2020-2021深圳西乡中学高三数学上期末第一次模拟试题(带答案)
2020-2021深圳西乡中学八年级数学上期末第一次模拟试题(带答案)

18. 如图, △ABC中, EF 是 AB 的垂直平分线,与 AB 交于点 D, BF=12, CF=3,则 AC = .
19. 因式分解 4x x 3
.
20. 如图, AC =DC , BC=EC,请你添加一个适当的条件:
△ABC≌△ DEC .
______________ ,使得
三、解答题
21. 已知:如图,在△ ABC 中, AB=2AC ,过点 C 作 CD ⊥ AC ,交∠ BAC 的平分线于点 D.求证: AD=BD .
A.( 0, 0)
B.( 0, 1)
C.( 0, 2)
D.( 0, 3)
3. 若长度分别为 a,3,5 的三条线段能组成一个三角形,则 a 的值可以是(
)
A. 1
B. 2
4. 下列各因式分解的结果正确的是(
A. a3 a a a2 1
C. 3 )
D. 8
B. b2 ab b b(b a)
C. 1 2x x2 (1 x)2
D. x2 y2 ( x y)( x y)
5. 下列运算中,结果是 a6 的是 ( )
A. a2?a3
B. a12÷ a2
C. (a3)3
D. (﹣ a)6
6. 已知关于 x 的分式方程 2x m 1 的解是非正数,则 m 的取值范围是(
)
x3
A. m 3
B. m 3
C. m 3
D. m 3
7.如图,直线 L 上有三个正方形 a,b, c,若 a, c 的面积分别为 1 和 9,则 b 的面积为
一、选择题
1. B 解析: B 【解析】 【分析】 设小李每小时走 x 千米,则小张每小时走( x+1 )千米,根据题意可得等量关系:小李所用 时间 -小张所用时间 =半小时,根据等量关系列出方程即可. 【详解】 解:设小李每小时走 x 千米,依题意得:
2020-2021深圳西乡中学高三数学下期末第一次模拟试题(带答案)

2020-2021深圳西乡中学高三数学下期末第一次模拟试题(带答案)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .2.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .193.设是虚数单位,则复数(1)(12)i i -+=( ) A .3+3i B .-1+3iC .3+iD .-1+i4.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 6.数列2,5,11,20,x ,47...中的x 等于( )A .28B .32C .33D .277.下列四个命题中,正确命题的个数为( ) ①如果两个平面有三个公共点,那么这两个平面重合; ②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ=I ,则M l ∈; ④空间中,相交于同一点的三直线在同一平面内.A .1B .2C .3D .48.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-<D .1,0a b >-> 10.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) Ax << B5x < C.2x <<D5x <<11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对12.sin 47sin17cos30cos17-o o ooA. B .12-C .12D二、填空题13.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.14.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r 的值为 .17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.19.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.20.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题21.已知直线352:{132x tl y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.23.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.24.已知2256x ≤且21log2x ≥,求函数2()log 2x f x =⋅的最大值和最小值. 25.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式.26.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.D解析:D 【解析】掷骰子共有36个结果,而落在圆x 2+y 2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41369=. 故选D3.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.4.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.5.A解析:A 【解析】 【分析】 【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法, 甲在星期二有A 32=6种安排方法, 甲在星期三有A 22=2种安排方法, 总共有12+6+2=20种; 故选A .6.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.A解析:A 【解析】 【分析】 【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确; 若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的, 故选A .8.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.解析:C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得. 【详解】 当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1b x a=-;()y f x ax b =--最多一个零点; 当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +„,即1a -„时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.10.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.11.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.12.C解析:C 【解析】 【分析】由()sin 473017sin θ=+oo o,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79-【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积解析:2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.17.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化解析:1【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+Q ,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O 即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图 解析:1015π【解析】 【分析】先还原几何体,再从底面外心与侧面三角形SAB 的外心分别作相应面的垂线交于O ,即为球心,利用正弦定理求得外接圆的半径,利用垂径定理求得球的半径,即可求得表面积. 【详解】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面SAB ⊥平面ABCD ,连接AC,BD 交于E ,过E 作面ABCD 的垂线与过三角形ABS 的外心作面ABS 的垂线交于O ,即为球心,连接AO 即为半径,令1r 为SAB ∆外接圆半径,在三角形SAB 中,SA=SB=3,AB=4,则cos 23SBA ∠=, ∴sin 5SBA ∠=,∴132sin 5r SBA ==∠,∴125r =,又OF=12AD =, 可得2221R r OF =+,计算得,28110112020R =+= , 所以210145S R ππ==. 故答案为101.5π 【点睛】本题考查了三视图还原几何体的问题,考查了四棱锥的外接球的问题,关键是找到球心,属于较难题.19.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1 ,22⎡⎤⎢⎥⎣⎦【解析】【分析】作出可行域,yx表示(),x y与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030yx yx y-⎧⎪--⎨⎪+-⎩„„…表示的平面区域ABCV(包括边界),所以yx表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B,,所以122OA OBk k==,,故1,22yx⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.20.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】因为3sinsinαα=()2sinsinααα+=22sin cos cos sinsinααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.三、解答题21.(1);(2).【解析】 【分析】 【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值.试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为2220x y x +-=,②(2)将35132x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入②得253180t t ++=,设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用. 22.(1) ; (2)36000;(3).【解析】 【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数. 【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础. 23.(1)13; (2)()1E X =. 【解析】 【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值. 【详解】(1)由已知有1123432101()3C C C P A C ⋅+==, 所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2;2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===;11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为:数学期望为()0121151515E X =???. 【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题. 24.最小值为14-,最大值为2. 【解析】 【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.25.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭26.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个 故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279=所以“抽取的卡片上的数字a、b、c不完全相同”的概率为18 199 -=考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.。
2020-2021深圳市高级中学高中必修一数学上期末模拟试题带答案

2020-2021深圳市高级中学高中必修一数学上期末模拟试题带答案一、选择题1.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,12.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .2 D .23.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦4.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .35.若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .149.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.910.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y 11.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.15.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________16.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________. 17.已知函数1()41xf x a =+-是奇函数,则的值为________. 18.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______. 19.设是两个非空集合,定义运算.已知,,则________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.23.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t . 24.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值.25.已知函数2,,()lg 1,,x x m f x x x m ⎧⎪=⎨+>⎪⎩„其中01m <„.(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围. 26.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩, 易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增, 且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.4.D解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫= ⎪⎝⎭,∴()1(())21010f f f =,又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.5.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.6.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kte -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.9.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.10.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根 解析:(0,3]【解析】 【分析】由题意根据函数1y mx m =+-在区间(),0-∞上为增函数及分段函数的特征,可求得m 的取值范围. 【详解】∵函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),-∞+∞上单调递增,∴函数1y mx m =+-在区间(),0-∞上为增函数, ∴01212m m >⎧⎨-≤+=⎩,解得03m <≤, ∴实数m 的取值范围是(0,3]. 故答案为(0,3]. 【点睛】解答此类问题时要注意两点:一是根据函数()f x 在(),-∞+∞上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.14.【解析】【分析】由题意知函数在上是减函数在上是增函数其规律是自变量的绝对值越小其函数值越大由此可直接将转化成一般不等式再结合其定义域可以解出的取值范围【详解】解:函数是偶函数定义在上的偶函数在区间上解析:11,2⎡⎫-⎪⎢⎣⎭【解析】 【分析】由题意知函数在[]0,2上是减函数,在[]2,0-上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将(1)()f m f m -<转化成一般不等式,再结合其定义域可以解出m 的取值范围 【详解】解:Q 函数是偶函数, (1)(|1|)f m f m ∴-=-,()(||)f m f m =, Q 定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,(1)()f m f m -<,0|||1|2m m ∴<-剟,得112m -<…. 故答案为:11,2⎡⎫-⎪⎢⎣⎭. 【点睛】本题考点是奇偶性与单调性的综合,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[]22-,来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.15.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .16.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.17.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 18.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.19.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A ∩B= 解析:【解析】 【分析】分别确定集合A ,B ,然后求解即可.【详解】 求解函数的定义域可得:,求解函数的值域可得,则,结合新定义的运算可知:,表示为区间形式即.【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题解析:5 【解析】 【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可. 【详解】cos x πππ-≤≤Q ,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ,cos 1x =-的解有π, cos 1x =的解有0,2π,故共有30,,,,222ππππ5个零点, 故答案为:5 【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.三、解答题21.(1)1,22⎛⎫- ⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭【解析】 【分析】(1)由真数大于0列出不等式组求解即可; (2)由312f ⎛⎫=-⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩,即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭. (2)∵312f ⎛⎫=- ⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<, ∴使()0h x <成立的的集合为1,23⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题. 22.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=---∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥-- 即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <-综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题.23.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩【解析】 【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解; (2)根据二次函数的性质,分类讨论即可. 【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦,则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦;(2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭, []2,x t ∈Q ,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦,当413log 24t <<,即2t <<,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+,当43log 4t ≥,即t ≥时, 函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增,()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭,综上所述:()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题. 24.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m = 【解析】 【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值. 【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去; 当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 25.(Ⅰ)零点3个. (Ⅱ)10,100⎡⎫⎪⎢⎣⎭【解析】 【分析】(I )当0m =时,由()20f x -=,结合分段函数解析式,求得函数的零点,由此判断出()2y f x =-的零点的个数.(II )令2()3()0f x f x -=,解得()0f x =(根据分段函数解析式可知()0f x >,故舍去.)或()3f x =.结合分段函数解析式,求得()3f x =的根,结合分段函数()f x 的分段点,求得m 的取值范围. 【详解】(Ⅰ)当0m =时,2,0,()lg 1,0.x x f x x x ⎧⎪=⎨+>⎪⎩„ 令()20y f x =-=,得()2f x =, 则|lg |12x +=或||22x =. 解|lg |12x +=,得10x =或110, 解||22x =,得1x =-或1x =(舍).所以当0m =时,函数()2y f x =-的零点为1-,110,10,共3个. (Ⅱ)令2()3()0f x f x -=,得()0f x =或()3f x =.由题易知()0f x >恒成立.所以()3f x =必须有3个实根,即|lg |13x +=和||23x =共有3个根. ①解||23x =,得2log 3x =-或2log 31x =>(舍),故有1个根. ②解|lg |13x +=,得100x =或1100x =, 要使得两根都满足题意,则有1100m <. 又01m <„,所以10100m <„. 所以实数m 的取值范围为10,100⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查分段函数零点个数的判断,考查根据函数零点个数求参数的取值范围,属于中档题.26.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.。
广东省深圳市高级中学2020届高三数学上学期第一次测试试题文

广东省深圳市高级中学2020届高三数学上学期第一次测试试题 文一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{|6}A x N x =∈≤,{|22}B x R x =∈->,则A B I = ( ) A .{}0,5,6 B .{5,6}C .{4,6}D .{|46}x x <≤2.若复数12iz i=-+,则z 的虚部为 ( ) A.15i - B .15- C .15i D. 153.已知向量a =(4,x ),b =(-4,4),若a ∥b ,则x 的值为 ( ).A .0B .4C .-4D .±44.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值为( ) A.B.C.D.5.下列函数中,在其定义域上为增函数的是( ) A .2x y = B .xe y -= C .x x y sin -= D .x y -=6.各项均为正数的等比数列{}n a 的前项和为n S ,若32,14n n S S ==,则4n S =( )A. 80B. 16C. 26D. 307.设函数R x x f y ∈=),(,“)(x f y =是偶函数”是“)(x f y =的图像关于原点对称”的( )A.充分不必要条件B.必要不充条件C.充要条件D.既不充分也不必要条件8. 某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) A.2018年 B. 2019年 C.2020年 D. 2021年 9.将函数()3sin 2cos2f x x x =+的图象向右平移6π,再把所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法正确的是( ) A. 函数()g x 31 B. 函数()g x 的最小正周期为πC. 函数()g x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递增 D. 函数()g x 的图像关于直线3x π=对称 10.如图,平面四边形ABCD 中,E,F 是AD,BD 中点,AB=AD=CD=2,022,90BD BDC =∠=,将ABD ∆沿对角线BD 折起至'A BD ∆,使平面'A BD BCD ⊥,则四面体'A BCD -中,下列结论不正确的是( )A. //EF 平面'A BCB.异面直线CD 与'A B 所成的角为090C.异面直线EF 与'A C 所成的角为060D.直线'A C 与平面BCD 所成的角为030 11.已知 ,(0,),sin sin 02παββααβ∈-> ,则下列不等式一定成立的是( )A.2παβ+<B.2παβ+=C.αβ<D.αβ> 12.已知函数,1()(2),1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正实数m 的取值范围为 A .1(,1)(1,1)2e e --UB .1(,1)(1,1]2e e --U C .1(,1)(1,1)3e e --UD .1(,1)(1,1]3e e --U 二、填空题:本大题共4小题,每小题5分,满分20分. 13.函数()1ln 1xf x x +⎛⎫=⎪-⎝⎭的值域为________. 14.若()()1sin sin 3a βαβ+-=-则._____cos cos 22=-βa 15.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}n a 是等和数列,且21=a ,公和为5,这个数列的前2n-1项和21n S -=_______.16.已知三棱锥PABC 的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为26,则三棱锥PABC 的内切球的体积为________.三、解答题(本大题共 6小题,满分 70 分.解答须写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .18.(本题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为c b a 、、,且满足A b B a cos 3sin =。
2020-2021深圳西乡中学高三数学下期中第一次模拟试题(带答案)

2020-2021深圳西乡中学高三数学下期中第一次模拟试题(带答案)一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞2.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32x y =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<3.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)4.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞5.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .36.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =7.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b c c+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形8.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦9.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A .2BC.2D .410.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <11.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524312.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .6二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.在等差数列{}n a 中,12a =,3510a a +=,则7a = . 17.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.18.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________. 19.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 .20.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.三、解答题21.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.22.设n S 为等差数列{}n a 的前n 项和,公差d ∈N ,25a =,且53545S <<. (1)求{}n a 的通项公式;(2)设数列{}237n S n -的前n 项和为n T ,若m n T T ≤,对n *∈N 恒成立,求m . 23.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 24.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.25.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .26.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.3.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.4.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.5.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.6.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立, 设函数数()2f x x x=-,[]15x ∈, ()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.9.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin 3sin cos 0B A A B -=, 因为(0,)A π∈,则sin 0A >,所以sin 3cos 0B B -=,即tan 3B =,解得3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.11.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.12.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141114244a b a b ab ab ab ab ab ab +++≥=+≥⋅= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当222224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,2a b ab +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【解析】 【分析】 【详解】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,,递增,最小值为53,即可知满足33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭即可成立故答案为33,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭. 15.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1 【解析】 【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解. 【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1. 【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.16.8【解析】【分析】【详解】设等差数列的公差为则所以故答案为8解析:8 【解析】 【分析】 【详解】设等差数列{}n a 的公差为d , 则351712610a a a a a d +=+=+=, 所以71101028a a =-=-=,故答案为8.17.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.18.93【解析】【分析】运用等比数列通项公式基本量的计算先求出首项和公比然后再运用等比数列前项和公式求出前项和【详解】正项等比数列满足即则有代入有又因为则故答案为【点睛】本题考查了求等比数列前项和等比数解析:93 【解析】 【分析】运用等比数列通项公式基本量的计算,先求出首项和公比,然后再运用等比数列前n 项和公式求出前5项和. 【详解】正项等比数列{}n a 满足2418-=a a ,6290-=a a ,即24222218,90a q a a q a -=-=则有()()()22222118,1190a q a q q -=-+= 代入有221=5,4q q +=又因为0q >,则212,6,3q a a =∴==()553129312S ⨯-∴==-故答案为93 【点睛】本题考查了求等比数列前n 项和等比数列通项公式的运用,需要熟记公式,并能灵活运用公式及等比数列的性质等进行解题,本题较为基础.19.【解析】试题分析:方程组无解等价于直线与直线平行所以且又为正数所以()即取值范围是考点:方程组的思想以及基本不等式的应用 解析:(2,)+∞【解析】试题分析:方程组无解等价于直线1ax y +=与直线1x by +=平行,所以1ab =且1a b ≠≠.又a ,b 为正数,所以22a b ab +>=(1a b ≠≠),即+a b 取值范围是(2,)+∞.考点:方程组的思想以及基本不等式的应用.20.【解析】【分析】【详解】当时代入题中不等式显然不成立当时令 都过定点考查函数令则与轴的交点为时均有也过点解得或(舍去)故 解析:32a =【解析】 【分析】 【详解】 当时,代入题中不等式显然不成立当时,令,,都过定点考查函数,令,则与轴的交点为时,均有也过点解得或(舍去),故三、解答题21.(Ⅰ)3π;(Ⅱ)7b =3314. 【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得3tanB =,则B =π3. (Ⅱ)在△ABC 中,由余弦定理可得b 7.结合二倍角公式和两角差的正弦公式可得()332sin A B -=详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB=,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭, 即π6sinB cos B ⎛⎫=-⎪⎝⎭,可得3tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有22227b a c accosB =+-=,故b 7由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,可得sinA =a <c ,故cosA =.因此227sin A sinAcosA ==,212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=1127-= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 22.(1)31n a n =-;(2)11m =或12m = 【解析】 【分析】(1)由5335545S a <=<可解得3d =,进而求出1a ,得到31n a n =-;(2)由(1)可求出n S ,进而求出237n S n -,即可求出其前n 项和的最小值,从而得出结论. 【详解】(1)()()5325555S a a d d ==+=+Q ,()355545d <∴+<,即24d <<, d ∈N Q ,3d ∴=,则122a a d =-=,故()21331n a n n =+-⨯=-; (2)由(1)知,()()2313122n n n n n S +-+==, 则2237336n S n n n -=-,令2370n S n -≤,解得012n ≤≤, 则()1211min n T T T ==, 故11m =或12m =. 【点睛】本题考查求等差数列的通项公式及其性质的应用,属于中档题. 23.(1)a n =3n ﹣1,b n =2n ﹣1(2)T n =3﹣(n +1)•(13)n ﹣1 【解析】 【分析】(1)利用基本量法求解n a ,再代入()1,n n P b b +到直线20x y -+=可得{}n b 为等差数列,再进行通项公式求解即可. (2)利用错位相减求和即可.【详解】(1)递增等比数列{a n }的公比设为q ,前n 项和为S n ,且a 2=3,S 3=13, 可得a 1q =3,a 1+a 1q +a 1q 2=13,解得q =3或q 13=, 由等比数列递增,可得q =3,a 1=1,则13-=n n a ; P (b n ,b n +1)在直线x ﹣y +2=0上,可得b n +1﹣b n =2, 且b 1=a 1=1,则b n =1+2(n ﹣1)=2n ﹣1; (2)c n nn b a ==(2n ﹣1)•(13)n ﹣1, 前n 项和T n =1•1+3•13+5•19++L (2n ﹣1)•(13)n ﹣1, 13T n =1•13+3•19+5•127++L (2n ﹣1)•(13)n , 相减可得23T n =1+2(1139+++L (13)n ﹣1)﹣(2n ﹣1)•(13)n=1+2•111133113n -⎛⎫- ⎪⎝⎭--(2n ﹣1)•(13)n , 化简可得T n =3﹣(n +1)•(13)n ﹣1.【点睛】本题主要考查了等比等差数列的通项公式求解以及错位相减的求和方法,属于中档题. 24.(Ⅰ)5950(Ⅱ)a【解析】 【分析】 【详解】222221131sin cos 2cos 12sin cos 12sin cos 2sin 222222 B C A A A A A A A ++=+-=++-=+-⋅3sin 5A =,4cos 5A ∴= 2231314959sin cos 2cos 2sin 2222225 5 250B C A A A ++=+-=+⨯-⨯= (2)133sin ,2,sin 25bc A b A ===25.(1)6=BC 2)3101520【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得6AE AC BE BC ==.可求6BE AE =,2615AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =, 所以62m =,即6BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以6AE AC BE BC ==所以6BE AE =,所以2615AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin 4BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 26.(1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损. 【解析】 【分析】(1)根据已知得平均处理成本为yx,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利()2130********10x S x y =-=---,根据二次函数图象可求得[]80000,40000S ∈--,可知不获利,同时求得国家至少补贴40000元.【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为:1800002002002002y x x x =+-≥= 当且仅当1800002x x=,即400x =时取等号 ∴月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨(2)不获利设该单位每月获利为S 元()222110010020080000113008000030035000222S x y x x x x x x ⎛⎫=-=--+ ⎪=-+-=---⎝⎭[]400,600x ∈Q []80000,40000S ∴∈--故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损 【点睛】本题考查构造函数模型解决实际问题,主要涉及的内容是利用基本不等式求解函数的最值、利用二次函数图象求解最值的问题.。
深圳市2020届高三年级第一次调研考试理科数学试题(含答案)

连接 GM , AA1C1C 是菱形, A1M AC1 .
由(1)知 A1G 平面 AB1C1 ,故 A1G AC1 ,
A1G A1M A1 , AC1 平面 A1MG ,
GM 平面 A1MG , GM AC1,……7 分
A1MG 为二面角 A1 AC1 B1 的平面角, 不妨设棱柱的棱长为 2 ,
由题意直线的斜率存在,因为 A(−2,0) ,设直线 l : y = k (x + 2) , M (x0, y0 ) ,
x2
联立
4
+
y2
=1
,整理得 (1+ 4k2 )x2 +16k2x + (16k2 − 4) = 0 ,
…………6 分
y = k(x + 2)
由韦达定理,
由双曲线定义可知: 2a =| NF1 | − | NF2 |=| MN | + | MF1 | − | NF2 | ,
| MN |=| NF2 | + | OF2 | ,且| OF2 |= c , 2a = b + c , b = c − 2a ,
b2 = (c − 2a)2 = c2 − 4ac + 4a2 ,
又
曲线 y
=
f (x) 关于直线 x = − 1 4
对称, − 1 + 4
=
k2
π+
π 2
,(k2 Z) ……(2)
由(1)、(2)可得 = 2(k1 − k2 ) −1π ,即 = (2n −1)π (n Z) ……(3)
f (x) 在 1, 2 上有且仅有 3 个零点, 2π 2 −1 4π ( 0) ,
E 是 AC 的中点, 到点 A , C 的距离相等的点位于平面 BED 内,
2021年深圳市高三年级第一次调研考试——数学答案
绝密★启封并使用完毕前试题类型:A2021 年深圳市高三第一次调研考试数学试题答案及评分参考一、单项选择题:题号12345678答案D A B A D C B C二、多项选择题:题号910 11 12答案AC BC BD ABD12. 解析:(1)考查选项A:若CD//平面xOy,考虑以下特殊情形:①当点B 与坐标原点O 重合时,S 为正方形;②当点A 与坐标原点O 重合时,S 为三角形,故选项A 正确;(2)考查选项B:若点A 与坐标原点O 重合,即AB 在z 轴上,易知CD// 平面xOy ,且S 为三角形,不难知道其面积为1⨯1⨯2=2,故选项B 正确;2 2 4(3)考查选项C:当OA =OB =OC ,且点O 在正四面体ABCD 外部时,则点D 恰好为以OA ,OB ,OC 为棱的正方体的一个顶点,∵AB =1,∴OA =2,∴S 是边长为2的正方形,其面积为1,故选项C 错误;2 2 2(不难知道当OA =OB =OC ,且点O 在正四面体ABCD 内部时,S 为三角形,且其面积为5 )12(4)考查选项D:设AB 的中点为M ,则OM =1,且MD =3,2 2易知OD ≤OM +MD =1+ 3<3,即OD <3,2 2 2∴点D 到坐标原点O 的距离小于3,故选项D 正确;2综上所述,应选A、B、D.三、填空题:13. f (x)=x2 +1(答案不唯一);14. 8 ;15. 6 ;16.1+3 .4 2 33 13. 解析: f (x )=x 2+ 1,或 f (x )= 4 x 2 + 1 2 x 2 + 1 ,或 f (x )= - 等(只需 f (x )=ax 2 2+ c 满足ac = 1 即可) 4 16. 解析:不妨设 BC = a , AC = b ,若∠ACB = 30︒ ,则由正弦定理可得AB= 2 ,故 AB = 1 , sin 30︒ ∴由余弦定理得1 = a 2 + b 2- 2ab cos30︒ = a 2+ b 2- 3ab ≥ (1- 3 )(a 2 + b 2 ) ,2∴ a 2 + b 2 ≤ 4 + 2 ,显然△ A 'B 'C ' 为由△ ABC 所得到的拿破仑三角形(等边三角形),设其边长为 x ,易知∠A 'CB ' = 90︒ ,且 A 'C =3a , B 'C = 3 3b , 3∴ x 2 = (3a )2 + ( 3b )2 = 1(a 2 + b 2 ) , 3 3 3∴△ A 'B 'C ' 的面积 S =3 x 2 =3 (a 2 + b 2 ) ≤3⨯ (4 + 2 3) = 1 + 3, 4 1212 2 3 显然可取等号,即△ A 'B 'C ' 的面积最大值为 1 + 3 ,故应填 1 + 3.2 3 2 3四、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10 分)设数列{a } 的前n 项和 S ,满足 S= S n,且 a = 1 .nnn +1 1+ 2S 1 (1)证明:数列{ 1} 为等差数列;S n(2)求{a n } 的通项公式.解:(1)由S = S n n +1 1+ 2S , 得 1 = 1+ 2S n ,…………………………………………………2 分S n +1 S n 1 - 1 S n +1 S n = 2 , 1 S 1 = 1 = 1 ,a 1故数列{ 1} 是首项为 1,公差为 2 的等差数列. ………………………………………………4 分S n 1 (2)由(1)知 n= 1+ (n -1) ⨯ 2 = 2n -1 ,则 S n =12n -1,……………………………………………………………………………………………6 分 当 n ≥1 且 n ∈ Ν* 时, a = S - S = 1 - 1 = - 2 , …………………… 8 分n n n -12n -1 2n - 3 (2n -1)(2n - 3)S nn⎧1,n =1, 故{a } 的通项公式为 a = ⎪2 …………………………………………………10 分n n ⎨- ⎩(2n -1)(2n - 3) ,n > 1.【命题意图】本题主要考查等差数列的定义和通项公式,以及a n 与 S n 的关系,考察了学生的数学运算, 逻辑推理等核心素养.18.(12 分)c 2 - a 2 △ ABC 的内角 A , B , C 的对边分别为 a , b , c , 已知 A 为锐角, sin B - cos C =.2ab(1)求 A ;(2)若b = 3c ,且 BC 边上的高为2 4,求△ ABC 的面积. c 2 - a 2 解:(1)∵ sin B - cos C =,2ab∴ 2ab sin B = c 2 - a 2 + 2ab c os C ,…………………………………………………………………1 分由余弦定理,得c 2 = a 2 + b 2 - 2ab c os C , ∴ 2ab sin B = b 2 , ∴ 2a sin B = b ,……………………………………………………………………………………2 分由正弦定理,得a sin A =b , sin B∴ 2sin A sin B = sin B , 又∵ B ∈(0, π) ,即sin B ≠ 0 ,∴ sin A = 1 ,……………………………………………………………………………………4 分2∵角 A 为锐角,∴ A = π .……………………………………………………………………………6 分6(2)∵ BC 边上的高为2 ∴△ ABC 的面积 S = 1⋅ a ⋅ 2 21,= 3a ,……………………………………………………………7 分bc又△ ABC 的面积 S = bc s in A = ,2 4∴ bc =4又∵ b = 3a ,即bc = 4 3a , ……………………………………………………………8 分3c , 43 3 32 ⨯ 4 3a8 33 ∴ c 2= 16a ,且b 2 = 3 c 2= 3a ,………………………………………………………………………10 分16b 2 +c 2 - a 23a +16a - a 2 19 - a在△ ABC 中,由余弦定理,得cos A == = = ,2bc 2 解得 a = 7 , ……………………………………………………………………………………………11 分 ∴ S = 3a = 7 3 ,即△ ABC 的面积为7 . ………………………………………………………12 分【命题意图】本题主要考察正弦定理,余弦定理等知识,意在考察考生方程、转化与化归思想,考察了学生的逻辑推理,数学运算等核心素养.19.(12 分)某校将进行篮球定点投篮测试,规则为:每人至多投3 次,先在 M 处投一次三分球,投进得3 分,未投进不得分,以后均在 N 处投两分球,每投进一次得2 分,未投进不得分. 测试者累计得分高于3 分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在 M 处和 N 处各投10 次,根据他们每轮两分球和三分球的命中次数分别得到如下图表:(第 19 题图)若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率. (1)求甲同学通过测试的概率;(2)若甲、乙两位同学均通过了测试,求甲得分比乙得分高的概率.5 + 4 + 3 +6 +7 解:(1)甲同学两分球投篮命中的概率为10 10 10 10 10 = 0.5 , …………………………1 分 51 + 0 + 1 +2 + 1 甲同学三分球投篮命中的概率为10 10 10 10 = 0.1 , ……………………………………2 分 5设甲同学累计得分为 X ,3SMADBCSADC则 P ( X ≥ 4) = P ( X = 4) + P ( X = 5) = 0.9 ⨯ 0.5⨯ 0.5 + 0.1⨯ 0.5 + 0.1⨯ 0.5⨯ 0.5 = 0.3 ∴甲同学通过测试的概率为0.3 .…………………………………………………………………5 分(2)同(1)可求,乙同学两分球投篮命中的概率为0.4 ,三分球投篮命中的概率为0.2 , ……7 分设乙同学累计得分为Y ,则P (Y = 4) = 0.8⨯ 0.4 ⨯ 0.4 = 0.128 , …………………………………………………8 分P (Y = 5) = 0.2 ⨯ 0.4 + 0.2 ⨯ 0.6 ⨯ 0.4 = 0.128 , …………………………………………………9 分设“甲得分比乙得分高”为事件 A ,“甲、乙两位同学均通过了测试”为事件 B ,则 P ( AB ) = P ( X = 5) ⋅ P (Y = 4) = 0.075⨯ 0.128 = 0.0096 , ………………………………………10 分P (B ) = [P ( X = 4) + P ( X = 5)]⋅[P (Y = 4) + P (Y = 5)] = 0.0768 , …………………………………11 分由条件概率公式可得, P ( A | B ) =P ( AB ) = 0.0096 = 1. ………………………………………12 分 P (B ) 0.0768 8【命题意图】本题以体育运动为背景,通过频率与概率定义以及条件概率公式等知识点,考查学生数学建模、数学运算、逻辑推理等数学核心素养,体现分类讨论的数学思想.20.(12 分)如图,在四棱锥 S - ABCD 中, SA = SB = SC = SD =13, AC ⊥ CD , AB = 6 , BD = 8 . (1)求证:平面 SAD ⊥ 平面 ABCD ; (2)求二面角 A - SB - D 的余弦值.(第 20 题图)解:(1)证明: 如图所示,取 AD 的中点 M ,连接 SM , MC .…………………………1 分∵ SA = SD , ∴ SM ⊥ AD . ∵ AC ⊥ CD ,∴△ ACD 是直角三角形,1∴ CM = AD ,2 ∴ AM = CM = DM . ∵ SA = SC ,∴Rt △SAM ≅ Rt △SCM ,………………………………………………………………3分∴ ∠CMS =∠AMS =π ,2∵AM CM =M ,∴SM ⊥平面ABCD ,又∵SM ⊂平面SAD ,∴ 平面SAD ⊥平面ABCD . ………………………………………………………………………5 分(2)由(1)可知,SM ⊥平面ABCD ,∴ ∠BMS =∠AMS =π ,2又∵ SA =SB ,∴Rt △SAM ≅ Rt △SBM ,∴ BM =AM ,∴ A ,B ,C ,D 四点共圆,∴ AB ⊥BD . ………………………………………………………………………………………6 分∵AB = 6 ,BD = 8 ,∴AD =10 ,∴ AM = 5 ,又∵SA =13,∴ SM =12 . ……………………………………………………………………………………7分(解法一)以B 为坐标原点,BD 为x 轴,BA 为y 轴,过点B 平行于SM 的直线为z 轴,建立如图所示的空间直角坐标系,易得B(0,0,0) ,D(8,0,0) ,A(0,6,0) ,S (4,3,12) ,……………………8分S 则有BS = (4,3,12) ,BA = (0,6,0) ,BD = (8,0,0) ,z分别设平面ABS 和平面DBS 的法向量为m = (x1, y1, z1) 和n = (x2, y2, z2) ,则⎧⎪BA⋅m=0,即⎧6 y1= 0,………………………9分y M x ⎨BS ⋅m = 0,⎨4x + 3y + 12z= 0, A D ⎩⎪⎩ 1 1 1则平面ABS 的一个法向量为m = (3,0, -1) , BC同理,平面DBS 的一个法向量为n = (0, 4, -1) ,………………………………………………10 分cos < =170,………………………………………………………11分170m, n >= m ⋅nm ⋅n 10 ⨯17=1设二面角A-SB -D 的平面角为θ,则cosθ=-170. …………………………………………12 分170(解法二)以M 为坐标原点,过点M 平行于DB 的直线为x 轴,平行于AB 的直线为y 轴,MS 为z轴,建立如图所示的空间直角坐标系,易得B(4,3,0) ,D(-4,3,0) ,A(4, -3,0) ,S (0, 0,12) ,……8分z 则有BS = (-4, -3,12) ,BA = (0, -6,0) ,BD = (-8,0,0) ,S分别设平面ABS 和平面DBS 的法向量为m = (x1, y1, z1) 和n = (x2, y2, z2) ,则⎧⎪BA⋅m=0,即⎧-6 y1= 0,………………………9分M⎨BS ⋅m = 0,⎨-4x 3y +12z = 0, A D ⎩⎪⎩ 1 1 1则平面ABS 的一个法向量为m = (3,0,1) , B C y同理,平面DBS 的一个法向量为n = (0, 4,1) ,………………………………………………10 分cos < =170,………………………………………………………11分170设二面角A-SB -D 的平面角为θ,则cosθ=-170. ……………………………………12 分170(解法三)如图所示,过点A ,D 分别作SB 的垂线,并交SB 于点E ,F . ……………8分在等腰△SAB 中,由AB2 -BE2 =AS 2 -SE2 ,得62 -BE2 =132 - (13 -BE)2 ,解得BE =18,13在Rt △EAB 中,由AE2 =AB2 -BE2 = 62 - (18)2 =36 ⨯160,………………………………9分13 132同理,BF =32,FD2 =64 ⨯153,13 132则EF =BF -BE =14,………………………………10 分13由AD =-EA +EF +FD ,可得AD2 = (-EA +EF +FD)2 =EA2 +EF 2 +FD2 - 2EA ⋅FD ,则102 =36 ⨯160+14 2+64 ⨯153- 2 ⨯36 ⨯160⨯64 ⨯153cos132(13)132132132解得cos <EA, FD >=-170,…………………………………………………………………11分170易知二面角A-SB -D 的平面角就是EA 与FD 的夹角,设二面角A-SB -D 的平面角为θ,则cosθ=-170. ……………………………………12 分170m, n >=m ⋅nm ⋅n 10 ⨯17=1SFAE MDB<EA, FD >,Cx【命题意图】本题主要考察线面垂直的判定与性质,面面垂直的判定,空间向量,二面角的平面角.涉0 0 0 0及到的思想方法主要有向量法,数形结合思想,等价转化思想.考察了学生的直观想象,逻辑推理,数学运算等核心素养.21.(12 分)F Fx 2 y 2FF设O 是坐标原点,以 1 , 2 为焦点的椭圆C : +a 2b 2的圆和C 恰好有两个交点.(1)求C 的方程;=1(a > b > 0) 的长轴长为2 , 以 1 2 为直径(2) P 是C 外的一点,过 P 的直线l , l 均与C 相切,且l , l 的斜率之积为m (-1 ≤ m ≤ - 1) ,1 2 1 2 2记u 为 PO 的最小值,求u 的取值范围.解:(1)由题意, 2a = 2 2 , ∴ a = 2 ,………………………………………………………………………………1 分又∵以 F 1F 2 为直径的圆和C 恰好有两个交点, 即b = c , …………………………………………………………………………2 分又∵ b 2+c 2 =a 2 = 2 , ∴ b = c =1,……………………………………………………………………………3 分 x 2 2∴ C 的方程为 + y 2= 1 . …………………………………………………………………4 分(解法一)由题意, l 1 , l 2 的斜率存在且不为零,设过点 P (x 0 , y 0 ) 的切线l : y - y 0 = k (x - x 0 ) ,⎧ y - y 0 = k (x - x 0 ), ⎪由方程组⎨ x 2 ⎪⎩ 2y 2 =1, 消去 y ,并整理得(1+ 2k 2 )x 2 + 4k ( y - kx )x + 2(y - kx )2 - 2 = 0 ,……………………………………6 分∵ l 与C 相切,0 0 0 0∴ ∆ =16k 2 (y - kx )2 - 8(1+ 2k 2 )((y - kx )2 -1) =0,……………………………7 分化简并整理,得( y - kx )2 =2k 2 +1,整理成关于 k 的一元二次方程得 (x 2 - 2)k 2 - 2x y k + y 2 -1= 0 ,(易知 x ≠ ) ……8 分0 0设l 1 , l 2 的斜率分别为 k 1 , k 2 ,易知 k 1 , k 2 为方程(x 2 - 2)k 2 - 2x y k + y 2-1= 0的两根,∴k 1 ⋅ k 2 y 2-1 = 0= m , x 2 - 2 2± 2 +2 3 0 0 0 0 0 0 ∴ y 2 = mx 2+1- 2m ,∴ x 2 + y 2 = (1+ m )x 2+1-2m , …………………………………10 分∴ | PO |易知当 x 0 = 0 时,有u =| PO |min 又∵ -1 ≤ m ≤ - 1,2…………………………………………11 分∴ ≤ u ≤ ,即u 的取值范围为[ 2, 3] .………………………………………………………12 分(解法二)由题意, l , l 的斜率存在且不为零,设点 P (x , y ) , l :y = kx + b , l :y = mx + n ,1 2 0 0 1 2k显然k ≠ m,即k 2 - m ≠ 0 ,k⎧ y = kx + b , ⎪由方程组⎨ x 2消去 y ,并整理得(1+ 2k 2 )x 2 + 4kbx + 2b 2 - 2 = 0 , ………………6 分+ y 2 =1, ⎪⎩ 2∵ l 1 与C 相切,∴ ∆ = (4kb )2 - 4(2k 2 +1)(2b 2 - 2) =0, 即b 2 =2k 2 +1,………………………………………………………………………7 分同理由l 2 与C 相切可得, n 2= 2m 2k2+ 1 ,⎧ y = kx + b ,⎧x = (n - b )k ,⎪ ⎪ 0 k 2 - m 由方程组 ⎨ y = m x + n , 解得 ⎨k 2 n - bm………………………………………8 分⎩⎪ k ⎪ y = ,⎪⎩⎧ 2 n 2 k 2 + b 2 k 2 - 2nbk 2k 2 - m⎪x 0= ⎪ , (k 2 - m )2 ∴ ⎨ ⎪ y 2 = n 2 k 4 + b 2 m 2- 2nbmk 2 ⎪⎩ ∴ y 0 02 - mx 2(k 2 - m )2 (k 4- mk 2)n 2+ (m 2- mk 2)b 2= (k 2 - m )2k 2 n 2 - mb 2, k 2- m又∵ b 2 =2k 2+1, n 2= 2m 2 k2+ 1 ,k 2( 2m 22 +1) - m (2k 2+1)∴ y 2 - mx 2 = k =1- 2m ,x 2 + y 2 0 0 = 1+ m x +1- 2m , ( ) 21- 2m =0 0 k 2 m2 3 0 0 0 0 0 ∴ y 2 = mx 2 +1- 2m ,∴ x 2 + y 2 = (1+ m )x 2 +1-2m , …………………………………………………10 分∴ | PO |易知当 x 0 = 0 时,有u =| PO |min 又∵ -1 ≤ m ≤ - 1 ,2, …………………………………………11 分∴ ≤ u ≤ ,即u 的取值范围为[ 2, 3] .………………………………………………………12 分【命题意图】本题以直线与椭圆为载体,以椭圆的双切线(切点弦)性质为背景,利用代数方法解决几何问题,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.22.(12 分)已知函数 f (x ) = a ln 2 x + 2x (1- ln x ) , a ∈R .(1)讨论函数 f (x ) 的单调性;(2)若函数 g (x ) = e 2 f (x ) - 2a 2 有且仅有3 个零点,求 a 的取值范围.(其中常数e =2.718 28 ⋅⋅⋅ ,是自然对数的底数)解:(1)易知 f (x ) 的定义域为(0, +∞) ,且 f '(x ) = 2(a - x ) l n x, f '(1) = 0 ,……………………1 分x ①若 a ≤ 0 ,当 x ∈ (0,1) 时, f '(x ) > 0 ;当 x ∈(1, +∞) 时, f '(x ) < 0 ,∴ f (x ) 在(0,1) 上单调递增,在(1, +∞) 上单调递减; ………………………………………………2 分②若0 < a <1,易知当 x ∈(0, a ) 时, f '(x ) < 0 ;当 x ∈ (a ,1) 时, f '(x ) > 0 ;当 x ∈(1, +∞) 时, f '(x ) < 0 ;∴ f (x ) 在(0, a ) 和(1, +∞) 上单调递减,在(a ,1) 上单调递增; ………………………………………3 分③若 a =1,则 f '(x ) ≤ 0 ,∴ f (x ) 在 (0, +∞) 上 单 调 递 减 ; ………………………………………………4 分④若 a >1,易知当 x ∈ (0,1) 时, f '(x ) < 0 ;当 x ∈ (1, a ) 时, f '(x ) > 0 ;当 x ∈(a , +∞) 时, f '(x ) < 0 ;∴ f (x ) 在(0,1) 和(a , +∞) 上单调递减,在(1, a ) 上单调递增.x 2 + y 2 0 0 = 1+ m x +1- 2m , ( ) 2 01- 2m+ 2a > 综上所述,当a ≤ 0 时,f (x ) 在(0,1) 上单调递增,在(1, +∞) 上单调递减;当0 < a <1时,f (x ) 在(0, a ) 和(1, +∞) 上单调递减,在(a ,1) 上单调递增;当 a =1时, f (x ) 在(0, +∞) 上单调递减;当 a >1时, f (x ) 在(0,1) 和(a , +∞) 上单调递减,在(1, a ) 上单调递增. ………………………………………5 分2a 2(2)令 g (x ) = 0 ,则 f (x ) = ,e 2 ∴依题意可知函数 y =f (x ) 与 y = 2a 2 e2 的图象有3 个不同的交点, ∴由(1)易知必有0 < a <1 ,或 a >1, ………………………………………………6 分 ①当0 < a <1时, f (x ) 在(0, a ) 和(1, +∞) 上单调递减,在(a ,1) 上单调递增,∴ f (x ) 的极大值为 f (1) = 2 , f (x ) 的极小值为 f (a ) = a (ln 2 a - 2ln a + 2) ,又 f (a ) = a (ln 2 a - 2ln a + 2) = a [(ln a -1)22a 22 1] > a > , e 2 ∴函数 y = f (x ) 与 y = 的图象至多有1 个交点,不合题意, ……………………………………7 分 e 2 ②当 a >1时, f (x ) 在(0,1) 和(a , +∞) 上单调递减,在(1, a ) 上单调递增,∴ f (x ) 的极小值为 f (1) = 2 , f (x ) 的极大值为 f (a ) = a (ln 2 a - 2ln a + 2) ,2a 22 ∴须有2 < < a (ln e2 a - 2ln a + 2) 成立, 2a 2 ∵ 2 < ,∴ a e , ……………………………………………………………………………8 分 e2 2a 2 ∵ e 2 a (ln 2 a - 2ln a + 2) ,∴ 2a e 2< ln 2 a - 2ln a + 2 (*),下面求不等式(*)的解集,(解法一)令ln a = x ,则不等式(*)等价于2e x -2 < x 2 - 2x + 2 ,令函数h (x ) = x 2 - 2x - 2e x -2 + 2 ,则h '(x ) = 2x - 2 - 2e x -2 ,令 y = 2x - 2 - 2e x -2 ,则 y ' = 2 - 2e x -2 ,函数 y = 2x - 2 - 2e x -2 在区间(-∞, 2) 上单调递增,在区间(2, +∞) 上单调递减,又 y (2) = 0 ,∴ y = 2x - 2 - 2e x -2 ≤ 0 , …………………………………………………9 分即 h '(x ) ≤ 0 恒成立,故函数h (x ) 单调递减,又 h (2) = 0 ,∴当且仅当 x < 2 时, h (x ) > 0 ,<1 ∴不等式2e x -2 < x 2 - 2x + 2 的解集为(-∞, 2) ,即不等式(*)的解集为(0,e 2 ) , …………10 分 2ln a - 2 - 2a(解法二)令函数ϕ(a ) = ln 2 a - 2ln a - 2a + 2 ,则ϕ'(a ) = e 2 e 2 ,a令 y = 2ln a - 2a - 2 ,则 y ' = 2 - 2 , 2 2∴函数 y = 2ln a - 2a- 2 在区间(0,e 2 ) 上单调递增,在区间(e 2 , +∞) 上单调递减,e 2 又 y (e 2 ) = 0 ,∴ y = 2ln a - 2a - 2 ≤ 0 , ………………………………………………9 分e 2 即ϕ'(a ) ≤ 0 恒成立,故函数ϕ (a ) 单调递减,又ϕ(e 2 ) = 0 , ∴不等式ϕ(a ) > 0 的解集为(0,e 2 ) , ………………………………………10 分 ∴必有e < a < e 2 ,下面证明,当e < a < e 2 时,函数 g (x ) = e 2 f (x ) - 2a 2 有且仅有3 个零点,(解法一)一方面,当e < a < e 2 时, f (e -a ) = a 3 + 2e -a (1 + a ) > a 3 2a 2e 2 , …………11 分另一方面,当e < a < e 2 时, f (e 3 ) = 9a - 4e 3 < 9e 2 - 4e 3 = e 2 (9 - 4e)<0 ,∴ f (e 3 )<f (1) ,不难知道,当e < a < e 2 时,函数 g (x ) = e 2 f (x ) - 2a 2 有且仅有3 个零点,综上所述,实数 a 的取值范围为(e,e 2 ) . …………………………………………………12 分 (解法二)当e < a < e 2 时,有 f ( 1) - f (a ) = [a ln 2 a + 2(1+ ln a )] - [a ln 2 a + 2a (1- ln a )]a a = 2 - 2a + ( 2 + 2a ) ln a > 2 - 2a + ( 2 + 2a ) = 4 > 0 ,a a a a a∴ f ( ) > f (a ) , …………………………………………………………………11 分 a显然当 x > 0 时,有e x 2(证明略),2 于是,当e < a < e 2 时,有 f (e a +1) = a (a +1)2 - 2a e a +1 < a (a +1)2 - a (a +1)2 = 0 ,∴ f (e a +1 ) < f (1) ,不难知道,当e < a < e 2 时,函数 g (x ) = e 2 f (x ) - 2a 2 有且仅有3 个零点, > x>综上所述,实数a 的取值范围为(e,e2 ) . …………………………………………………12 分【命题意图】本题以基本初等函数的单调性和零点问题为载体,考查学生利用导数分析、解决问题的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.。
2020-2021高三数学上期末一模试卷带答案(4)
2020-2021高三数学上期末一模试卷带答案(4)一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞2.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形3.设,x y 满足约束条件302x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .114.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .2 5.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .146.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-7.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( )A.1 B.1 C .+2D .28.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .39.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( )A .24B .48C .60D .8410.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .1511.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .3二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积222222142a c b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且3sin tan 13cos BC B=-,则ABC △的面积S 的最大值为__________.15.在等差数列{}n a 中,12a =,3510a a +=,则7a = .16.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223()4S a b c =+-,则角C =__________. 17.在等比数列中,,则__________.18.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.19.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.在数列{}n a 中, 已知11a =,且数列{}n a 的前n 项和n S 满足1434n n S S +-=, n *∈N .(1)证明数列{}n a 是等比数列;(2)设数列{}n na 的前n 项和为n T ,若不等式3()1604nn aT n+⋅-<对任意的n *∈N 恒成立, 求实数a 的取值范围.22.已知等差数列{}n a 的所有项和为150,且该数列前10项和为10,最后10项的和为50.(1)求数列{}n a 的项数; (2)求212230a a a ++⋅⋅⋅+的值.23.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?24.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .25.设n S 为等差数列{}n a 的前n 项和,公差d ∈N ,25a =,且53545S <<. (1)求{}n a 的通项公式;(2)设数列{}237n S n -的前n 项和为n T ,若m n T T ≤,对n *∈N 恒成立,求m . 26.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r,且//m n r r,BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】 【详解】 先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.3.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232xy ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 4.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .5.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列,又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.6.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.7.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c ≥2423-=2(3-1)=23-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误8.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.9.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C .考点:1.等差数列的求和;2.数列的性质.10.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.11.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.12.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a bA B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以1111111()1001005xy x y x y x y ⎛⎫+=+=+≥ ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.【解析】由题设可知即由正弦定理可得所以当时故填【解析】由题设可知)sin sin sin cos cos sincos C C B C B C C =⇒=+,即sin C A =,由正弦定理可得c =,所以S ==242a a =⇒=时,max S == 15.8【解析】【分析】【详解】设等差数列的公差为则所以故答案为8解析:8 【解析】 【分析】 【详解】设等差数列{}n a 的公差为d , 则351712610a a a a a d +=+=+=, 所以71101028a a =-=-=,故答案为8.16.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角解析:π3. 【解析】分析:利用面积公式in 12s S ab C =和余弦定理结合可得. 详解:由()22231sin 42S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=, 可得:312cos sin 2ab C ab C ⨯=, ∴tan 3C =, ∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.17.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案64解析:【解析】由题设可得,则,应填答案。
2020-2021深圳市高中必修一数学上期末一模试题(附答案)
2020-2021深圳市高中必修一数学上期末一模试题(附答案)一、选择题1.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .13.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-15.若x 0=cosx 0,则( )A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 6.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,28.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .9.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
2020-2021深圳市高三数学上期末试卷带答案
2020-2021深圳市高三数学上期末试卷带答案一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1 B .2C .3D .42.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形3.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b >D .33a b <4.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .45.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2016.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年7.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .28.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .139.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =10.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .4511.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .912.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .9二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________15.ABC ∆的内角,,A B C 的对边分别为,,a b c,已知)cos cos ,60a C c A b B -==︒,则A 的大小为__________.16.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.17.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.18.在钝角ABC V中,已知1AB AC ==,若ABC V的面积为2BC 的长为______.19.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.20.已知()()0f x kx k =>,若正数a 、b 满足()()()()f a f b f a f b +=,且4a b f f k k ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的最小值为1,则实数k 的值为______. 三、解答题21.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.22.已知S n 为等差数列{a n }的前n 项和,a 1>0,a 8﹣a 4﹣a 3=1,a 4是a 1和a 13的等比中项. (1)求数列{a n }的通项公式; (2)证明:对一切正整数n .有1211134n S S S +++<L L . 23.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos cos cos c C a B b A =+. (1)求角C .(2)若ABC V 的面积为S ,且224()S b a c =--,2a =,求S .24.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值.25.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且acos C +3asin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD 129,求△ABC 的面积. 26.设数列{}n a 的前n 项和为n S .已知233=+nn S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.3.D解析:D 【解析】 ∵0a b << ∴设1,1a b =-= 代入可知,,A B C 均不正确对于D ,根据幂函数的性质即可判断正确 故选D4.B解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.5.A解析:A【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.6.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.7.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.9.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.10.A【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.11.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+, 联立20x y y k+=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.12.C解析:C 【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 二、填空题13.【解析】【分析】直接利用分组法和分类讨论思想求出数列的和【详解】数列满足:(且为常数)当时则所以(常数)故所以数列的前项为首项为公差为的等差数列从项开始由于所以奇数项为偶数项为所以故答案为:【点睛】 解析:1849【解析】 【分析】直接利用分组法和分类讨论思想求出数列的和. 【详解】数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩, 当100a =时,则1100a =, 所以13n n a a +-=-(常数), 故()10031n a n =--,所以数列的前34项为首项为100,公差为3-的等差数列. 从35项开始,由于341a =,所以奇数项为3、偶数项为1,所以()()1001001346631184922S +⨯=+⨯+=,故答案为:1849 【点睛】本题考查了由递推关系式求数列的性质、等差数列的前n 项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.14.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式 解析:n a =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为n a =2,1{65,2n n n =-≥.考点:1.数列的前n 项和;2.数列的通项公式.15.【解析】由根据正弦定理得即又因为所以故答案为 解析:75︒【解析】)acosC ccosA b -=)sinAcosC sinCcosA sinB -=,即()A C -=, ()1sin ,?3026A C A C π-=-==︒,又因为180B 120A C +=︒-=︒, 所以2150,A 75A =︒=︒, 故答案为75︒.16.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力 解析:9π【解析】 【分析】根据正弦定理得到()1sin sin A B C R +==,再根据cos C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=,即()1sin sin A B C R +==,22cos 3C =,1sin 3C =, 即3R =.故29S R ππ==. 故答案为9π 【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.17.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.18.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】 【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得,11sin sin 22A A =⨯⇒=又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.19.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项解析:2221n n -- 【解析】 【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.20.9【解析】【分析】由求出满足的关系然后利用基本不等式求出的最小值再由最小值为1可得【详解】∵∴即∴当且仅当时等号成立∴故答案为:9【点睛】本题考查基本不等式求最值解题时需用凑配法凑出基本不等式所需的解析:9 【解析】 【分析】由()()()()f a f b f a f b +=求出,a b 满足的关系,然后利用基本不等式求出4()()a bf f k k +的最小值,再由最小值为1可得k . 【详解】∵()()()()f a f b f a f b +=,()f x kx =,∴ka kb ka kb +=⋅,即11k a b+=,∴4()()a b f f k k +111144()(4)(5)a b a b a b k a b k b a =+=++=++19(5k k≥+=,当且仅当4a b b a=时等号成立. ∴91k=,9k =. 故答案为:9. 【点睛】本题考查基本不等式求最值.解题时需用凑配法凑出基本不等式所需的定值,然后才可用基本不等式求最值,同时还要注意等号成立的条件,等号成立的条件取不到,这个最值也取不到.三、解答题21.(1)*21,n a n n N =-∈(2)存在,2,12m k ==【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由等差数列的通项公式与前n 项和公式得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,从而求出21n a n =-; (2)由(1)得()2122n n n S n n -=+⨯=,由211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭,利用裂项相消法得21n n T n =+,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m =+-,由1k m >>得11m <<+,从而可求出答案. 【详解】解:(1)设等差数列{}n a 的公差为d , 由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,若23k m T T =,则()2232121k m k m =++,整理得223412m k m m=+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m << 又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意. 【点睛】本题主要考查等差数列的性质与求和,考查裂项相消法求和,属于中档题. 22.(1)a n =2n +1;(2)证明见解析. 【解析】 【分析】(1)利用等比中项的性质,结合等差数列通项公式的基本量计算,求得1,a d ,由此求得数列{}n a 的通项公式.(2)先求得n S ,然后利用裂项求和法证得不等式成立. 【详解】(1)解:设等差数列{a n }的公差为d ,由题意,()12111121(3)120d a a d a a d a -=⎧⎪+=+⎨⎪>⎩,解得132a d =⎧⎨=⎩,∴数列{a n }的通项公式为a n =3+2(n ﹣1)=2n +1; (2)证明:由(1)知,()()12322n n n S n n n -⨯=+=+.∴()()()1211111111132435112n S S S n n n n +++=+++++⨯⨯⨯-++L L L 12=[111111111132435112n n n n -+-+-++-+--++L ]3111342124n n ⎛⎫=-+< ⎪+⎝⎭. 【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等比中项的性质,考查裂项求和法,考查数列不等式的证明,属于中档题. 23.(1)3C π=;(2)S =【解析】 【分析】(1)利用正弦定理与两角和正弦公式可得到结果;(2)由题意及三角形面积公式可得2cos 22sin ac B ac ac B -+=,结合特殊角的三角函数值得到2B π=,从而得到结果.【详解】(1)由正弦定理得2sin cos sin cos sin cos C C A B B A =+, ∴2sin cos sin()sin C C A B C =+=, ∴1cos 2C =,∵(0,)C π∈, ∴3C π=.(2)222224()22sin S b a c b a c ac ac B =--=--+=,∴由余弦定理得2cos 22sin ac B ac ac B -+=, ∴sin cos 1B B +=,∴sin 42B π⎛⎫+= ⎪⎝⎭,∵20,3B π⎛⎫∈ ⎪⎝⎭,∴2B π=,∴S = 【点睛】本题考查了正弦、余弦定理,三角形的面积公式,以及三角恒等变换,考查计算能力与推理能力,属于中档题. 24.(1)22n a n =+;(2)63 【解析】 【分析】(1)求出公差d 和首项1a ,可得通项公式;(2)由23,b b 得公比,再得6b ,结合{}n a 通项公式求得k . 【详解】(1)由题意等差数列{n a 的公差432d a a =-=,121210a a a d +=+=,14a =, ∴1(1)4(1)222n a a n d n n =+-=+-⨯=+; (2)由(1)23378,16b a b a ====,∴321628b q b ===,446282128b b q ==⨯=, ∴22128k a k =+=,63k =. 【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础. 25.(1)A =60°;(2)【解析】 【分析】(1)利用正弦定理,把边化为角,结合辅助角公式可求;(2)利用三角形内角关系求出sin C ,结合正弦定理求出,a c 关系,利用余弦定理可求,a c . 【详解】(1)acos C-b -c =0,由正弦定理得sin Acos C=sin B +sin C ,即sin Acos Csin Asin C =sin(A +C)+sin C ,又sin A -cos A =1,所以sin(A -30°)=12. 在△ABC 中,0°<A <180°,所以A -30°=30°,得A =60°. (2)在△ABC 中,因为cos B =17,所以sin B. 所以sin C =sin(A +B)=2×17+12×7=14.由正弦定理得,sin 7sin 5a A c C ==. 设a =7x ,c =5x(x >0),则在△ABD 中,AD 2=AB 2+BD 2-2AB·BDcos B, 即1294=25x 2+14×49x 2-2×5x×12×7x×17,解得x =1,所以a =7,c =5,故S △ABC =12acsin B = 【点睛】本题主要考查利用正弦定理和余弦定理解三角形,合理选择公式是求解的关键. 26.(Ⅰ)13,1,{3,1,n n n a n -==>; (Ⅱ)13631243n n n T +=-⨯. 【解析】 【分析】(Ⅰ)利用数列前n 项和n S 与通项n a 的关系求解;(Ⅱ)结合第(Ⅰ)问的结果,利用关系式3log n n n a b a =求出数列{}n b 的通项公式,并结合其通项的结构特征,采用错位相减法求其前n 项和n T . 【详解】(Ⅰ)因为233=+nn S ,所以,1233a =+,故13,a =当1n >时,11233,n n S --=+此时,1122233,n n n n n a S S --=-=-即13,n n a -=所以,13,1,{3,1,n n n a n -==>(Ⅱ)因为3log n n n a b a =,所以113b =, 当1n >时,()11133log 313nn n n b n ---==-⋅所以1113T b ==, 当1n >时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-L ,所以()01231132313nn T n --⎡⎤=+⨯+⨯++-⎣⎦L ,两式相减,得()()01212233+3133n n n T n ---=+++--⋅L ()11121313313n nn ----=+--⋅-1363623n n +=-⨯ 所以13631243n n n T +=-⨯, 经检验,1n =时也适合,综上可得:13631243n nn T +=-⨯.【点睛】本题考查数列前n项和n S与通项n a的关系,特殊数列的求和问题,关键在于运用错位相n 的情况,属于中档题.减法进行数列求和,注意考虑1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021深圳西乡中学高三数学上期末第一次模拟试题(带答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2C .2D .223.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .04.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,6a =,7cos 8A =,则ABC ∆的面积为( ) A .17B .3C .15D .1526.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5057.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .788.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .99.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =10.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .8411.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .3212.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .45二、填空题13.已知实数,且,则的最小值为____14.已知lg lg 2x y +=,则11x y+的最小值是______. 15.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.16.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.17.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.18.在钝角ABC V中,已知1AB AC ==,若ABC VBC 的长为______.19.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.20.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____.三、解答题21.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。
22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,设平面向量()()sin cos ,sin ,cos sin ,sin p A B A q B A B =+=-v v ,且2cos p q C ⋅=v v(Ⅰ)求C ;(Ⅱ)若c a b =+=ABC ∆中边上的高h .23.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .24.设n S 为等差数列{}n a 的前n 项和,公差d ∈N ,25a =,且53545S <<. (1)求{}n a 的通项公式;(2)设数列{}237n S n -的前n 项和为n T ,若m n T T ≤,对n *∈N 恒成立,求m . 25.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 26.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r ,且//m n r r,BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q212a a q ===,故选D. 3.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C .本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.4.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.5.D解析:D【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=, 解得:2c =由7cos 8A =得sin A ==所以,11sin 2422ABC S bc A ∆==⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.6.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.7.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.8.D解析:D【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.9.A解析:A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 10.C 解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.11.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.12.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.二、填空题13.3+54【解析】【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t 利用基本不等 解析:【解析】 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值. 【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,. 当且仅当,即当时,等号成立. 因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.14.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以11111111()100100505xy x y xy x y x y ⎛⎫+=+=+≥ ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 15.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.16.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.17.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】 【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-. 【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.18.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】 【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得11sin sin 2A A =⨯⇒=又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.19.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C20.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题 解析:2【解析】 【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可. 【详解】0,0a b ∴>>,20a b +=,202a b ab ∴=+≥当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立, 故lg lg a b +的最大值为2, 故答案为:2 【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.三、解答题21.(1)1;(2)()3,-+∞【分析】(1)根据函数()f x 的值域为[0,)+∞,可得0∆=,从而求出a 的值;(2)()0f x >对任意的[)1,x ∈+∞成立等价于22a x x >--对任意的[)1,x ∈+∞成立,因此只需()2max2a x x >--,然后求出22x x --的最小值即可得到a 的范围. 【详解】解:(1)∵函数()()22f x x x a x R =++∈的值域为[)0,+∞,∴22410a ∆=-⨯⨯=,∴1a =. (2)∵()0f x >对任意的[)1,x ∈+∞成立, ∴220x x a ++>对任意的[)1,x ∈+∞成立,∴22a x x >--对任意的[)1,x ∈+∞成立,∴只需()2max2a x x>--.∵当[)1,x ∈+∞时,()22max21213x x--=--⨯=-,∴3a >-.∴实数a 的取值范围为()3,-+∞. 【点睛】本题考查了根据函数的值域求参数的值和不等式恒成立问题,考查了转化思想和计算能力,属中档题. 22.(1)3C π=;(2)32. 【解析】分析:(1)由向量的数量积的运算,得222sin sin sin sin sin A B C A B +-=, 根据正弦、余弦定理得1cos 2C =,即可得到3C π=;(2)由余弦定理和a b +=3ab =,再利用三角形的面积公式,求得32h =,即可得到结论.详解:(1)因为22cos sin sin sin p q B A A B v v⋅=-+,所以222cos sin sin sin cos B A A B C -+=,即2221sin sin sin sin 1sin B A A B C --+=-, 即222sin sin sin sin sin A B C A B +-=,根据正弦定理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,所以3C π=;(2)由余弦定理()22232cos33a b ab a b ab π=+-=+-,又a b +=根据ABC ∆△的面积11sin 22S ab C ch ==,即11322⨯=, 解得32h =, 所以ABC ∆中AB 边上的高32h =. 点睛:本题主要考查了利用正弦定理、余弦定理和三角形的面积公式的应用,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.23.(1)n a n =;(2)22(41)2(1)3n n T n n -=++ 【解析】 【分析】(1)根据条件列方程组解得公差与首项,即得数列{}n a 的通项公式;(2)根据分组求和法得结果. 【详解】(1)公差d 不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,可得2319a a a =,313a a a =,可得2111(2)(8)a d a a d +=+,11a =,化简可得11a d ==,即有n a n =;(2)由(1)可得2,212,2n n n k b n n k⎧=-=⎨=⎩,*k N ∈;前2n 项和212(28322)(48124)n n T n -=+++⋯+++++⋯+2(14)12(41)(44)2(1)1423n n n n n n --=++=++-. 【点睛】本题考查等差数列通项公式以及分组求和法求和,考查基本分析求解能力,属中档题. 24.(1)31n a n =-;(2)11m =或12m = 【解析】 【分析】(1)由5335545S a <=<可解得3d =,进而求出1a ,得到31n a n =-;(2)由(1)可求出n S ,进而求出237n S n -,即可求出其前n 项和的最小值,从而得出结论. 【详解】(1)()()5325555S a a d d ==+=+Q ,()355545d <∴+<,即24d <<, d ∈N Q ,3d ∴=,则122a a d =-=,故()21331n a n n =+-⨯=-; (2)由(1)知,()()2313122n n n n n S +-+==, 则2237336n S n n n -=-,令2370n S n -≤,解得012n ≤≤, 则()1211min n T T T ==, 故11m =或12m =. 【点睛】本题考查求等差数列的通项公式及其性质的应用,属于中档题.25.(1)a n =3n ﹣1,b n =2n ﹣1(2)T n =3﹣(n +1)•(13)n ﹣1 【解析】 【分析】(1)利用基本量法求解n a ,再代入()1,n n P b b +到直线20x y -+=可得{}n b 为等差数列,再进行通项公式求解即可. (2)利用错位相减求和即可. 【详解】(1)递增等比数列{a n }的公比设为q ,前n 项和为S n ,且a 2=3,S 3=13, 可得a 1q =3,a 1+a 1q +a 1q 2=13,解得q =3或q 13=, 由等比数列递增,可得q =3,a 1=1,则13-=n n a ; P (b n ,b n +1)在直线x ﹣y +2=0上,可得b n +1﹣b n =2, 且b 1=a 1=1,则b n =1+2(n ﹣1)=2n ﹣1; (2)c n nn b a ==(2n ﹣1)•(13)n ﹣1, 前n 项和T n =1•1+3•13+5•19++L (2n ﹣1)•(13)n ﹣1, 13T n =1•13+3•19+5•127++L (2n ﹣1)•(13)n , 相减可得23T n =1+2(1139+++L (13)n ﹣1)﹣(2n ﹣1)•(13)n=1+2•111133113n -⎛⎫- ⎪⎝⎭--(2n ﹣1)•(13)n ,化简可得T n =3﹣(n +1)•(13)n ﹣1. 【点睛】本题主要考查了等比等差数列的通项公式求解以及错位相减的求和方法,属于中档题.26.(1)3B π=(2 【解析】 【分析】(1)利用向量共线的条件,结合诱导公式,求得角B 的余弦值,即可得答案; (2)求出CD ,23ADC ∠=π,由正弦定理可得sin DAC ∠,即可求出四边形ABCD 的面积. 【详解】(1)Q 向量(2sin sin ,sin )m A C B =-r ,(cos ,cos )n C B =r,且//m n r r,(2sin sin )cos sin cos A C B B C ∴-=,2sin cos sin()A B B C ∴=+,2sin cos sin A B A ∴=,1cos 2B ∴=,0B Q π<<,3B π∴=;(2)根据题意及(1)可得ABC ∆是等边三角形,23ADC ∠=π, ADC ∆中,由余弦定理可得22222cos3AC AD CD AD CD π=+-⋅⋅, 260CD CD ∴+-=,2CD ∴=,由正弦定理可得sin sin 7CD ADC DAC AC ∠∠==,∴四边形ABCD 的面积.111224S DAC ABC =⨯∠+∠=. 【点睛】本题考查向量共线条件的运用、诱导公式、余弦定理、正弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将四边形的面积分割成两个三角形的面积和.。