数值计算方法第八章

合集下载

数值计算方法思考题

数值计算方法思考题

数值计算方法思考题第一章 预篇1.什么是数值分析?它与数学科学和计算机的关系如何?2.何谓算法?如何判断数值算法的优劣?3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。

4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用?6.判断如下命题是否正确:(1)一个问题的病态性如何,与求解它的算法有关系。

(2)无论问题是否病态,好的算法都会得到好的近似解。

(3)解对数据的微小变化高度敏感是病态的。

(4)高精度运算可以改善问题的病态性。

(5)用一个稳定的算法计算良态问题一定会得到好的近似值。

(6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。

(7)两个相近数相减必然会使有效数字损失。

(8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。

7.考虑二次代数方程的求解问题ax 2 + bx + c = 0.下面的公式是熟知的aac b b x 242-±-=. 与之等价地有ac b b c x 422--=.对于 a = 1, b = -100 000 000 , c = 1应当如何选择算法?8.指数函数有著名的级数展开++++=!3!2132x x x e x如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么?9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为∑==n i i x x x 11 它的标准差2112)(11⎥⎦⎤⎢⎣⎡--=∑-n i i x x n σ 数学上它等价于2112211⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失?第二章 非线性方程求根1.判断如下命题是否正确:(a) 非线性方程的解通常不是唯一的;(b) Newton 法的收敛阶高于割线法;(c) 任何方法的收敛阶都不可能高于Newton 法;(d) Newton 法总是比割线法更节省计算时间;(e) 如果函数的导数难于计算,则应当考虑选择割线法;(f) Newton 法是有可能不收敛;(g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

第一章测试1.数值计算方法研究的误差有()A:截断误差;B:观测误差;C: 模型误差;D:舍入误差.答案:AD2.A:只有模型误差、截断误差与观测误差。

B: 只有舍入误差、截断误差与观测误差;C:只有模型误差、观测误差与舍入误差;D:只有模型误差、截断误差与舍入误差;答案:C3.A:4位B:5位C:3位D:2位答案:A4.对于下列表达式,用浮点数运算,精度较高是A:B:C:D:答案:A5.A:B:C:D:答案:B第二章测试1.A:0.5000B:0.6250C:0.5625D:0.6875答案:C2.A:B:C:D:答案:CD3.关于Steffensen(斯蒂芬森)迭代方法,下列命题中正确的是:A:Steffensen迭代法使得收敛的迭代格式加速收敛,发散的迭代格式更快发散。

B:Steffensen迭代法使得某些发散的迭代格式变为收敛。

C:Steffensen迭代法使得任何收敛的迭代格式加速收敛。

D:Steffensen迭代法使得某些收敛的迭代格式加速收敛。

答案:BD4.关于Newton迭代法,下列命题中正确的是:A:求解任一方程的Newton迭代法都是2阶收敛的。

B:Newton迭代格式若收敛,则一定是超线性收敛的。

C:D:Newton迭代格式可能收敛也可能发散。

答案:CD5.A:6B:3C:5D:4答案:A第三章测试1.A:若求解失败,则说明矩阵A奇异。

B:算法的计算量与近似成正比。

C:若A的对角线元素的绝对值都大于1,则求解结果的精度一定较高。

D:只要A非奇异,则求解结果的精度一定较高。

答案:B2.列主元Gauss消去法与Gauss顺序消元法相比,优点是:A:提高了稳定性,减少了误差的影响。

B:方程组的系数矩阵奇异时也可以求解。

C:能求出方程组的精确解。

D:减少了计算量。

答案:A3.A:平方根法与Gauss列主元消去法相比,提高了稳定性,但增加了计算量。

B:只要是对称正定矩阵,就可用平方根法求解。

数值分析(计算方法)总结

数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。

例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。

科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。

由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|<E 为止,此时取x *≈(x k +x k -1)/2作为近似根。

丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)

丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)

丁丽娟《数值计算方法》五章课后实验题答案(源程序都是自己写的,很详细,且保证运行无误)我做的五章数值实验作业题目如下:第二章:1、2、3、4题第三章:1、2题第四章:1、2题第六章:2、3题第八章:1、2题第二章1:(1) 对A进行列主元素三角分解:function [l u]=myfun(A) n=size(A); for k=1:n for i=k:n sum=0; m=k; for j=1:(k-1) sum=sum+A(i,j)*A(j,k); end s(i)=A(i,k)-sum; if abs(s(m))<abs(s(i)) m=i; end end for j=1:n c=A(m,j); A(m,j)=A(k,j); A(k,j)=c; end for j=k:n sum=0; for r=1:(k-1) sum=sum+A(k,r)*A(r,j); end u(k,j)=A(k,j)-sum; A(k,j)=u(k,j); end for i=1:n l(i,i)=1; end for i=(k+1):n sum=0; for r=1:(k-1) sum=sum+A(i,r)*u(r,k); end l(i,k)=(A(i,k)-sum)/u(k,k); A(i,k)=l(i,k); end end 的列主元素三角分解:求A的列主元素三角分解:>>A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; >>[L,U]=myfun(A) 结果:L = 1.0000 0 0 0 0 1.0000 1.0000 0 0 0 1.0000 0.5000 1.0000 0 0 1.0000 0.7500 0.7500 1.0000 0 1.0000 0.2500 0.7500 -1.0000 1.0000 U = 1.0000 1.0000 1.0000 1.0000 1.0000 0 4.0000 14.0000 34.0000 69.0000 0 0 -2.0000 -8.0000 -20.5000 0 0 0 -0.5000 -2.3750 0 0 0 0 -0.2500 (2) 求矩阵的逆矩阵A -1: inv(A) 结果为:ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 (3)检验结果:E=diag([1 1 1 1 1]) A\E ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 2: 程序:程序:function d=myfun(a,b,c,d,n) for i=2:n l(i)=a(i)/b(i-1); a(i)=l(i); u(i)=b(i)-c(i-1)*a(i); b(i)=u(i); y(i)=d(i)-a(i)*d(i-1); d(i)=y(i); end x(n)=d(n)/b(n); d(n)=x(n); for i=(n-1):-1:1 x(i)=(d(i)-c(i)*d(i+1))/b(i); d(i)=x(i); end 求各段电流量程序:求各段电流量程序:for i=2:8 a(i)=-2; end b=[2 5 5 5 5 5 5 5]; c=[-2 -2 -2 -2 -2 -2 -2]; V=220; R=27; d=[V/R 0 0 0 0 0 0 0]; n=8; I=myfun(a,b,c,d,n) 运行程序得:运行程序得:I = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 3:程序:(1)求矩阵A和向量b的matlab程序:function [A b]=myfun(n) for i=1:n X(i)=1+0.1*i; end for i=1:n for j=1:n A(i,j)=X(i)^(j-1); end end for i=1:n b(i)=sum(A(i,:)); end 求n=5时A1,b1及A1的2-条件数程序运行结果如下:条件数程序运行结果如下: n=5;[A1,b1]=myfun(n) A1 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.0000 1.2000 1.4400 1.7280 2.0736 1.0000 1.3000 1.6900 2.1970 2.8561 1.0000 1.4000 1.9600 2.7440 3.8416 1.0000 1.5000 2.2500 3.3750 5.0625 b1 = 6.1051 7.4416 9.0431 10.9456 13.1875 cond2=cond(A1,2)cond2 = 5.3615e+005 条件数程序运行结果如下:求n=10时A2,b2及A2的2-条件数程序运行结果如下:n=10; [A2,b2]=myfun(n) A2 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1436 2.3579 1.0000 1.2000 1.4400 1.7280 2.0736 2.4883 2.9860 3.5832 4.2998 5.1598 1.0000 1.3000 1.6900 2.1970 2.8561 3.7129 4.8268 6.2749 8.1573 10.6045 1.0000 1.4000 1.9600 2.7440 3.8416 5.3782 7.5295 10.5414 14.7579 20.6610 1.0000 1.5000 2.2500 3.3750 5.0625 7.5938 11.3906 17.0859 25.6289 38.4434 1.0000 1.6000 2.5600 4.0960 6.5536 10.4858 16.7772 26.8435 42.9497 68.7195 1.0000 1.7000 2.8900 4.9130 8.3521 14.1986 24.1376 41.0339 69.7576 118.5879 1.0000 1.8000 3.2400 5.8320 10.4976 18.8957 34.0122 61.2220 110.1996 198.3593 1.0000 1.9000 3.6100 6.8590 13.0321 24.7610 47.0459 89.3872 169.8356 322.6877 1.0000 2.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 512.0000 b2 = 1.0e+003 * 0.0159 0.0260 0.0426 0.0698 0.1133 0.1816 0.2866 0.4451 0.6801 1.0230 cond2=cond(A2,2) cond2 = 8.6823e+011 条件数程序运行结果如下:求n=20时A3,b3及A3的2-条件数程序运行结果如下:n=20; [A3,b3]=myfun(n) A3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 11 through 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0013 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0007 0.0015 0.0032 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0014 0.0032 0.0075 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0012 0.0029 0.0070 0.0167 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0023 0.0058 0.0146 0.0364 0.0000 0.0000 0.0001 0.0002 0.0006 0.0017 0.0044 0.0113 0.0295 0.0766 0.0000 0.0001 0.0002 0.0004 0.0011 0.0030 0.0080 0.0215 0.0581 0.1570 0.0000 0.0001 0.0002 0.0007 0.0018 0.0051 0.0143 0.0400 0.1119 0.3133 0.0000 0.0001 0.0004 0.0010 0.0030 0.0086 0.0250 0.0726 0.2105 0.6103 0.0001 0.0002 0.0005 0.0016 0.0048 0.0143 0.0430 0.1291 0.3874 1.1623 b3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0010Columns 11 through 20 0.0025 0.0059 0.0132 0.0287 0.0606 0.1246 0.2494 0.4874 0.9316 1.7434 cond2=cond(A3,2) cond2 =3.2395e+022 由上述运行结果可知:它们是病态的,而且随着n的增大,矩阵的病态变得严重。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。

数值计算方法课件_xutao_update

数值计算方法课件_xutao_update
数值计算方法只能用算数运算和逻辑运算; 数值计算方法需要速度快、精度高。
程序设计需要最简练、最快、最少存储空间。
上机计算 分析结果
检验是否与实际相符,是否可推广; 找出原因,继续研究。
二、 算法
1、算法的概念 当我们用数值计算方法求解一个比较复杂的数
学问题时,常常要事先拟定一个计算方案,规划 一下计算的步骤,所谓算法,就是指在求解数学 问题时,对求解方案和计算步骤的完整而明确的 描述。
三、误差
2) 方法误差 在计算过程中,由数学方法产生的误差,称为方法误差。
• 例如,在计算指数函数的值时,常用到如下幂级数展开式:
ex
x2 1x
xn
2! n!
这是一个无穷级数。计算时,只能取有限项。
Sn(x)1xx22!xnn!
用有限项逼近无穷级数,会产生一个误差,这个误差是由 数学方法产生的,所以是一种方法误差。
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果 x1, x2
x2
a11b2 a21b1 D
二、算法
2、算法的优劣 求解一个数学问题,可以采用不同的算法,比如:
线性方程组,可用克莱姆法则,高斯消元法等多 种方法求解。但是每一种方法的优劣不同,评价 一个 算法的好坏有以下几个标准: 1) 算法的计算量(时间复杂性) 2) 算法的空间复杂性 3) 算法逻辑结构的复杂性
e x x x —真值, x —近似值,
2) 误差限 在许多情况下,我们不知道某个量的真实值是多少,因
此也不知道它的近似值的误差。但是我们能估计出误差不 会超过某个确定的数值。这个数值就称为近似值的误差限。
我们能用误差限定量的衡量一个近似值的误差。

数值计算方法第八章

数值计算方法第八章
函数 f (x) 可以被表示为其导数的积分的形式,则利用数值 积分公式进行反推,即可获得导数 f (x) 的数值表达形式。
0
记 '(x) = f (x) ,给定节点 xk = a + kh (k = 0, 1, · · · , n) 处的函
0
数值 y (xk ) 。由公式:
f (xk+1 ) = f (xk
5
插值法
三点式数值微分公式: 过三点 x0 , x1 , x2 作二次插值多项式
P2 (x) = (x x1 )(x 2h2 x2 ) y0 (x x0 )(x h2 x2 ) y1 + (x x0 )(x 2h2 x1 ) y2
此处假设 x1
0 P2 (x)
x0 = x2
x1 = h 。求导: 2x
两式相减,并除以2h: 1 G(h) = f (x + h) f (x h) 2h 000 (5) f ( x ) f (x) 4 0 2 = f (x) + h + h + ··· 3! 5!
能源学院 11
外推
得到:
f 0 (x) = G(h) + ↵1 h2 + ↵2 h4 + · · ·
利用 Richardson 外推,逐次对 h 半分,得到阵列:
记 '(xk ) = mk ,将上式高阶项去掉后代入到 f (xk+1 ) 的表达式:
f (xk+1 ) ⇡ f (xk mk
1
h mk 1) + 3
1
+ 4mk + mk+1 f (xk
1)
+ 4mk + mk+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章最优化问题
最优化分支:线性规划,整数规划,几何规划,非线性规划,动态规划。

又称规划论。

应用最优化方法解决问题时一般有以下几个特点:
1. 实用性强
2. 采用定量分析的科学手段
3•计算量大,必须借助于计算机
4.理论涉及面广
应用领域:工业,农业,交通运输,能源开发,经济计划,企业管理,军事作战……。

§ 8.1最优化问题实例
最优化问题:追求最优目标的数学问题。

经典最优化理论:
(1)无约束极值问题:opt f(X i,X2, ,X n)
(min f(X i,X2, ,X n)或max f(X i,x2^ ,X n)) 其中,
f(X i,X2/ ,X n)是定义在n维空间上的可微函数。

解法(求极值点):求驻点,即满足
f x i (X i,,X n) = 0
f x2 (X i, ,X n) = 0
并验证这些驻点是否极值点
(2)约束极值问题:Opt f(X i,X2, ,X n)
s.t. h j(X i,X2, ,X n) = 0, j = 1,2, ,1(1 n) 解法:采用Lagrange乘子法,即将问题转化为求Lagrange函数
l
L(X I,X2, X;‘1,
,l) = f(X1,X2, ,X n)、
j=1
的无约束极值问题
近代最优化理论的实例:
例1 (生产计划问题)设某工厂有3种资源B1,B2,B s,数量各
为b i, b2, b s,要生产10种产品A i,…,A io。

每生产一个单位的
A j需要消耗
B i的量为a j,根据合同规定,产品A j的量不少于q,再设A j的单价为q。

问如何安排生产计划,才能既完成合同,又使总收入最多?(线性规划问题)
数学模型:设A j的计划产量为X j , z为总收入
10
目标函数:maxz-y C j X j jm
1o
l z am 玄bj =1,2,3
约束条件:'冃
.X^ d j, j = 1,2,…,10
线性规划问题通常采用单纯形法来求解。

例2 (工厂设址问题)要在m个不同地点计划修建m个规模不完全相同的工厂,他们的生产能力分别是6,a2…,a m(为简便起见,假设生产同一种产品),第i个工厂的建设费用fj =1,2,…,m。

又有n个零售商店销售这种产品,对这种产品的需求量分别为
b 1,b^ ,b n ,从第i 个工厂运送一个单位产品到第j 个零售商店的运 费为q 。

试决
定应修建哪个工厂,使得既满足零售商店的需求,又使 建设工厂和运输的总费用最小。

(混合整数规划问题)
数学模型: 设第i 个工厂运往第j 个零售商店的产品数量为x j (i=1,…,m ; j=1,…,n ),且
i =1
n
1 1 1 约束条件:
] 1 1
' X ij 岂 ay i , i = 1, , m 2 m
-X j _ bj , j
= I
,n
y^ 0 或 1, i = 1, , m X ij - 0, i = 1, ,m; j = 1, , n
整数规划问题通常可用分枝定界法或割平面法来求解。

例3 (投资计划问题)假设某一个生产部门在一段时间内可用于 投资的总金额为a 亿元,可供选择的项目总共有n 个,分别记为1, 2,…n 。

并且已知对第j 个项目的投资总数为a j 亿元,而收益额总数 为C j 亿元。

问如何使用资金a 亿元,才能使单位投资获得的收益最大。

(非线性规划问题)
1, 对第j 个项目投资
数学模型:设X j 十0 否则
,j",…,n
y i =
0, 如果修建第i 个工厂
否则
,i = 1, ,m
目标函数:
m
min z 八
n
f i V\ C ij X ij
n
、c j x j j £
目标函数:max"
迟a j x j
j =1
n
[■- a j X j 乞a
约束条件:'2
Xj = 0 或1, j = 1,…,n
非线性规划问题的求解方法很多,是本课的重点。

动态规划是解决“多阶段决策过程”的最优化问题的一种方法,
基于“Bellman最优性原理”,例如:资源分配问题,生产与存储问题。

例4 (多参数曲线拟合问题)已知热敏电阻R依赖于温度T的函
数关系为
X2
R = x1e T X3
(*

其中,X i,x2,X3是待定的参数,通过实验测得T和R的15组数据列
表如下,如何确定参数12 3 ?
建立数学模型:测量点(T j,RJ与曲线R(T)对应的点产生“偏差”
X2
15
S = E [R —乂点址]2
得如下无约束最优化问题:
15 J
minf(x) = Z [R — Ne Ti4X3]2
i=1
通常采用最小二乘法。

§ 8.2 最优化问题的数学模型
一、最优化问题的数学模型
1. 定义1:设向量,二[可包厂,a m]T「叮db,…,b m]T.
若a-^ b i (i =1,2/ ,m),则记或 '一;
若a「b i (i =1,2, ,m),则记或':°
2. 一般模型:
opt f (x) = f (x「x2, , x n) (minf(x)或maxf(x)) , (1)
S i(x)- 0, i =1, ,m (2) s t 彳
s.t.h

j(x) =0, j =1, ,1
其中,x =[X1,X2,…,xJ T; f(x) , S i(x) , h j(x)是关于变量
X1,X2,…,X n的实值连续函数,一般可假定它们具有二阶连续偏导数。

3. 向量模型:
opt f (x) (minf (x)或maxf (x)),
(1)
'S(x)色0, i = 1,…,m (2) s t 」
jh(x) = 0j1,…,1 ⑶其中,X二[X i,X2厂,X n]T, f(x)称为目标函数;
S(x)二S(x), ,S』x)T, h(x)二h/x), , h(x)l T。

S i(x) , h j(x)称为约束函数;
满足约束条件(2), ( 3)的点称为容许解或容许点(或可行解);容许解的全体称为容许域(或可行域),记为R;
满足(1)的容许点称为最优点或最优解(或极小(大)点),记为x ;f (x )称为最优值;
不带约束的问题称为无约束问题,带约束的问题称为约束问题;
若目标函数f(x),约束函数S(x),h j(x)都是线性函数,则称为线性规划;若其中存在非线性函数,则称为非线性规划;
若变量只取整数,称为整数规划;
若变量只取0,1,称为0 —1规划。

注:因h(x)=0= h(x)_0,-h(x) — 0,则最优化问题一般可
写成
opt f (x)
-S.t. S(x) z 0
最优化问题的分类
§ 8.3 二维问题的图解法
例 1.
maxz 二 2x 1 3x 2
片+ 2x 2兰8
s.t.
4x 「「6 • X i ,x^ 0
解:1.由全部约束条件作图,求出可行域 R :凸多边形OABC 2•作出一条目标函数的等值线:设 2x i 3x^ 6,作该直线即 为一条目标函数的等值线,并确定在可行域内,这条等值线向哪个方 向平移可使z 值增大。

3. 平移目标函数等值线,做图求解最优点,再算出最优值。

顶 点B (4,2)
是最优点,即最优解X”二[4 2]T ,最优值z = 14。

分析:线性规划问题解的几种情况 (1) 有唯一最优解(上例);
(2) 有无穷多组最优解:目标函数改为 maxz=2x 「4x 2 (3) 无可行解:增加约束X 2 - 5,则R 八」。

(4)无有限最优解(无界解):例maxz 二x 「X 2
最优化问题
静态规划
I I
动态规划
,一维问题
n 维问题 |无约束问题」
I
'线性规划
非线性规划
[约束问题』
& - 2x 2 乞 4
I
s.t. - x 1 x 2 - 2
x 1, x^ 0
结论:(1)线性规划问题的可行域为凸集,特殊情况下为无界域 或空集。

(2)线性规划问题若有最优解,一定可在其可行域的顶点上 得到。

例 2.
min(X [ - 2)2 (x 2 -1)2
卜+心=0
s.t J 捲 + x 2 — 5 兰 0
为,x 2兰0
解: 目标函数等值线:(石-2)2 + (x 2 -1)2 = 1
定义2:在三维及三维以上的空间中,使目标函数取同一常数的 点集{
x f
(x )= r, r 是常数}称为等值面。

C 为最优点
x 1 x ; - 5x 2 = 0
x 1 x 2 - 5 = 0 ,得x 叮4 1]T。

相关文档
最新文档