基于四元数方法地姿态解算
四元数姿态解算原理

四元数姿态解算原理咱们先来说说姿态解算为啥这么重要。
你想啊,在好多地方都得知道一个物体的姿态,就像咱们玩遥控飞机的时候,如果不知道飞机在空中是啥姿势,是头朝上还是朝下,是横着飞还是斜着飞,那这飞机可就没法好好控制啦。
在机器人领域也是一样的,机器人得知道自己的胳膊、腿是啥姿势才能准确地干活呀。
那四元数是啥呢?简单来说,它就像是一种很特别的数学小工具。
四元数有四个部分,就像四个小伙伴一起合作来描述姿态。
这和咱们平常熟悉的用角度来描述姿态不太一样哦。
平常的角度描述有时候会遇到一些麻烦事儿,比如说会有万向节锁这种讨厌的问题。
就好比你想转动一个东西,结果发现有些方向转着转着就转不动了,就像被锁住了一样,多让人头疼呀。
但是四元数就很聪明啦,它能巧妙地避开这些问题。
想象一下四元数是一个小魔法盒。
这个小魔法盒里面的四个部分相互配合着来表示物体的旋转状态。
比如说有一部分像是负责说物体绕着x轴转了多少,另一部分负责绕y轴,还有的负责绕z轴,最后一部分就像是一个协调员,把前面三个部分协调得妥妥当当的。
在姿态解算的时候呢,就像是一场精彩的接力赛。
传感器会给我们一些数据,这些数据就像是接力赛的第一棒。
比如说加速度计能告诉我们物体受到的加速度,陀螺仪能告诉我们物体旋转的速度。
但是这些数据可不能直接就告诉我们物体的姿态呢,它们还需要经过四元数这个神奇的“加工厂”加工一下。
四元数会根据这些传感器的数据不断地更新自己。
就像它在说:“加速度计给了我这个信息,陀螺仪给了我那个信息,那我就调整一下我自己来表示新的姿态啦。
”这个调整的过程就像是它在做一种很精细的舞蹈动作,每个部分都在按照一定的规则动来动去。
而且四元数在计算姿态的时候特别稳定。
就像一个稳重的老大哥,不管外面的数据怎么波动,它都能比较准确地算出姿态来。
不像有些方法,数据稍微有点风吹草动就慌了神,算出的姿态就乱七八糟的。
再说说四元数在图形学里的应用吧。
你玩游戏的时候有没有想过那些超级酷炫的3D模型是怎么旋转的呀?很多时候就是靠四元数来搞定姿态的。
四元数及姿态解算

q1
q2
q3
q1 q2 q0 q3 q3 q0 q2 q1
q3 p0
q2 q1
p1
p2
M
'(q) P
q0 p3
(2-2)
(2-3) (2-4) (2-5) (2-6)
由此可知,四元数的乘法不满足交换律,除非四元数还原为纯数字。
第三讲 四元数及姿态解算
一、 四元数的起源
在古希腊的亚里斯多德时代就已经有了力的矢量分解了,即力可以分解为
F
ai
bj
(1-1)
但那个时代并不意味着 i j 。在此之前人们就已经有了对纯粹数字的认识和相应的运算
规则,但是纯数字和矢量是没有混在一起表示物理量的,1879 年高斯撰写了一篇未曾发表的 文章,其中提到了 a bi 的含义,可以看出他试图建立一个三分量的代数( a ,bi , a bi )。
t 0
dt 2
0
x y
z
x y 0 z z 0 y x
z
y
x
0
(4-2) (4-3) (4-4) (4-5)
在(4-5)的基础上,剔除所有的零元,则有
q0 (t) q1(t)
d dt
q1
(t
)
q2
(t
1r0
0r1
3r2
2r3
1 0
32rr00
3r1 2r1
0r2 1r2
mahony姿态解算算法

mahony姿态解算算法在机器人技术领域,姿态解算算法(Attitude Estimation Algorithm)是一项非常重要的技术。
随着无人机、自动驾驶车辆和机器人等应用的不断发展,对于准确的姿态解算算法有着更高的需求。
本文将介绍一种被广泛应用的姿态解算算法——Mahony姿态解算算法。
二、算法原理Mahony姿态解算算法是一种基于四元数的滤波算法,在惯导系统中实现姿态解算。
该算法通过运动传感器(如陀螺仪和加速度计)读取数据,并利用基于四元数的滤波器估计出系统的姿态。
具体步骤如下:1. 初始化四元数和其他参数,包括采样周期、姿态误差修正比例系数等。
2. 通过陀螺仪来预测当前时刻的姿态,并将预测的姿态作为初始值。
3. 利用加速度计数据计算出当前时刻的测量姿态。
4. 利用四元数滤波器对预测姿态和测量姿态进行融合,得到最终的姿态解算结果。
三、算法优势Mahony姿态解算算法具有以下优势:1. 精度高:该算法能够以较高的精度估计出系统的姿态,尤其适用于需要高精度姿态解算的应用场景。
2. 实时性好:Mahony算法采用了滤波器的设计,能够实时更新姿态数据,适用于对实时性要求较高的系统。
3. 低计算量:相比其他姿态解算算法(如卡尔曼滤波器),Mahony算法的计算量较低,能够在计算资源受限的设备上高效运行。
四、应用领域Mahony姿态解算算法广泛应用于以下领域:1. 无人机导航:在无人机中,准确的姿态解算算法是实现稳定飞行和导航的关键。
Mahony算法能够提供准确的姿态信息,帮助无人机实现精确的飞行控制。
2. 自动驾驶:在自动驾驶车辆中,准确的姿态解算算法可用于车辆的定位和导航。
Mahony算法可以提供高精度的姿态信息,帮助车辆实时获取准确的位置和方向。
3. 机器人运动控制:Mahony算法在机器人运动控制中也有广泛应用,能够实时估计机器人的姿态,并提供姿态反馈控制,从而实现精确的运动控制。
本文介绍了Mahony姿态解算算法的原理、优势以及应用领域。
四元数解算姿态角

四元数解算姿态角
四元数是一种表示姿态角的数学工具,它可以用来描述飞行器、机器人等物体在三维空间中的姿态。
在实际应用中,我们需要通过传感器获取物体的加速度、角速度等信息,然后使用四元数解算出物体的姿态角。
四元数与欧拉角不同,它不仅可以避免万向锁问题,而且可以方便地进行姿态角的插值、积分等操作。
其基本原理是将姿态角表示为一个四元数,然后通过四元数的运算来更新姿态角。
四元数具有独特的乘法规则,即两个四元数相乘时,结果仍为一个四元数。
同时,四元数还具有单位长度和逆元等性质,这使得它可以方便地进行运算。
通过四元数解算姿态角,我们可以得到物体的欧拉角、旋转矩阵等信息,从而实现对物体的姿态控制。
在实际应用中,四元数解算姿态角已成为飞行器控制、机器人导航等领域的重要技术之一。
总之,四元数解算姿态角是一种高效、精确的方法,可以用来描述物体在空间中的姿态,为现代科技的发展提供了有力支持。
- 1 -。
基于四元数互补滤波的无人机姿态解算_吕印新

第 38 卷 第 2 期 2014 年 3 月燕山大学学报 Journal of Yanshan UniversityVol. 38 No. 2 Mar. 2014文章编号:1007-791X (2014) 02-0175-06基于四元数互补滤波的无人机姿态解算吕印新 1,肖前贵 2, *,胡寿松 12. 南京航空航天大学 无人机研究院, (1. 南京航空航天大学 自动化学院, 江苏 南京 210016; 江苏 南京 210016) 摘 要:针对无人机低成本姿态解算这一基本问题,考虑到传统姿态算法运算量大、不易调试,采用微惯性单元 (MEMS) 测量无人机原始姿态数据,采用基于四元数的互补滤波算法,有效降低姿态解算的运算量,实现 MEMS 各传感器的信息融合。
从理论上证明了基于四元数的互补滤波器的稳定性,分析了滤波器的性能。
采用 无人机真实数据验证了算法的有效性,解算得到的俯仰角、滚转角精度小于 1°,航向角精度小于 2°。
与传统姿 态算法比较,本算法简单有效、运算量小、易于调试。
关键词:姿态;四元数;互补滤波 ;稳定性分析 中图分类号:V243.5 文献标识码:A DOI:10.3969/j.issn.1007-791X.2014.02.0150引言微小型无人机具有成本低、隐蔽性好、生存能EKF 算法。
然而 EKF 存在 3 大缺陷:1) 在一般 情况下计算雅可比矩阵是不容易实现的过程, 而且 2) 其计算量很大; 当线性化假设不成立时,线性 化会导致滤波器极度不稳定;3) 实际应用中,噪 声难以符合白噪声的要求 [2-3]。
文献 [4-5] 利用粒 子滤波解决了系统非线性、 非白噪声对姿态解算的 影响,然而此方法计算量较大,不适合低成本航姿 系统的应用。
互补滤波器算法简单可靠,对惯性器 件的精度要求较低, 在飞行器姿态解算中的应用愈 加广泛。
文献 [6-7] 分别给出了欧拉角、方向余弦 矩阵形式下的互补滤波, 然而在飞行器存在运动加 速度的时候,姿态解算的误差较大。
四元数算法在姿态矩阵解算中的研究

2019年第3期 信息通信2019(总第 195 期)INFORMATION&COMMUNICATIONS(Sum.N o 195)四元数算法在姿态矩阵解算中的研究陈国通,范圆圆,孙敬(河北科技大学信息科学与工程学院,河北石家庄050018)摘要:SIN S是直接利用计算机来模拟载体的姿态矩阵,然后根据模拟出的姿态矩阵解算出载体的姿态和航向信息。
姿 态矩阵的计算是捷联惯导算法中最重要的一部分,也是捷联式系统所特有的。
所以,对于姿态矩阵的研究是非常必要的,文章以四元数算法为基袖,主要研究整体-四元数和分解-四元数算法。
通过建立线性化误差模型,将这两种算法的精 度进行比较分析和仿真对比,结果表明分解-四元数算法比整体-四元数算法精度更高。
关键词:SINS.姿态矩阵;整体-四元数;分解-四元数中图分类号:TN927 文献标识码:A文章编号:1673-1131(2019)03-0046-03Research on Quaternion Algorithm in Attitude Matrix SolutionChen Guotong,Fan Yuanyuan,Sun Jing(College of Information Science and Engineering,Hebei University o f Science and Technology,Shijiazhuang050018, China) AbstractrSE^S directly uses the computer to simulate the attitude matrix o f t he earner,and then calculates the attitude and heading information o f t he carrier based on the simulated attitude matrix.The calculation of t he attitude matrix is the most important part o f t he strapdown inertial navigation algorithm and is unique to the strapdown system.Therefore,the study of attitude matrix is very necessary.Based on the quaternion algorithm,this paper mainly studies the whole-quaternion and decomposition-quaternion algorithm.By establishing a linearized error model,the accuracy o f the two algorithms is compared and analyzed.The results show that the decomposition-quaternion algorithm is more accurate than the global-quaternion algorithm.K ey words:SINS;attitude matrix;whole-quaternion;decomposition-quaternion〇引言捷联惯导系统(strap-down inertial navigation system,SINS)是惯性导航系统(Inertial navigation system,INS)的一[6] SLIMANI K,BENEZETH Y,SOUAMI F.Human interaction recognition based on the co-occurrence o f visual words[C]//Proceedings o f IEEE Conference on Computer Msionand Pattern Recognition Workshops.Columbus,Ohio,U SA: IEEE,2014:461-466.[7] NAM G YU CHO,SE HO PARK,JEONG SEON PARK.Compositional interaction descriptor for human interaction recognitiont^.Neurocomputing,2017,(267) 169-181.[8] JUNEJO I,DEXTER E,LAPTEV I.Cross-view action recognition from temporal self-similarities[C]//European Conference on Computer Vision.Berlin:Springer-Verlags2008: 293-306.[9] WRIGHT J,YANG A,GANESH A.Robust face recognition via sparse representation[C]//IEEE Trans,on Pattern Analysis and Machine Intelligence.IEEE,2009:354-371. [10] HUANG Zhi-wu,WANG Rui-pings SHAN Shi-guang.Facerecognition on large-scale video in the wild with hybrid Eu-clidean-and-Riemannian metric learning [J].Mixture Research Article Pattern Recognition,2015,48(10): 3113-3124.[11] VAHDAT A,G A O B,RANJBAR M.A discriminative keypose sequencemodel for recognizing human interactions[C]/ /Proceedings o f t he IEEE International Conference on Computer Vision Workshops.IEEE,2011:1729-1736.[12] RYOO MS.Human activity prediction:early recognition ofongoing activitiesfrom streaming videos[C]//Proceedings of 种。
四旋翼飞行器 四元数和欧拉角的关系 与 姿态解算

四旋翼飞行器四元数和欧拉角的关系与姿态解算下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!四旋翼飞行器:四元数与欧拉角的关系与姿态解算1. 引言四旋翼飞行器是一种常见的无人机类型,其姿态(即飞行器的方向)通常由欧拉角或四元数来描述。
四元数 四旋翼飞行器姿态解算

四元数四旋翼飞行器姿态解算四元数是用来描述空间旋转的数学工具,在飞行器姿态解算中具有重要的应用。
四旋翼飞行器是一种采用四个电动马达驱动的多旋翼飞行器,通过调节四个马达的转速实现飞行器的姿态控制。
在四旋翼飞行器的飞行过程中,需要实时获取飞行器的姿态信息,以便进行飞行控制。
四元数作为一种有效的姿态描述方法,被广泛应用于四旋翼飞行器的姿态解算中。
四元数是一种具有四个元素的数学结构,通常表示为q = w + xi + yj + zk,其中w、x、y、z分别表示四元数的实部和三个虚部。
四元数可以表示为一个旋转矩阵,通过四元数乘法运算可以实现空间旋转的复合。
在四旋翼飞行器的姿态解算中,通常使用四元数来描述飞行器的姿态状态。
四旋翼飞行器的姿态解算涉及到四元数的插值、积分和旋转等计算。
在飞行器的姿态控制过程中,需要将传感器获取的姿态信息进行融合处理,得到飞行器的姿态状态。
四元数插值可以实现飞行器姿态信息的平滑过渡,提高飞行的稳定性和平顺性。
四元数积分可以实现对飞行器姿态状态的更新,保持飞行器的正确姿态。
四元数旋转可以实现飞行器的姿态控制,使飞行器按照指定的姿态进行飞行。
在四旋翼飞行器的姿态解算中,需要考虑传感器误差、系统延迟和控制精度等因素。
传感器误差会影响到飞行器的姿态感知精度,需要通过滤波算法和校准方法来降低误差影响。
系统延迟会导致飞行器姿态状态的延迟更新,需要通过合理的控制策略来补偿延迟效应。
控制精度是指飞行器姿态控制的准确性,需要通过优化控制算法来提高飞行器的稳定性和精确性。
总的来说,四元数是一种有效的姿态描述方法,被广泛应用于四旋翼飞行器的姿态解算中。
通过四元数插值、积分和旋转等计算,可以实现对飞行器姿态状态的准确解算和控制。
在实际的飞行应用中,需要综合考虑传感器误差、系统延迟和控制精度等因素,全面提高飞行器的姿态解算精度和控制性能。
四旋翼飞行器的姿态解算是飞行控制领域的重要课题,将带来对未来飞行器飞行性能的提升和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于四元数方法的姿态解算方法分析摘要:载体的姿态解算算法是实现捷联式惯性导航系统精确导航的核心技术之一。
分析了欧拉法、方向余弦法、四元数法求解姿态矩阵的优缺点,采用四元数法与方向余弦法两种解算方法分别计算载体姿态,两种方法的计算结果之差与理论真值比较以得到解算的相对误差,从而验证了四元数法的正确性和有效性。
最后,指出提高采样频率和采用高阶计算算法能进一步减小姿态解算误差。
数字化仿真与转台试验结果表明,本文提出的载体姿态解算法具有良好的实时性。
1引言捷联惯导是一种自主式的导航方法。
该方法将陀螺仪和加速度计直接安装在载体上,省掉机电式导航平台,利用计算机软件建立一个“数学平台”来代替机电平台实体[1]。
由于其结构简单且抗干扰能力强,目前已成为航空航天、航海、机器人、智能交通等领域的研究热点之一。
姿态解算是捷联式惯性导航系统的关键技术,通过姿态矩阵可以得到载体的姿态和导航参数计算需要的数据,是捷联式惯导算法中的重要工作。
载体的姿态和航向体现了载体坐标系与导航坐标系之间的方位关系,确定两个坐标系之间的方位关系需要借助矩阵法和力学中的刚体定点运动的位移定理。
通过矩阵法推导方向余弦表,而刚体定点运动的位移定理表明,定点运动刚体的任何有限位移都可以绕过定点的某一轴经过一次转动来实现。
目前描述动坐标相对参考坐标系方位关系的方法有多种,可简单地将其分为3类,即三参数法、四参数法和九参数法「1-2]。
三参数法也叫欧拉角法,四参数法通常指四元数法,九参数法称作方向余弦法。
欧拉角法由于不能用于全姿态飞行运载体上而难以广泛用于工程实践,且实时计算困难。
方向余弦法避免了欧拉法的“奇点”现象,但方程的计算量大,工作效率低。
随着飞行运载体导航控制系统的迅速发展和数字计算机在运动控制中的应用,控制系统要求导航计算环节能更加合理地描述载体的刚体空间运动,四元数法的研究得到了广泛重视。
本文全面分析了3种解算方法的特点,通过对比四参法与九参法的计算结果以验证四元数法的正确性和有效性,基于数值仿真和转台实验相结合的分析方法得到进一步减少姿态解算误差的有效途径,为捷联式惯性导航技术的工程实践提供参考。
(就是这部分内容需要程序解算,不会搞)2姿态矩阵的计算方法由于载体的姿态方位角速率较大,所以针对姿态矩阵的实时计算提出了更高的要求。
通常假定捷联系统“数学平台”模拟地理坐标系,即导航坐标系;而确定载体的姿态矩阵即为研究载体坐标系(6)和导航坐标系(E)的空间转动关系,一般用载体坐标系相对导航坐标系的三次转动角确定,习惯上俯仰角和偏航角用B 和必表示,滚转角用Y 表示。
目前主要的研究方法为:欧拉法、方向余弦法与四元数法。
图1为捷联式惯性导航原理图。
图1 捷联惯导导航原理图2. 1欧拉角微分方程式一个动坐标系相对参考坐标系的方位可以完全由动坐标系依次绕3个不同的轴转动的3个角度来确定。
如把载体坐标系作为动坐标系,把导航坐标系作为参考坐标系,则姿态角即为一组欧拉角,按一定的转动顺序得到导航坐标系到载体坐标系的关系。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b EbZ b EbY bEbXωωωγγθγγθθγθγθψθγcos sin 0cos sin cos cos 0sin cos sin sin cos (1)根据欧拉角微分方程,由角速度可以求解3个姿态角。
欧拉角微分方程式只有3个,但每个方程()ωx x f xsin ,cos = 都含有三角函数的运算,计算速度慢,且方程会出现“奇点”,方程式退化,故不能全姿态工作。
2. 2方向余弦矩阵微分方程式当一个坐标系相对另一个坐标系做一次或多次旋转后可得到另外一个新的坐标系,前者往往被称为参考坐标系或固定坐标系,后者被称为动坐标系,他们之间的相互关系可用方向余弦表来表示。
方向余弦矩阵微分方程式可写为载体坐标系相对导航坐标系旋转角速度的斜对称矩阵表达式,方向余弦表是对这两种坐标系相对转动的一种数学描述。
b EbE b E b C C Ω= (2) 式中,b Eb Ω为载体坐标系相对导航坐标系旋转角速度的斜对称矩阵表达式。
用方向余弦法计算姿态矩阵,没有方程退化问题,可以全姿态工作,但需要求解9个微分方程()()ωx C x C ijij = ,计算量较大,实时性较差,无法满足工程实践要求。
2. 3四元数微分方程式四元数的数学概念是1843年由哈密顿首先提出的,它是代数学中的内容之一。
随着捷联式惯性导航技术的发展,为了更简便地描述刚体的角运动,采用了四元数这个数学工具,用它来弥补通常描述刚体角运动的3个欧拉角参数在设计控制系统时的不足。
四元数可以描述一个坐标系或一个矢量相对某一个坐标系的旋转,四元数的标量部分表示了转角的一半余弦值,而其矢量部分则表示瞬时转轴的方向、瞬时转动轴与参考坐标系轴间的方向余弦值。
因此,一个四元数既表示了转轴的方向,又表示了转角的大小,往往称其为转动四元数。
工程上一般运用范数为1的特征四元数,特征四元数的标量部分表示转角的一般余弦值,其矢量部分表示瞬时转轴n 的方向。
比如式(3)表示矢量R 相对参考坐标系旋转一个转角θ,旋转轴二的方向由四元数的虚部确定,γβαcos cos cos 、、表示旋转轴n 与参考坐标系轴间的方向余弦值。
''qRq R = (3)式中:R 为某矢量;γθβθαθθλλcos 2sincos 2sin cos 2sin 2cos321321====+++=p p p kp j p i p q四元数姿态矩阵微分方程式只要解4个一阶微分方程式组即可,比方向余弦姿态矩阵微分方程式计算量有明显的减少,能满足工程实践中对实时性的要求。
3基于四元数法的姿态解算验证四元数法的正确性和有效性是将算法应用于工程实践的首要前提,在算法正确性的前提下应保证解算误差符合工程实践的需要。
3. 1四元数法正确性和有效性的验证本文根据四元数法与方向余弦法两种解算方法进行计算,通过对比两种方法的计算结果,验证四元数法的正确性和有效性。
四元数法姿态矩阵计算的步骤如下:(1)初始四元数的确定,如式(4)其输人为初始的姿态角。
()()()()⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2sin 2sin 2cos 2cos 2cos 2sin 2sin 2cos 2sin 2cos 2sin 2cos 2cos 2sin 2sin 2sin 2cos 2cos 2sin 2sin 2sin 2cos 2cos 2cos 0000000000000000000000000000321γθψγθψγθψγθψγθψγθψγθψγθψλp p p (4) (2)四元数标量部分与矢量部分321p p p 、、、λ的实时计算,输人信号为陀螺仪的数字输出信号dt ib tt t ωθ⎰∆+=∆,其中i 为z y x 、、。
计算方法采用二阶龙格库塔法,如式(5)()()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧+⨯+=++Ω=Ω+=Ω=21212/K K T t q T t q Y T t K t q t T t q Y t q t K b b b (5) (3)姿态矩阵的实时计算,确定姿态矩阵bE C ,输入为()()()()n p n p n p n 321、、、λ。
计算公式如式(6)。
()()()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--+--+--+=222123213223113223212223212313212322212222222p p p p p p p p p p p p p p p p p p p p p p p p p p p C bE λλλλλλλλλ (6)(4)载体姿态角计算,以确定姿态角γψθ、、,输人为()()()()()n T n T n T n T n T 3323131211、、、、计算公式如式(7)()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-=n T n T n T n T n T 3323111213arctan arctan arcsin θθθ (7) 方向余弦法姿态矩阵的计算与四元数法的区别主要是姿态矩阵的描述不同,其描述如式(8)所示。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=γθγψγθψγψγθψγθγψγθψγψγθψθθψθψcos cos sin cos cos sin sin sin sin cos sin cos sin cos cos cos sin sin sin cos sin sin sin cos sin cos sin cos cos b E C (8)其解算方向余弦矩阵微分方程为Ω=bEbE C C ,得到方向余弦矩阵bE C 后可提取姿态角。
验证工作均以二阶龙格库塔法展开计算。
(1)针对单轴输入,两种解算方法的计算结果与数值理论值对比,比较其相对误差。
计算条件为:陀螺仪输出角速率。
=s /50,采样时间取为s T 01.0=、,该采样频率工程实践可行;各通道独立解算,初始角为 90-,终止角为90。
以滚转通道为例,图2为四元数法解算结果,图3为方向余弦法解算结果。
单轴数值计算结果说明:根据上述的计算条件,单轴输人下,四元数法与方向余弦法的计算结果都是正确的,即姿态解算算法在单轴输入情况下是正确的;姿态解算的相对误差数量级为%102-左右,且四元数法与理论真值的相对误差更小。
(2)针对三轴输人,两种解算方法之差与数值理论值对比,以比较两种方法的相对误差; 计算条件为:载体三通道陀螺仪输出为角速率s /60=ω;载体三通道陀螺仪输出为正弦角速率,幅值60=A ,频率Hz f 4.0=;采样时间s T 01.0=,工程实践可行;各通道独立解算,初始角均为同样以滚转通道为例,图4为匀速输人下两种方法的相对误差,图5为正弦输人下两种方法的相对误差。
三轴数值计算结果说明:三轴输入下,根据上述的计算条件,匀速与正弦输入下四元数法与方向余弦法的计算结果都是正确的,两种解算方法之差与理论真值比较的相对误差很小,相对误差的数量级为10-%左右。
因为正弦输人时每步计算的角增量小,所以相对误差要稍小些。
上述理论分析和数值仿真结果表明,四元数姿态解算算法在三轴输人情况下是正确的,且其计算精度高、理论完善,并具有良好的工程实践价值。