第三汽轮机调节系统与保护系统
汽轮机调节保护系统

汽轮机调节保护系统汽轮机是现代热力发电厂最重要的组成部分之一。
它的控制系统是确保汽轮机的正常运行的关键。
自动控制系统和保护系统是这一过程中最重要的两个组成部分之一。
在这篇文章中,我们将详细介绍汽轮机的调节保护系统。
汽轮机是一种使用高温高压蒸汽或气体驱动的旋转机械装置。
汽轮机的作用是将蒸汽的热能转化为机械动能,然后通过发电机将其转化为电能。
因此,汽轮机调节保护系统具有保证汽轮机正常运行和确保发电安全的重要作用。
汽轮机调节保护系统主要由以下几个部分组成。
1.汽轮机控制系统汽轮机控制系统是汽轮机调节保护系统的核心部分。
它主要用于保证汽轮机转速的稳定和自动控制汽轮机的启停和负荷调节。
汽轮机控制系统主要由控制器、传感器、执行机构和通信设备组成。
控制器是控制系统的中央处理单元,传感器用于采集汽轮机的运行状态数据,执行机构使得控制器能够控制汽轮机的运行状态,通信设备用于控制器与其他系统间的通信。
2.过速保护系统每个汽轮机都有其安全转速范围。
当汽轮机的转速超过这个范围时,过速保护系统将立即介入,使汽轮机的转速降低到安全范围内。
过速保护系统通常由控制器和传感器组成。
控制器将保护信号发送到执行机构,降低汽轮机的转速。
3.欠速保护系统欠速保护系统是汽轮机调节保护系统的另一个重要组成部分。
当汽轮机转速降低到预定值以下时,欠速保护系统将自动启动,从而防止汽轮机达到停机转速或停机。
欠速保护系统通常由控制器和传感器组成。
控制器将保护信号发送到执行机构,提高汽轮机的转速。
4.温度保护系统汽轮机内部温度较高。
如果温度超过安全限制,就会出现爆炸或机械故障的风险。
温度保护系统用于控制汽轮机内部温度。
它通常由控制器和传感器组成,控制器通过发送信号到执行机构来控制汽轮机的温度。
5.压力保护系统汽轮机中涉及到各种各样的压力,如进汽压力、汽轮机排汽压力等等。
当压力超出安全范围时,压力保护系统将启动。
它通常由控制器和传感器组成,在必要时控制器将向执行机构发送保护信号,使汽轮机的压力恢复到安全范围内。
汽轮机调节保护系统

汽轮机调节保护系统汽轮机调节保护系统是指通过一定的技术手段和方法,对汽轮机的调节和保护进行有效的控制和管理。
该系统主要是通过对汽轮机的行为和状态进行监测和分析,以便及时发现和解决问题,保证汽轮机的正常运行,并确保汽轮机的安全和稳定。
汽轮机调节保护系统主要通过以下几个方面保证汽轮机的稳定性和安全性:1. 调节控制系统:对于汽轮机的控制系统来说,一定是至关重要的。
通过合理的调节,能够保证汽轮机的平稳运行,减少机械故障的发生。
调节控制系统主要包括:稳压控制系统、转速控制系统、温度控制系统、压力控制系统等。
2. 轴承监测系统:汽轮机在运行时,其轴承也是非常重要的,一旦轴承有故障或者异常,就可能导致汽轮机的故障或事故发生。
轴承监测系统主要是通过对轴承进行动态监控,及时发现轴承的故障或者异样情况,对其进行有效修复或调整。
3. 系统安全控制:汽轮机是一种高速旋转的机械设备,其安全性非常重要。
系统安全控制主要是通过对汽轮机的各个部位进行安全监测和控制,对可能导致事故的因素进行及时的排查和排除。
4. 故障排除与修复:在汽轮机运行时,可能会遇到各种各样的故障和问题,如果不能及时处理,就会导致更严重的后果。
因此,故障排除与修复是非常重要的一环,在出现问题时,需要及时处理,避免事情的扩大。
总体来说,汽轮机调节保护系统是为了确保汽轮机的正常运行,而设计的一种高级的技术方案。
这一系统能够对汽轮机进行全方位的监测和分析,并能够及时发现和解决问题,保证汽轮机的安全和稳定。
因此,无论是对于汽轮机相关企业还是汽轮机的使用者来说,都非常重要。
在实际使用中,需要充分发挥汽轮机调节保护系统的优势,及时调整和整合相关的技术手段和手法,为汽轮机的安全和稳定提供保障。
汽轮机控制系统

汽轮机控制系统包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。
控制系统的内容和复杂程度依机组的用途和容量大小而不同。
各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。
现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。
调节系统用来保证机组具有高品质的输出,以满足使用的要求。
常用的有转速调节、压力调节和流量调节3种。
①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。
早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。
这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。
20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。
图 1 [液压式调速器]为两种常用的液压式调速器的工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速器])或旋转阻尼(图1b[液压式调速器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。
②压力调节:用于供热式汽轮机。
常用的是波纹管调压器(图 2 [波纹管调压器])。
调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。
③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。
流量信号通常用孔板两侧的压力差(1-2)来测得。
图3 [压差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。
汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。
通常采用的是机械式(采用机械和液压元件)调节系统。
而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。
汽轮机调节系统

第五节、汽轮机的供油系统
一、汽轮机:
主油系统
主油箱
润 滑 油 冷 油 器
n1 n2 100% n0
2、速度变动率对一次调频的影响
并列机组的负荷分配;
速度变动率不可过小,否则引起负荷晃动;3%~ 6%;
速度变动率不可过大,否则引起甩负荷超速;
3、局部速度变动率
n n1
n0
Δx
0
Δm
n2
pe 100%
(三)迟缓率
1、迟缓现象
2、迟缓率的定义:机组在同一功率下的最高转速与最低 转速之差,与额定转速之比,称为迟缓率;
一、调节系统的静态特性 (一)调节系统的静态特性曲线 静态特性:在稳定运行工况下,转速和功率之间的关系。
n
转速感受机构曲线
静态特性曲线
Δx 传动放大机构曲线
Δm
pe 配汽执行机构曲线
静态特性曲线图称为四方图或四象限图;
(二)速度变动率
1、速度变动率的定义:当机组孤立运行时,功率零负荷 所对应的最大转速与额定负荷对应的最小转速之差, 与额定转速之比称谓速度变动率;
ቤተ መጻሕፍቲ ባይዱ动态超调量: max 100%
3、快速性(过渡时间)
(二)影响动态特性的主要因素 1、调节对象对动态特性的影响: 1)转子飞升时间常数Ta: 2)蒸汽中间容积时间常数Tv: 2、调节系统对动态特性的影响: 1)转速不等率δ(速度变动率): 2)油动机时间常数Tm: 3)迟缓率:
第四节、危急遮断系统
第一节、概述
一、汽轮机调节系统的任务
《汽轮机》课件一、调节系统简介

外界负荷减小时,阻力矩减 小,主力矩如不变,则转速 升高
当外界负载条件一定时,电 磁阻力矩是随转速的增加而 迅速增加。
➢ 在平衡状态下,Mt1=Me1,
d 0
dt
➢ 则角速度ω=常数,转速n=常数,机组稳定在某一转 速下运行。
Mt1与Me1两曲线交点A, 即为平衡工况点。 转速为na
随着转速的升 高,主力矩逐 渐减小。
电磁阻力矩与转速关系取决于外界负载的特 性,电网中的负载大致可分为三类
➢ 频率变化对有功功率没有直接影响的负载, 如照明、电热设备等;
➢ 有功功率与频率成正比变化的负载,如金 属切削机床、磨煤机等;
➢ 有功功率与频率成三次方或高次方变化的 负载,如鼓风机、水泵等。
转 速 变
化
Δn
油动机
错油门
Δx
感受机构 (调速器)
传动放大机构
负反馈 (杠杆)
机械液压调节系统 (MHC ) (mechanical hydraulic control)
汽轮机的调节系统采用机械元件作为控制器,转速 作为控制信号,而执行器采用液压元件。
1.机械液压调节系统的调节功能比较单一,只能根据转速 变化信号进行调节----外扰
汽轮机的主力矩可用下式表示
Mt
1000PT
1000PT
2 n
60
9549 PT n
PT——汽轮机内功率(kW);
➢ 若将 PT=G△Htηri代入上式则得
Mt
9549tri
G n
△Ht——汽轮机理想焓降(kJ/kg); ηri——汽轮机的内效率;
G——汽轮机的蒸汽流量(kg/s)。
汽轮机调节保安系统的常见故障和原因

汽轮机调节保安系统的常见故障和原因【摘要】调节保安系统在汽轮机运行与控制中起着重要作用,针对汽轮机调节保安系统运行中经常发生的故障,结合实际情况分析其产生原因并给出处理方法。
【关键词】汽轮机;调节保安系统;常见故障1.汽轮机调节保安系统在生产企业的日常运行过程中,电站系统的高效稳定运行是企业生产活动的基础保障,其中汽轮机的应用能够保障电站高效稳定运行,再加上纯低温余热设备及发电技术的应用,使得汽轮机发挥的作用愈加显著。
汽轮机主要是通过其中的调节保安系统实现其控制作用。
汽轮机的调节保安系统能够对汽轮机的停机和启动、危急遮断器的自动挂钩、速关阀的试验以及关闭开启、手动和电动紧急停机等功能进行有效控制。
汽轮机的调节保安系统主要包括两个部分,其中保安系统的主要构成包括超速保护装置(危急遮断器、危急遮断油门、危急遮断复位装置、电超速保安装置、转速测量装置)、磁力断路油门和润滑油压等;调节系统则主要由启动阀、同步器、旋转隔板、高中压油动机、放大器、以及高中压调节汽门等部套构成。
现阶段,为了降低汽轮机应用及运行成本费用,同时提高环保性,大多数厂家都已经开始使用DEH(Digital Electric Hydraulic Control System,汽轮机电液控制系统),并应用低压透平油数字式电液调节系统方式,能够进一步提高汽轮机运行过程中的可靠性。
2.汽轮机调节系统常见故障及原因2.1启动阀和调速油压故障目前,很多汽轮机已经将手轮取消,在实际生产中为了便于作业,使用的是启动器。
但是,在启动器的实际应用中,有时会发生油动机与主汽门开量不足的问题,这两种故障的发生是启动器的启动油压低、或者主汽门被提前开启导致。
另外,在连接启动阀的结构内部存在主活塞,如果没有将主活塞芯杆的零位与旋转套筒设定好,也会引起启动阀故障。
汽轮机调速油泵大多具有比较大的容量,这就导致实际生产过程中的调速油压普遍较高。
在进行基建安装施工时,对泵叶轮要进行车削操作,操作过程中对调速油压的大小有一定的要求,最大不能超过1.2MPa,最低不能小于1.1MPa。
汽轮机保护系统

凝汽器真空
凝汽器真空低Ⅰ值报警:凝汽器真空 低Ⅰ值 -84Kpa满足,延时2秒报警
凝汽器真空低Ⅱ值联锁:凝汽器真空 低Ⅱ值 -60Kpa,联锁投入满足,延 时10秒汽轮机跳闸
3
发电机主保护动作及轴承回油温度高
发电机主保护动作联锁投入并且发电机主保护 动作(信号来至于电气)
汽轮机跳闸。
轴承回油温度高保护联锁投入并且回油温度高 (65℃)任一满足:报警。
注意:试验完毕后才能松开油路切换阀,否则将引
起跳机!
17
18
停机电磁阀
保安油路中串联2个 停机电磁阀,正常 运行时为失电状态, 位置见控制阀底板。 任一激励将切断保 安油而停机。如左 图
19
手动停机阀
高 压 油
手动停机阀是
用于手动停机
的一个控制阀。
左图为正常运
行位置。危急
情况下,拿掉
罩帽,压下手
结果条件:保护联锁投入并且回油温度高高 (70℃)任一满足:汽轮机跳闸。
4
汽机超速
联锁投入并且汽轮机超速条件满 足仪表盘
3340r/min,危急遮断器33003360r/min,电调装置3270r/min 时汽轮机跳闸。
5
转子轴向位移大
转子轴向位移大Ⅰ值报警:转子轴向位移大 Ⅰ值(+1mm,-1 mm)任一满足,报警。
汽轮机后轴瓦(两个)振动大Ⅰ值0.05mm满足 发电机前轴瓦(两个)振动大Ⅰ值0.05mm满足
发电机后轴瓦(两个)振动大Ⅰ值0.05mm满足 2、前后轴瓦振动大Ⅱ值联锁联锁投入满足汽轮机跳闸 汽轮机前轴瓦(两个)振动大Ⅱ值0.07mm,
汽轮机后轴瓦(两个)振动大Ⅱ值0.07mm, 发电机前轴瓦(两个)振动大Ⅱ值0.07mm,
汽轮机调节系统

一次调频 外负荷变化
评:并网机组对外负荷变化引起的电网频率 变化的自动响应
二次调频 外负荷不变,主动改变某些 机组的功率 评:电网对频率的主动调节
目的不同
一次调频 目的是 减少电网频率变化量,但不能 保证频率在合格范围内
不同点:
二次调频 目的是把电网频率调整到合格范围
要求不同
一次调频:快速性
迅速改变电网中参加 一次调频机组的功率
第一节 汽轮机自动调节和保护的基本原理
(二)速度变动率
汽轮机空负荷时所对应的最大转速和额定负荷时所对应的最小转
速之差,与汽轮机额定转速之比,称为调节系统的速度变动率,或
称为速度不等率,其表达式为:
nmax nmin 100%
n0
n
nmax
nmin
速度变动率决定了 静态特性曲பைடு நூலகம்的倾 斜程度
第一节 汽轮机自动调节和保护的基本原理
不同机组对速度变动率 的要求 一般 的 范围为3%~6%
尖峰负荷机组 较小,一般为3%~4%, 也不能过小
n
0
带基本负荷机组 较大,一般为 4%~6%, 也不能过大
n
机组超速 保护动作
转速
P
n
甩全负荷 后,机组
3300 3270
3180 转速稳态
即(2850~3210) r/min
P0 P
第一节 汽轮机自动调节和保护的基本原理
三、调节系统动态特性
(一)动态特性基本概念
汽轮机调节系统是由多个环节组成的复杂闭环系统,部件运动 惯性、油流流动阻力和蒸汽中间容积等的存在,使得调节系统由一 个稳定工况到另一稳定工况时经历着复杂的过渡过程。
速度变动率对机组运行的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的变化相适应;在电网频率不变时,能维持机组功率不变,具 有抗内扰性能 (4)当负荷变化时,调节系统应能保证机组从一个稳定工况过渡到 另一个稳定工况,而不发生较大的和长时间的负荷摆动 (5)当机组甩全负荷时,调节系统应使机组能维持空转(遮断保护 不动作)。 (6)调节系统中的保护装置,应能在被监控的参数超过规定的极限 值时,迅速地自动控第三制汽轮机机组调节减系统负与保荷护或系统停机,以保证机组安全。
时滤网; 5-热电偶套管 3-轴承盖;4-轴;5-支架;6-油动泄压阀
1、再热主汽门
图 3-22
再 热 主 汽 门
第三汽轮机调节系统与保护系统
2、再热调节阀
图 3-23
再 热 调 节 汽 阀
第三汽轮机调节系统与保护系统
第三节 DEH调节系统
一、DEH系统的组成 1、工作站 工作站是DEH系统的外围设备。 2、 数字式控制器 由三台主计算机和若干个微处理器、单片 机组成,通过总线进行连接,完成数据处 理、通信、运算、监测和控制任务。 3、液压控制系统 液压控制系统是控制进汽阀开度的执行机 构,每一个进汽阀都配置一套液压控制系统。
五、再热器对调节特性的影响
图3-15 再热机组功率的变化 PH-高压缸的功率;P1-中压缸的功率;
第P三汽L轮-低机调压节系缸统的与保功护系率统
六、汽轮机运行对调节系统性能的要求
调节系统在运行中应能满足如下要求: (1)调节系统应能保证机组启动时平稳升速至3000r/min,并能顺
利并网 (2)机组并网后,蒸汽参数在允许范围内,调节系统应能使机组在
前
(2600)
(2900)
关闭 关闭 关闭→控制 控制 控制→全开 全开
全开 全开
全开
全开
全开→控制 控制
关闭 控制 控制→保持 保持
保持
保持
第三汽轮机调节系统与保护系统
表3-4 高、中压缸控制进汽冲转阀门开启逻辑(旁路投入) 单位:r/min
2、高压调节汽门 调节汽门是钟罩式 单座阀,其主阀碟 内也有预启阀。 图
3-19 调 节 汽 阀
第三汽轮机调节系统与保护系统
二、再热(中压)主汽门和调节汽门
图3-20 再热主汽门及再热调节阀侧视图 图3-21 左侧再热主汽门和
1-再热主汽门及再热调节阀壳组件;
再热调节阀组件的俯视图
2-再热主汽门阀盖;3-永久第滤三汽网轮;机调节1-系再统热与保主护汽系统门和再热调节阀壳组件;2-轴;
(二)速度变动率 1、速度变动率的定义
第三汽轮机调节系统与保护系统
2、速度变动率对一次调频的影响
图3-2 并列运行机组的负荷分配
第三汽轮机调节系统与保护系统
(三)迟缓率
图3-3 考虑迟缓现象后的静态特性
第三汽轮机调节系统与保护系统
图3-4 迟缓率对运行机组的影响
图3-5 速度变动率和迟缓率 对功率自发变化的影响
第二节 高中压缸进汽阀门
一、高压主汽门和调节汽门
1、高压主汽门
表3-1 汽轮机各阀门关闭时间 (s)
阀门名称
主汽门 调节汽阀 再热主汽门 再热调节汽阀
时间特性 关闭时间
<0.15 <0.2 <0.15 <0.2
延迟时间 <0.1 <0.1 <0.1 <0.1
第三汽轮机调节系统与保护系统
图3-16 主汽门和调节阀的 阀体及其支架的侧视图 第三汽轮机调节系统与保护系统
阀门
高压主汽阀
高压调节阀 中压调节阀
冲转前
关闭
全开 关闭
0~2980
控制(逐 渐开大)
全开 全开
阀门切换 (2900)
控制→全工
2900~3000 全开
全开→控制 全开
控制 全开
表3-3 阀门
高压主汽阀 高压调节阀 中压调节阀
中压缸控制进汽冲转阀门开启逻辑(旁路投入) 单位r/min
冲转 0~2600 阀切换 2600~2900 阀门切换 2900~3000
第三汽轮机调节系统与保护系统
图3-24 DEH系统的原理示意图 第三汽轮机调节系统与保护系统
图3-25 阀门控制的VCC卡
第三汽轮机调节系统与保护系统
二、DEH系统的控制方式 DEH的控制方式有“手动”、“操作员自
动”、 “程序控制”和“协调控制”、“遥控”五
种 三、DEH系统的主要功能 四、转速控制回路
四、调节系统动态特性
(一)动态特性指标
1、稳定性
图
3-10
几
种
不
同
稳
定
过
程
第三汽轮机调节系统与保护系统
2、超调量 3、过渡过程时间
图3-11 甩全负荷时转速的过渡过程 图3-12 速度变动率对过渡过程的影响
第三汽轮机调节系统与保护系统
图3-13 飞升时间常数
3-14 油动机时间常数
Ta对动态过程的影响第图三汽轮机调节系统与保护T系m统 对动态过程的影响
转速控制回路由转速给定值形成单元、比 较器、阀门切换、比例积分器、转速测量 等元件组成,其输出的转速请求值引入相 应进汽阀的液第三压汽轮控机调制节系组统与保件护系,统 控制阀门开度 。
图3-26 转速控制回路原理图
第三汽轮机调节系统与保护系统
表3-2
高压缸控制进汽冲转阀门开启逻辑(旁路切除) 单位:r/min
第三汽轮机调节系统与保护系统
(四)同步器 1、同步器的作用
图3-6 同步器平移静态特性曲线的作用
第三汽轮机调节系统与保护系统
2、同步器的工作原理 3、同步器对电网进行二次调频
图3-7 同步器平移调节系统静态特性曲线实现二次调频
第三汽轮机调节系统与保护系统
4、同步器的调节范围
图3-8 同步器的工作范第围三汽轮机调节系图统态3与-保9特护系性蒸统的汽影参响数改变时对静
第三章 汽轮机的调节系统与保护系统
第一节 汽轮机调节系统的基本知识 一、汽轮机调节系统的任务 二、汽轮机调节系统的型式 汽轮机调节系统按其结构特点可划分为两种型式
1、液压调节系统 2、电液调节系统 三、液压调节系统的静态特性
第三汽轮机调节系统与保护系统
(一)调节系统静态特性的概念
图3-1 调节系统 四方图
图3-17 左侧主 汽门和调节阀的
俯视图 1-主汽门 组件右侧; 2-主汽门 组件左侧; 3-主汽门油动机 组件左则; 4-主汽门油动机 组件右侧; 5-主汽门左侧 开关盒托架; 6-主汽门右侧 开关盒托架; 7~9-开关盒; 10-主汽门开关盒 支架组件
图3-18 主汽门的结构 第三汽轮机调节系统与保护系统