实验一(2)加法器及译码显示电路
加减法运算电路设计

电子课程设——加减法运算电路设计¥学院:电信息工程学院;专业:电气工程及其自动化班级:姓名:学号:指导老师:闫晓梅2014年12月 19日加减法运算电路设计一、设计任务与要求#1.设计一个4位并行加减法运算电路,输入数为一位十进制数,2.作减法运算时被减数要大于或等于减数。
灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。
4.系统所用5V电源自行设计。
二、总体框图1.电路原理方框图:%图2-1二进制加减运算原理框图2.分析:如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。
例如:若选择加法运算方式,则(1001)2+(0111)2=(10000)2十进制9+7=16,并在七段译码显示器上显示16;若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。
三、选择器件~1.器件种类:}^表3-12.重要器件简介:(1)[(2). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。
1).74LS283 基本特性:供电电压:输出高电平电流:输出低电平电流: 8mA。
2).引脚图:图3-1引出端符号:A1–A4 运算输入端B1–B4 运算输入端《C0 进位输入端∑1–∑4 和输出端C4 进位输出端3).逻辑符号:图3-2 4).内部原理图:-图3-3 5).功能表:表3-2(3)异或门:74LS861).引脚图: 2).逻辑符号:、图3-4 图3-53). 逻辑图:图3-6·4).真值表:表3-3分析:异或:当AB不相同时, 结果才会发生。
组合逻辑电路实验报告

组合逻辑电路实验报告实验目的:本实验旨在通过实际操作,加深对组合逻辑电路的理解,掌握组合逻辑电路的设计与实现方法,提高实际动手能力和解决问题的能力。
实验原理:组合逻辑电路是由多个逻辑门组成的电路,其输出仅取决于当前输入的状态,与前一状态或时间无关。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在实验中,我们将重点研究加法器和译码器的设计与实现。
实验内容:1. 加法器的设计与实现。
首先,我们将学习并掌握半加器和全加器的设计原理,然后利用逻辑门实现半加器和全加器电路。
通过实际搭建电路并进行测试,我们将验证加法器的正确性和稳定性。
2. 译码器的设计与实现。
其次,我们将学习译码器的工作原理和应用场景,并利用逻辑门实现译码器电路。
通过实际操作,我们将验证译码器的功能和性能,并探讨其在数字系统中的应用。
实验步骤:1. 硬件搭建。
根据实验要求,准备所需的逻辑门芯片、连接线、示波器等硬件设备,按照电路图进行搭建。
2. 逻辑设计。
根据实验要求,进行逻辑设计,确定逻辑门的连接方式和输入输出关系。
3. 电路测试。
将输入信号输入到电路中,观察输出信号的变化,记录并分析测试结果。
4. 数据处理。
对测试结果进行数据处理和分析,验证电路的正确性和稳定性。
实验结果与分析:经过实验操作和数据处理,我们成功设计并实现了加法器和译码器电路。
通过测试,我们验证了电路的正确性和稳定性,加深了对组合逻辑电路的理解和掌握。
实验总结:通过本次实验,我们进一步加深了对组合逻辑电路的理解,掌握了加法器和译码器的设计与实现方法,提高了实际动手能力和解决问题的能力。
同时,也发现了实验中存在的问题和不足之处,为今后的学习和实践提供了宝贵的经验和教训。
实验改进:在今后的实验中,我们将进一步完善实验方案,加强实验前的理论学习和准备工作,提高实验操作的规范性和准确性,以及加强实验结果的分析和总结,不断提升实验质量和效果。
结语:通过本次实验,我们深刻认识到了组合逻辑电路在数字系统中的重要性和应用价值,也认识到了实验操作的重要性和必要性。
湖北大学 数电实验二、加法器与译码显示器的应用

3
数电实验二、加法器与译码显示器的应用
CI2
8D
C B
A
8D
C B A
>=1
C01
A3 A2 A1 A0
B3 B2 B1 Bo
CI
Co
Y13
S3
Y12
S2
Y11
S1
S0
Y10
&
>=1
CI
C3
A3
C2 C1
A2
A1
C0
A0
B3 B2 B1 Bo
Co
S3
Y23
S2
Y22
S1
Y21
S0
Y20
关键测试数据
0
0110
0101
1
1
0110
0110
1
1
0110
0111
1
1
0110
1000
1
数码管个位数 数值
0 1 2 3 4 5 b 7 8 q 0 1 2 3 4 5 B 7 8
设计思路:
由真值表可知当二两个 4 位二进制的和为 0--9 (0000--1001) 时数码管个位正常输出,此时十位数的数码管显 示 0:当二两个 4 位二进制的和为 10--18 (此时第一片 74LS83 有进位或输出为 10--15)时数码管个位加上 0110(6)才能正常输出,此时十位数的数码管显示 1。
B3B2 B1B0
0000 0010 0011 0010 0010 0100 0101 1000 1000 0111 1000
十进制 结果
0 2 4 6 7 9 11 14 15 16 18
C0
测试值 理论值
加法器

八位二进制加法器摘要:加法运算是最重要最基本的运算,所有的其他基本算术运算,减、乘、除、模乘运算最终都能归结为加法运算。
在不同的场合使用的加法器对其要求也不同,有的要求速度更快,有的要求面积更小。
常见的加法器有串行进位加法器、74LS283超前进位加法器等,因此可以通过选取合适的器件设计一个加法器。
本次设计主要是如何实现8位二进制数的相加,即两个000到255之间的数相加,由于在实际中输入的往往是三位十进制数,因此,被加数和加数是两个三位十进制数,范围在000到255之间.当输入十进制数的时候,8421BCD码编码器先开始工作,编码器先将十进制数转换成四位二进制数,输出的四位二进制数直接到达8421BCD码加法器的输入端,我们可以使用71LS185加法器构成的一位8421BCD码的加法器,8421BCD码是用4位二进制数表示1位十进制数,4位二进制数内部为二进制,8421BCD码之间是十进制,即逢十进一。
而四位二进制加法器是按四位二进制数进行运算,即逢十六进一。
二者进位关系不同。
当四位二进制数加法器74LS283完成这个加法运算时,要用两片74LS283。
第一片完成加法运算,第二片完成修正运算。
8421BCD码加法器工作时,8421BCD码的加法运算为十进制运算,而当和数大于9时,8421BCD码就产生进位,而此时十六进制则不一定产生进位,因此需要对二进制和数进行修正,即加上6(0110),让其产生一个进位。
当和数小于等于9时,则不需要修正或者说加上0。
因此我们可以通过三个8421BCD码加法器的相连组成一个三位串行进位并行加法器,这样通过低位向高位产生进位进行十进制的加法运算,最后通过连接数码管显示所得的结果。
当输入二进制数的时候,两个串接的74LS283四位加法器进行加法运算,产生的八位二进制数通过集成芯片转换成三位十进制数,最后通过数码管显示。
另外,本次设计不仅可以适用加数和被加数是000到255的数字,同时也适用于加数和被加数是000到999的任何一个数,这是本次设计的创新之处。
数电实验报告

《数字电路与逻辑设计》课程实验报告系(院):计算机与信息学院专业:班级:姓名:学号:指导教师:学年学期: 2018 ~ 2019 学年第一学期实验一基本逻辑门逻辑以及加法器实验一、实验目的1.掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验所用器件和仪表1.二输入四与非门74LS00 1片2.二输入四或非门74LS28 1片3.二输入四异或门74LS86 1片三、实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS28一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.掌握全加器的实现方法。
用与非门74LS00和异或门74LS86设计一个全加器。
四、实验提示1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的+5V 连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接。
指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五、实验接线图及实验结果74LS00中包含4个二与非门,74LS28中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V。
图中的K1、K2是电平开关输出,LED0是电平指示灯。
1.测试74LS00逻辑关系接线图及测试结果(每个芯片的电源和地端要连接)图1.1 测试74LS00逻辑关系接线图表1.1 74LS00真值表输 入输 出 引脚1引脚2 引脚3 L L HL H H HL H HHL2. 测试74LS28逻辑关系接线图及测试结果i.ii.iii. 图1.2 测试74LS28逻辑关系接线图表1.2 74LS28真值表i. 输 入 ii. 输 出 iii. 引脚2 iv. 引脚3v. 引脚1 vi. L vii. L viii. H ix. L x. H xi. L xii. Hxiii. L xiv. L xv. H xvi. Hxvii. L3.测试74LS86逻辑关系接线图及测试结果图1.3 测试74LS86逻辑关系接线图表1.3 74LS68真值表输 入输 出 引脚1引脚2 引脚3 L L L L H H H L H HHL4. 使用74LS00和74LS86设计全加器(输入来源于开关K2、K1和K0,输出送到LED 灯LED1和LED0 上,观察在不同的输入时LED 灯的亮灭情况)。
四位加法器设计8421BCD码加法器

加法器与译码器显示器的应用
一、实验目的
用一片四位全加器74LS83和门电路设计一位8421BCD码加法器。
要求如下
1、加法器输出的和数也为8421BCD码。
2、画出逻辑图,写出设计步骤。
3、用LED数码管显示和数。
二、实验器材:
一片四位全加器74LS83、两片与非门74LS00、一片BCD-七段显示译码器74LS48、一片共阴极LED管、七个单刀单掷开关,七个20欧姆的电阻和5个1k欧姆的电阻。
三、实验原理,
由于一位8421BCD数A加一位数B有0到18这十九种结果。
而且由于显示的关系当大于9的时候要加六(0110)转换才能正常显示,当数字大于15(1111)时,也要进位,真值表如图
由真值表得,进位Y=CO+A3A4+A2A4.
由进位逻辑函数式画出与非门的逻辑图用两片74LS00代替六个与非门如图,四、实验步骤。
(1)、如图连线
(2)接上电源并测试。
(3)查看是否与数A加数B的结果符合
五、实验结论:
如果想用两个数码管显示两位数则加一个74LS48和LED数码管即可,如图。
实验BCD码加法器

实验二 文本输入方式设计数字逻辑电路一、实验目的:1、 掌握VHDL 语言的基本语法和设计文件的基本结构。
2、 掌握组合逻辑电路的特性及设计和调试方法。
3、 掌握时序逻辑电路的特性及设计和调试方法。
4、 掌握常用的组合逻辑电路和时序逻辑电路的设计方法。
二、实验的硬件要求:1、 EDA/SOPC 实验箱。
2、 计算机。
三、实验原理数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。
组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。
时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。
1、组合逻辑电路①组合逻辑电路的定义通常组合逻辑电路可以用图1.1所示结构来描述。
其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。
输入和输出之间的逻辑函数关系可用式1.1表示: ②组合逻辑电路的设计方法组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。
理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。
在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。
设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。
组合电路的基本设计步骤可用图1.2来表示。
③组合逻辑电路的特点及设计时的注意事项a)组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。
(实际电路中图 2.1 组合逻辑电路框图L0=F0(X0,X1,···Xn) · · ·Lm=F0(X0,X1,···Xn)(1.1)图 2.2 组合电路设计步骤示意图图还要考虑器件和导线产生的延时)。
组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
VCC
1 15 3 8 2 10 6 16 4 9 7 11 13 12
W X Y Z
D 6 C 2 B 1 A 7
13 12 11 10 15 14
9
பைடு நூலகம்
a b c d e f g
8
译码器 译码器 译码器 译码器
74LS 83
5.设计一个四位BCD码加法器。满10时即进位。(仿真)画 出逻辑图,列出元件清单。
实验二 加法器及译码显示电路
一、实验目的:
1.掌握二进制加法运算。2.掌握全加器的逻辑功能。 3熟悉集成加法器及其使用方法。 4.掌握七段译码器和数码管的使用。
二、设计任务
1.基本设计任务
(1)设计一个一位二进制全加器。要求用74LS00,74LS86实现。 (2)设计一个用74LS83实现余3码至8421码的转换电路。 (3)用74LS48和共阴极数码管组成译码显示电路。
16 15 14 13 12 11 10 9
8
A 加数 B 被加数 Z 和数 C0 C4进位
2.扩展设计任务
设计一个四位BCD码加法器。满10时即进位。
三.实验原理(指导书129)
四.实验内容及步骤
1.按基本设计任务与要求设计电路 2.测试所设计的全加器的功能并验证表5-8 3测试所设计转换器功能。表5-7 实验前在逻辑图上标出被加数的数值。实验时通过开关输入 余3码,通过观察发光二极管的状态,验证转换是否正确。 4.在实验内容4的基础上,完成在数码管上显示十进制数0~9。 见教材P144 例4-9 在实验机上安装好电路,检查电路无误之后接通电源。 加 余 数 三 码 被 加 数
见教材P156
例4-16
仿真加法器用CMOS 4008
五.实验报告要求及思考题见实验指导书 (130页)
4位二进制全加器74LS83管脚图
1 2 3 4 5 6 7
A4 Z3 A3 B3 Vcc Z2 B2 A2 B4 Z4 C4 C0 GND B1 A1 Z1 Ci+1 & & & =1 Ai Bi Ci =1 Si