解析
(一)教学目标:
(1)掌握定义法求椭圆方程;
(2)掌握待定系数法求椭圆方程.
(二)目标解析
(1)用定义法求椭圆的方程,一般要熟练掌握椭圆的定义,尤其要注意两定点的距离和常数的大小关系,以防将情况遗漏致误;
(2)待定系数法求椭圆方程就是要将椭圆中的未知量,a b求出来;当椭圆的焦点
位置不明确而无法确定其标准方程时,设方程为x2
m+
y2
n=1 (m>0,n>0,且m≠n)
可以避免讨论和烦琐的计算,也可以设为Ax2+By2=1 (A>0,B>0,且A≠B),这种形式在解题中更简便.
三、问题诊断与解析
本节课的内容不多,就是用两种方法求椭圆的方程,对于和椭圆定义有关的题,学生理解起来可能会有问题,所以可以借助几何画板来直观呈现,加深记忆.
四、教学条件分析
对于图形的讲解,一般都要借助于多媒体教学.
四、教学过程设计
问题一:定义法求椭圆的标准方程
【设计意图】理解椭圆的定义,掌握定义是关键,应注意定义中的常数大于|F1F2|,
避免了动点轨迹是线段或不存在的情况.
例1:如图,椭圆x2
a2+
y2
b2=1(a>b>0)的左,右焦点分别为F1,F2,过F2的直线
交椭圆于P、Q两点,且PQ⊥PF1.若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程.
答案:x2
4+y
2=1.
变式练习:已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,且点N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是什么?
答案:椭圆
问题二:待定系数法求椭圆的标准方程
【设计意图】掌握求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当
椭圆的焦点位置不明确而无法确定其标准方程时,设方程为x2
m+
y2
n=1 (m>0,n>0,
且m≠n)可以避免讨论和烦琐的计算,也可以设为Ax2+By2=1 (A>0,B>0,且A≠B),这种形式在解题中更简便.
例2:已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),求椭圆的标准方程.
答案:x2
9+
y2
3=1
变式练习:已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),求椭圆的标准方程.
答案:x2
9+y
2=1或
y2
81+
x2
9=1
五、课堂小结
1、本节课学习了几种求椭圆标准方程的方法?答:定义法和待定系数法
2、两种方法的实质是什么?
答:构造,,
a b c的方程,求出,,
a b c的值。