超精密切削加工技术介绍

合集下载

NANOTECH 350FG 介绍

NANOTECH 350FG 介绍
金刚石刀头的制造:


成形:采用研磨加工方法;
研磨方法:用空气轴承的研磨机; 特殊刀头的形状
四、 五轴机超精密加工 的方法

普通切削加工 SSS FTS
4.1 普通切削加工(轴对称零件)

主轴只做回转运动,不带C轴模式 只通过X和Z轴的插补走出面型 可加工PMMA,铜,铝,锗,氟化钙等材料 不同材料需要使用不同的刀具和工艺

详细指标链接
Ultra-Precision three, four, or five axis CNC machining system for on-axis turning of aspheric and toroidal surfaces; slow-slideservo machining (rotary ruling) of freeform surfaces; and raster flycutting of freeforms, linear diffractives, and prismatic optical structures
Electronic Gage Head with Magnetic Stand
NanoMETER
NanoBalance™
Work Spindle Trim Balancer
Workpiece Measurement & Error Compensation System (WECS)
三、超精密加工刀具
面型测量仪器:ZYGO激光干涉仪,轮廓仪 粗糙度测量仪器:VEECO白光干涉仪
ZYGO激光干涉仪
GPI™ XP/D激光干涉仪--运用移相干涉原理,提供高精度的
平面面形,球面面形,曲率半径,样品表面质量,传输波

超精密切削加工技术探析

超精密切削加工技术探析

用 的 区 域 ) 是 加 工 单 位 , 工 单 位 的 大 小 和 材 料 缺 陷 分 布 切 削 刃钝 圆 圆 弧 上 某 一 质 点 A 的受 力 情 况 见 图 。该 点 有 切 就 加 的尺 寸 大 小 不 同 时 , 加 工 材 料 的 破 坏 方 式 就 不 同 。 被 向分 力 F 和 法 向 分 力 F , 力 为 F , 。切 向 分 力 使 质 点 z y合 yZ 向前 移 动 , 成 切 屑 ; 向 分 力 使 质 点 压 向 被 加 工 表 面 , 形 法 形 2 超精 : 精 密 切 削加 工 主 要 是 由 高精 度 的 机 床 和 单 晶 金 刚 石 刀 具 进 行 的 , 一 般 称 为金 刚 石 刀 具 具 切 削 或 S D 超 故 P T。
对 超 精 密 切 削加 工 技 术 及 其 机 理 进 行 介 绍 和 总 结 , 望 对 超 精 密加 工 行 业 同事 有 所 指 导 。 希
21 年第 6 01 期
1 2 材 料 缺 陷 及 其 对 超 精 密 切 削 的 影 响 .
2 2 金 刚 石 刀 具 超 精 密 车 削 的切 屑 形 成 . 金 刚 石 刀 具 超 精 密 车 削 是 一 种 原 子 、 子 级 加 工 单 位 分 金刚石 刀具超精密车削所 能切 除金 属层 的厚度 标志其 的去 除 ( 离 ) 工 方 法 , 从 工 件 上 去 除 材 料 , 要 相 当 大 加 工 水 平 。 当 前 , 小 切 削 深 度 可 达 0 1微 米 以 下 , 主 要 分 加 要 需 最 . 其 的能 量 , 种 能 量 可 用 临 界 加 工 能 量 密 度  ̄ J c ) 单 位 影 响 因素 是 刀 具 的锋 利 程 度 , 般 以 刀 具 的 切 削 刃 钝 圆 半 这 (/ m3 和 一

精密超精密加工技术

精密超精密加工技术

精密超精密加工技术精密及超精密加工对尖端技术的发展起着十分重要的作用。

当今各主要工业化国家都投入了巨大的人力物力,来发展精密及超精密加工技术,它已经成为现代制造技术的重要发展方向之一。

本节将对精密、超精密加工和细微加工的概念、基本方法、特点和应用作一般性介绍。

一、精密加工和超精密加工的界定精密和超精密加工主要是根据加工精度和表面质量两项指标来划分的。

这种划分是相对的,随着生产技术的不断发展,其划分界限也将逐渐向前推移。

1.一般加工一般加工是指加工精度在10µm左右(IT5~IT7)、表面粗糙度为R a0.2µm~0.8µm的加工方法,如车、铣、刨、磨、电解加工等。

适用于汽车制造、拖拉机制造、模具制造和机床制造等。

2.精密加工精密加工是指精度在10µm~0.1µm(IT5或IT5以上)、表面粗糙度值小于R a0.1µm的加工方法,如金刚石车削、高精密磨削、研磨、珩磨、冷压加工等。

用于精密机床、精密测量仪器等制造业中的关键零件,如精密丝杠、精密齿轮、精密导轨、微型精密轴承、宝石等的加工。

3.超精密加工超精密加工一般指工件尺寸公差为0.1µm~0.01µm数量级、表面粗糙度R a 为0.001µm数量级的加工方法。

如金刚石精密切削、超精密磨料加工、电子束加工、离子束加工等,用于精密组件、大规模和超大规模集成电路及计量标准组件制造等方面。

二、实现精密和超精密加工的条件精密和超精密加工技术是一项内容极为广泛的制造技术系统工程,它涉及到超微量切除技术、高稳定性和高净化的工作环境、设备系统、工具条件、工件状况、计量技术、工况检测及质量控制等。

其中的任一因素对精密和超精密加工的加工精度和表面质量,都将产生直接或间接的不同程度的影响。

1.加工环境精密加工和超精密加工必须具有超稳定的加工环境。

因为加工环境的极微小变化都可能影响加工精度。

精密和超精密加工技术

精密和超精密加工技术
ELID磨削的应用
电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较

精密和超精密加工技术

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

超精密加工技术

超精密加工技术

谢谢!
先进国家达到纳米级,我国0.1~0.3um。 超精密级滚动轴承——液体静压或空气静压轴承。
稳定的加工环境 恒温(加工空间和机床本身)、防振、净化(高效过滤器)。 误差补偿 消除或抵消误差本身的影响。同时防止误差累 计。(一直靠提高机床制造精度来提高工件精度会使成本大大增加) 精密测量技术 高一个数量级、显微镜和激光干涉仪等。隧道 显微镜分辨率达到0.1nm。
精密加工的关键技术: 1、精密加工机床 2、金刚石刀具 3、精密切削机理 4、稳定的加工环境 5、误差补偿 6、精密测量技术
精密加工机床 研究方向:提高机床主轴的回转精度、工作台 的直线运动精度以及刀具的微量进给精度。(主轴 轴承和导轨) 金刚石刀具 金刚石晶面选择、金刚石刀具刃口的圆弧半径。 精密切削机理 积屑瘤的形成、毛刺的产生、切削参数及加工 条件等。需深入研究以掌握其变化规律。

《精密和超精密加工技术(第3版)》第2章超精密切削与金刚石刀具

《精密和超精密加工技术(第3版)》第2章超精密切削与金刚石刀具
3)积屑瘤呈鼻形并自切削刃前伸出,这导致实际切削 厚度超过名义值。超精密切削的切削厚度原来就很小 ,增加切削厚度将使切削力明显增加。
三、使用切削液减小积屑瘤,减小加工表面粗糙 度值
图2-11 超精密切削时切削速度对加工表面粗糙 度的影响 f=0.0075mm/r ap=0.02mm
加工硬铝时,如将航空汽油作为切削液,可明显减小 加工表面粗糙度值,并且在低速时表面粗糙度值也很 小。这说明使用切削液后,已消除了积屑瘤对加工表 面粗糙度的影响,从污染环境看,应在保证加工表面 质量的条件下,尽量少用切削液。加工黄铜时,切削 液无明显效果,低速时加工表面粗糙度值不大,故加 工黄铜时可不使用切削液。
加的原因如下:
1)鼻形积屑瘤前端的圆弧半径R为2~3μm,较原来金刚 石车刀的切削刃钝圆半径rn(0.2~0.3μm)大得多。
2)积屑瘤存在时,它代替金刚石切削刃进行切削,积屑 瘤和切屑间的摩擦及积屑瘤和已加工表面之间的摩擦 都很严重,摩擦力很大,大大超过金刚石和这些材料之 间的摩擦力,这导致切削力的增加。
超精密切削刀具磨损和寿命
图2-2 磨损的金刚石切削刃
正常刀具磨损情况,一般磨 损主要在后刀面上。
图2-3 剧烈磨损的金刚石切削刃
剧烈磨损情况,从图中可看 到磨损区呈层状,即刀具磨 损为层状微小剥落,这大概 是由金刚石沿(111)晶面有 解理现象产生而造成这样的 磨损形式。
超精密切削刀具磨损和寿命
一、超精密切削时切削参数对积屑瘤生成的影响
图2-8 背吃刀量㊀ap对积屑瘤高度的影响
硬铝v=314m/min f=0.0075mm/r
在实验的切削参数范围内都有积屑瘤产生。
背吃刀量ap<25μm时,积屑瘤的高度h0变化 不大,但ap大于25μm后,积屑瘤高度h0将随 ap值的增加而增加,这种变化的原因大概是

超精密切削加工与金刚石刀具(精密加工

超精密切削加工与金刚石刀具(精密加工

2.5 切削刃锋锐度对切削变形、加工表面质量的影 响
三、切削刃锋锐度对切削变形和切削力的影响
2021/5/1
锋锐车刀切削变形系数明显低于 较钝的车刀。 刀刃锋锐度不同,切削力明显不 同。刃口半径增大,切削力增大, 即切削变形大。背吃刀量很小时, 切削力显著增大。因为背吃刀量很 小时,刃口半径造成的附加切削变 形已占总切削变形的很大比例,刃 口的微小变化将使切削变形产生很 大的变化。所以在背吃刀量很小的 精切时,应采用刃口半径很小的锋 锐金刚石车刀。
(FN ) Ff cos FP sin
A点为极限临界点,极限最小切削厚度 hDmin 应为
hDmin rn(1 cos ) rn1
2021/5/1
第2章 超精密切削与金刚石刀具
2.1超精密切削时刀具的切削速度、磨损和耐用度 2.2超精密切削时积屑瘤的生成规律 2.3切削参数变化对加工表面质量的影响 2.4刀刃锋锐度对切削变形和加工表面质量的影响 2.5超精密切削时的最小切削厚度 2.6金刚石刀具晶面选择对切削变形和加工表面质
2021/5/1
2.2 超精密切削时刀具的磨损和寿命
后刀面 前刀面
2021/5/1
图2-2:切削刃正常磨损;
图 2-3 : 图 a 是 刀 刃 磨 损 的 正常情况,图b是剧烈磨损 情况,可以看到磨损后成 层状,即刀具磨损为层状 微小剥落;
图2-4:图中所示沿切削速 度方向出现磨损沟槽,由 于金刚石和铁、镍的化学 和物理亲和性而产生的腐 蚀沟槽;
2.3 超精密切削时积屑瘤的生成规律
2、进给量f和背吃刀量 p的影响
• 由图2-7可以看出在进给量很小时,积屑瘤的高度很大,在 f=5μm/r时,h0值最小,f值再增大时,h0值稍有增加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超精密切削加工技术介绍
超精密加工技术是适应现代高科技的需要而发展起来的先进制造技术, 是高科技尖端产品开发中不可或缺的关键技术, 是一个国家制造业水平重要标志, 是先进制造技术基础和关键, 也是装备现代化不可缺少的关键技术之一, 在军用和民用工业中有着十分广阔的应用前景。

金刚石超精密切削技术, 是超精密加工技术发展最早的、应用最为广泛的技术之一。

超精密切削加工技术
1、超精密切削的历史
60年代初,由于宇航用的陀螺,计算机用的磁鼓、磁盘,光学扫描用的多面棱镜,大功率激光核聚变装置用的大直径非圆曲面镜,以及各种复杂形状的红外光用的立体镜等等,各种反射镜和多面棱镜精度要求极高,使用磨削、研磨、抛光等方法进行加工,不但加工成本很高,而且很难满足精度和表面粗糙度的要求。

为此,研究、开发了使用高精度、高刚度的机床和金刚石刀具进行切削加工的方法加工。

2、超精密切削加工的应用
(1)平面镜的切削
平面度
金刚石刀具
1、金刚石刀具特点
金刚石刀具拥有很高的高温强度和硬度,而且材质细密,经过精细研磨,切削刃可磨得极为锋利,表面粗糙度值很小,因此可进行镜面切削。

金刚石刀具超精密切削主要用于加工铜、铝等有色金属,如高密度硬磁盘的铝合金基片、激光器的反射镜、复印机的硒鼓、光学平面镜,凹凸镜、抛物面镜等。

超精切削刀具材料有天然金刚石,人造单晶金刚石。

金刚石刀具磨损的常见形式为机械磨损和破损。

机械磨损——机械摩擦、非常微小;破损。

相关文档
最新文档