2018年高考备考+立体几何的逆问题、截面问题学案

合集下载

【立体几何专题 高考数学复习】第3讲 立体几何中的截面问题的解决方法-原卷版

【立体几何专题 高考数学复习】第3讲 立体几何中的截面问题的解决方法-原卷版

第3讲立体几何中的截面问题的解决方法知识与方法在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱、圆锥、球、棱柱、棱雉、长方体、正方体等)得到的平面图形.此平面与几何体表面的交线叫做截线,此平面与几何体的棱的交点叫做截点.作截面的关键在于确定截点.通过位于多面体同一表面上的两个不同截点即可连结成截线,从而得到截面.正方体的基本截面如下.正方体的截面不会出现以下图形:直角三角形、针角三角形、直角梯形、正五边形.典型例题【例1】 在正方形1111ABCD A B C D -中,点E ,F ,G ,H 分别在AB,BC,DD 1,B 1C 1上,点,,P Q R 在平面1111,,AC AB BC 内,点S 在正方体内部,(1)作过,,E F G 三点的截面;(2)作过,,E G H 三点的截面;(3)作过,,E G P 三点的截面;(4)作过,,F H S 三点的截面;(5)作过,,P Q R 三点的截面.【例2】如图,在三棱锥A BCD -中,截面EFGH 与对棱,AC BD 都平行,且分别与,,,AB BC CD DA 交于点,,,E F G H ,则点,,,E F G H 在何处时,截面EFGH 面积最大.【例3】 如图○1,在三棱锥O ABC -中三条棱OA,OB,OC 两两垂直,且OA OB OC >>,分别经过棱,,OA OB OC 作一个截面平分三棱雉的体积,截面面积依次为123,,S S S ,则123,,S S S 的大小关系为 .【例4】如图○1,已知正四面体P ABC -的体积为V ,底面积为S ,O 是高PH 的中点,过点O 的平面α与棱,,PA PB PC 分别交于点,,D E F .设三棱雉P DEF -的体积为0V ,截面DEF 的面积为0S ,则( )A.008,4V V S SB.008,4V V S SC.008,4V V S SD.008,4V V S S【 例5】如图 (1), 在直三棱柱 111ABC A B C - 中, 若 122,BC AB AA AC ===M = 是 11B C 的中点, 过 AM 作这个三棱柱的截面, 当截面与平面 ABC 所成的锐二面角最小时,这个截面的面积为( )A. 2B.C.D.【例6】 已知球O 是正三棱锥 (底面为正三角形, 顶点在底面上的射影为底面中心)A BCD - 的外接球, 3,BC AB ==点 E 在线段 BD 上, 且 6BD BE =, 过点E 作球 O 的截 面, 则所得截面圆面积的取值范围是( ) A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 5,44ππ⎡⎤⎢⎥⎣⎦ C. 7,44ππ⎡⎤⎢⎥⎣⎦D. 11,44ππ⎡⎤⎢⎥⎣⎦【例7】 一个长方体形状的无盖容器 1111ABCD A B C D - 的容积是 V , 其长、宽、高分别为 1,,AD a AB b AA c ===, 容器内装有体积为23V 的水并放在水平的地面上. 现固定顶点 A 在地面上, 将容器倾斜, 当容器中的水刚好要从顶点 1A 处流出时, 设水平面与 11,BB CC , 1DD 分别交于点 ,,E F G , 且 1AA 与水平地面所成的角为 θ. 现有下列命题:(1) 111C F B E D G =+;(2) 1C F 为定值;(3)若 a b >, 则当 10B E = 时 θ 取得最小值; (4)若 a b >, 则当 10D G = 时θ 取得最小值;(5) 当 2121D G a B E b= 时, θ 取得最大值.其中的真命题是________ (写出所有真命题的编号).强化训练1.如图,已知正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过,,A P Q 三点的平面截该正方体所得的截面记为S ,则下列命题中正确的是( )○1当102CQ <<时,截面S 为四边形; ○2当12CQ =时,截面S 为等腰梯形; ○3当34CQ =时,截面S 与11C D 的交点R 满足1113C R =;○4当314CQ <<时,截面S 为六边形;○5当1CQ =时,截面S . A.○1○3○4 B.○2○4○5 C.○1○2○4 D.○1○2○3○52.已知圆雉的母线长为l ,轴截面的顶角为θ,求过此圆雉母线的截面面积的最大值.3.如图,在正方体ABCD A B C D '-'''中,平面α垂直于对角线AC ,且平面α截正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( )A.S 为定值,l 不为定值B.S 不为定值,l 为定值C.S 与l 均为定值D.S 与l 均不为定值4.在边长为 1 的正方体 ABCD A B C D '-''' 中, ,,E F G 分别在 ,,BB BC BA ' 上,并且满足 311,,422BE BB BF BC BG BA =='=. 若平面 AB F ', 平面 ACE , 平面 B CG ' 交 于一点 ,O BO xBG yBF zBE =++, 则 x y z ++= _________,OD =______.5.如图, 正方体 1111ABCD A B C D - 的棱长为 1,,E F 分别是棱 11,AA CC 的中 点, 过点 ,E F 的平面分别与棱 11,BB DD 交于点 ,G H . 给出以下四个命题: (1) 平面 EGFH 与平面 ABCD 所成角的最大值为 45; (2)四边形 EGFH 的面积的最小值为 1 ;(3) 四棱锥 1C EGFH - 的体积为定值16;(4)点 1B 到平面 EGFH 的距离的最大值为3. 其中正确命题的序号为 A. (2) (3)B. (1) (4)C. (1) (3)(4)D. (2) (3)(4)6.已知直四棱柱 1111ABCD A B C D -, 其底面 ABCD 是平行四边形, 外接球的 体积为36π. 若 1AC BD ⊥, 则其外接球被平面 11AB D 截得的图形面积的最小值为( )A. 8πB.24310π C.8110πD. 6π7.如图, 水平桌面上放置一个棱长为 4 的正方体水槽, 水面高度恰为正方体棱 长的一半, 在该正方体侧面 11CDD C 上有一个小孔 ,E E 点到 CD 的距离为 3 , 若该正方体 水槽绕 CD 倾斜 ( CD 始终在桌面上), 则当水恰好流出时, 侧面 11CDD C 与桌面所成角的 正切值为A.B.12C.D. 2。

立体几何中的截面问题 教学设计

立体几何中的截面问题 教学设计

立体几何中的截面问题教学设计引言:在立体几何中,我们经常会遇到截面问题。

截面问题是指当一个平面与立体体块相交时所形成的平面图形。

通过学习和掌握截面问题,我们可以更好地理解立体体块的性质和结构。

本次教学设计将介绍截面问题的基本概念和解题方法,并通过实例进行详细讲解。

一、截面问题的基本概念1. 定义:截面是指由一个平面与立体体块相交所形成的平面图形。

2. 分类:根据截面与立体体块的相对位置关系,截面问题可分为平行截面和非平行截面两种情况。

二、解题方法1. 平行截面问题的解题方法:a. 根据题目描述,确定平行截面的位置和形状。

b. 利用几何知识和相关定理分析平行截面,确定所求的性质或关系。

c. 运用代数方法求解,得出最终答案。

2. 非平行截面问题的解题方法:a. 根据题目描述,确定非平行截面的位置和形状。

b. 利用几何知识和相关定理分析非平行截面,确定所求的性质或关系。

c. 运用代数方法求解,得出最终答案。

三、实例讲解1. 平行截面实例:题目:一个长方体的一侧是边长为12 cm的正方形,另外一侧是边长为8 cm的正方形。

求长方体的表面积。

解析:根据题目描述,表面积的计算需要求出所有的平行截面的面积,即两个正方形的面积。

长方体的一侧是边长为12 cm的正方形,另外一侧是边长为8 cm的正方形。

因此,表面积为2(12^2+8^2)+12*8 = 416 cm^2。

答案:416 cm^2。

2. 非平行截面实例:题目:一个圆锥体的底面半径为6 cm,高为10 cm。

求圆锥体与底面平行截面的面积与底面积的比值。

解析:根据题目描述,需要求圆锥体与底面平行截面的面积与底面积的比值。

根据几何知识,我们知道截面与底面平行时,截面与底面的对应线段成比例。

因此,截面的半径为6/10*6 = 3.6 cm,面积为π*(3.6^2)。

底面积为π*(6^2)。

所求比值为(π*(3.6^2))/(π*(6^2)) = (3.6^2)/(6^2) ≈ 0.36。

2018届一轮复习北师大版 立体几何 教案

2018届一轮复习北师大版         立体几何      教案

透视全国高考 揭秘命题规律(四)——立体几何(全国卷第19题)翻折问题(2016·高考全国卷甲)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.【解】 (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6得 DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD ′→的方向为z 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.解决与翻折有关的问题的两个关键(1)要明确翻折前后的变化量和不变量.一般情况下,线段的长度是不变量,而位置关系往往会发生变化.(2)在解决问题时,要比较翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形.把翻折前后一些线线位置关系中没有变化和发生变化的量准确找出来,这些不变和变化的量反映了翻折后的空间图形的结构特征.(3)在立体几何中找平行线是解决问题的一个重要技巧,常通过三角形的中位线找平行线.探索问题如图,四棱锥P ABCD 的底面ABCD 是平行四边形,P A ⊥底面ABCD ,P A =3,AD =2,AB =4,∠ABC =60°.(1)求证:BC ⊥平面P AC ;(2)E 是侧棱PB 上一点,记PEPB =λ(0<λ<1),是否存在实数λ,使平面ADE与平面P AD 所成的二面角为60°?若存在,求出λ的值;若不存在,请说明理由.【解】 (1)证明:由已知,得AC = AB 2+BC 2-2AB ×BC ×cos ∠ABC =23, 因为BC =AD =2,AB =4, 又BC 2+AC 2=AB 2,所以BC ⊥AC .又P A ⊥底面ABCD ,BC ⊂平面ABCD ,则P A ⊥BC .因为P A ⊂平面P AC ,AC ⊂平面P AC ,且P A ∩AC =A ,所以BC ⊥平面P AC .(2)以A 为坐标原点,过点A 作垂直于AB 的直线为x 轴,AB ,AP 所在直线分别为y 轴、z 轴建立空间直角坐标系,如图所示.则A (0,0,0),B (0,4,0),P (0,0,3).因为在平行四边形ABCD 中,AD =2,AB =4, ∠ABC =60°,则∠DAx =30°, 所以D (3,-1,0). 又PEPB=λ(0<λ<1), 知E (0,4λ,3(1-λ)).设平面ADE 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧3x 1-y 1=0,4λy 1+3(1-λ)z 1=0,取x 1=1,则m =⎝ ⎛⎭⎪⎫1,3,43λ3(λ-1).设平面P AD 的法向量为n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n ·AP →=0,n ·AD →=0,即⎩⎨⎧3z 2=0,3x 2-y 2=0,取y 2=1,则n =⎝⎛⎭⎫33,1,0.若平面ADE 与平面P AD 所成的二面角为60°,则cos 〈m ,n 〉=cos 60°=12,即1×33+3×1+01+3+16λ23(λ-1)2·1+13=12, 化简得1+4λ23(λ-1)2=2,即⎝⎛⎭⎫λλ-12=94, 解得λ=3(舍去)或λ=35.于是,存在λ=35,使平面ADE 与平面P AD 所成的二面角为60°.(1)求二面角的两种方法①定义法(在易于作出二面角的平面角和计算情况下适用)第一步:在平面α内取一个易于作出平面β的垂线的点P .且设垂足为H ,过H 作交线l 的垂线,垂足为Q ,连接PQ (或过P 作PQ ⊥l ,垂足为Q ,连接HQ ),则∠PQH 即为二面角α l β的平面角.(或证明某个平面角即为二面角的平面角).第二步:根据条件求出Rt △PQH 的两边,用直角三角函数即可求出二面角的三角函数值.②向量法第一步:根据立体图形的几何特点,建立恰当的直角坐标系,并写出确定二面角的两个半平面内相关的坐标.第二步:分别求出两个平面的法向量n 1,n 2,根据公式cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|,求出n 1与n 2夹角的余弦.第三步:结合图形(或条件),写出二面角的余弦值(一般情况下,锐二面角取|cos 〈n 1,n 2〉|,钝角取-|cos 〈n 1,n 2〉|,当cos 〈n 1,n 2〉=0时,为直二面角).(2)探索性问题在坐标系下探索性问题的求解策略.第一步:假设存在,并根据相关的条件,将假设存在的问题用坐标和相关元素表示出来. 第二步:根据满足的要求,列出相关的关系式.第三步:求解关系式,若求出的问题合情合理,说明问题存在,即是问题解决的过程.若得出矛盾,说明假设存在是错的,即是说明理由的过程.空间角 满分展示(满分12分)(2015·高考全国卷Ⅰ)如图,四边形ABCD为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. [联想破译]联想因素:线面垂直、面面垂直、直线与直线所成角. 联想路线:(1)先证明线面垂直,再证明面面垂直.(2)建系,先求出cos 〈AE →,CF →〉的值,再确定所成角的余弦值.[标准答案]第(1)问得分点说明:正确推理过程得3分,没有EG 2+FG 2=EF 2扣1分;正确推理过程得3分,没有条件EG ⊂平面AEC 扣1分(1)证明:连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22, 可得EF =322.从而EG 2+FG 2=EF 2,所以EG ⊥FG.(3分)又AC ∩FG =G ,可得EG ⊥平面AFC .又因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(6分)(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2), F ⎝⎛⎭⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.(10分)故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.第(2)问得分点说明:正确推理过程得4分,没有指出空间直角坐标系扣2分;正确得出直线所成角的余弦值得2分,余弦值为-33,扣1分 所以直线AE 与直线CF 所成角的余弦值为33.(12分)[解题程序]第一步:利用勾股定理的逆定理证明EG ⊥FG . 第二步:证明面面垂直.注意面面垂直满足的条件. 第三步:建立空间直角坐标系,写出点的坐标、向量的坐标. 第四步:求向量夹角的余弦值.第五步:求两直线夹角的余弦值,得出结论.[满分心得] (1)写全得分步骤对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中EG ⊥FG ,第(2)问中两向量的坐标.(2)写明得分关键对于解题过程中的关键点,有则给分,无则没分,所以在解答时一定要写清得分关键点,如第(1)问中一定要写出判断平面AEC ⊥平面AFC 过程中的三个条件,写不全则不能得全分,否则就不得分,再者EG ⊂平面AEC 这一条件也一定要有,否则要扣1分;第(2)问中不写出cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|而得出余弦值则要扣1分.。

立体几何中的截面问题 教学设计

立体几何中的截面问题 教学设计

《立体几何中的截面问题》教学设计一、引言立体几何是数学中一个重要的分支,它研究的是三维空间中的图形和体积。

在立体几何中,截面问题是一个非常有趣的话题,它涉及到了平面和立体图形的相互作用,对于学生来说是一个较为抽象的概念,但又是非常重要的。

在本次教学设计中,我们将以立体几何中的截面问题为主题,通过深入浅出的教学方式,帮助学生全面理解这一概念。

二、知识点介绍1.截面的定义在几何学中,截面是指一个几何图形在确定条件下与另一个几何图形交叠的部分。

在立体几何中,我们通常讨论的是平面与立体的交点部分,这些交点形成的图形称为截面。

2.截面与立体图形的关系通过对截面的研究,我们可以更加深入地理解立体图形的形状、体积和特性。

截面不仅可以帮助我们了解一个立体图形的内部结构,还能够将抽象的立体图形转化为平面图形来进行研究。

3.截面问题的应用在工程、建筑、艺术等领域,截面问题都有着广泛的应用。

通过对截面问题的研究,我们可以更好地理解和利用立体图形,从而应用到实际的生活和工作中。

三、教学目标1.了解截面的基本定义和特性。

2.掌握不同立体图形的截面求解方法。

3.能够应用截面问题解决实际生活中的问题。

4.培养学生分析和解决问题的能力。

四、教学内容与逻辑安排1.引入:通过展示一些真实生活中的立体图形,引出截面问题的概念,激发学生的兴趣。

2.理论知识讲解:首先介绍截面的定义和基本特性,然后分别针对不同的立体图形(如长方体、球体、圆柱体等)详细讲解其截面求解方法和特点。

3.实例演练:给出一些具体的例题,让学生通过实际计算和画图来掌握截面问题的求解方法。

4.拓展应用:结合实际生活中的案例,让学生应用截面问题来解决一些实际问题,培养学生的应用能力。

5.总结回顾:总结截面问题的求解方法和应用,强调理论与实际的联系,让学生对本次教学内容有一个全面的回顾和总结。

五、个人观点和理解在我看来,立体几何中的截面问题不仅是一个重要的知识点,更是一个非常有趣和实用的概念。

强基专题--立体几何中的截面问题

强基专题--立体几何中的截面问题

强基专题3 立体几何中的截面问题
[跟进训练]
1.(2021·重庆模拟)在三棱锥 P-ABC 中,PA,PB,PC 两两垂直,
PA=3,PB=4,PC=5,点 E 为线段 PC 的中点,过点 E 作该三棱
锥外接球的截面,则所得截面圆的面积不可能为( )
A.6π
B.8π
C.10π
D.12π
1234 5
(2)当π2<θ<π时,0<α<θ<π,此时sin θ<1,sin α可以取到最 大值1,
此时过圆锥母线的截面面积最大,最大值为S=12l2.
1234 5
强基专题3 立体几何中的截面问题
综上所述,过圆锥母线的截面面积的最大值与轴截面顶角θ的范 围有关,
当0<θ≤π2时,轴截面面积最大,最大值为S=12l2sin θ. 当π2<θ<π时,过圆锥母线的截面面积最大,最大值为S=12l2.
同理 FG∥EH,所以四边形 EFGH 为平行四边形,又 AD⊥BC, 所以四边形 EFGH 为矩形.
1234 5
强基专题3 立体几何中的截面问题
由相似三角形的性质得BECF=AACF,FACC=AFDG, 所以BECF+FAGD=AACF+FACC,BC=AD=2, 所以 EF+FG=2,所以四边形 EFGH 的周长为定值 4,S 四边形 EFGH =EF×FG≤EF+2 FG2=1, 所以四边形 EFGH 的面积有最大值 1.故选 B.]
1 2
l2sin θ.截面VCD的面积S′=12l2sin α.在△V强基专题3 立体几何中的截面问题
(1)当0<θ≤π2时,0<α<θ≤π2,sin α<sin θ⇒S′<S,此时过圆 锥母线的截面面积最大为轴截面面积S=12l2sin θ.
截面形状及相应面积的求法 (1)结合线、面平行的判定定理与性质定理求截面问题; (2)结合线、面垂直的判定定理与性质定理求正方体中截面问题; (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的 特征,“动中找静”,如正三角形、正六边形、正三棱锥等; (4)建立函数模型求最值问题:①设元;②建立二次函数模型; ③求最值.

高中数学_高三专题复习:立体几何中的截面问题教学设计学情分析教材分析课后反思

高中数学_高三专题复习:立体几何中的截面问题教学设计学情分析教材分析课后反思

高三专题复习:立体几何中的截面问题教学设计一、高考分析:2020新高考第16题直四棱柱与球面相交线长;2018全国Ⅰ卷第12题求正方体与平面α所得截面面积的最大值;2016全国Ⅰ卷新课标理第11题;2015全国新课标文科第19题画截面并求截面把长方体分成两部分的体积比,立体几何考点中涉及到空间几何体的截面常以选择填空的压轴题出现,考查判断截面的形状、计算出空间几何体的截面周长或面积、或者求与之相关的体积问题、以及最值问题。

二、教学目标1.结合线、面平行的判定定理与性质求截面问题;2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

5.核心素养:空间想象能力、建模能力、运算能力三、教学过程:30的截面面积变式2如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值; ②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G , 使得//CG 平面1EBD ;③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ;④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)体验平行线法画截面,几何体表面最小距离问题,动画展示展开过程,注重一题多解,一题多变,多提归一动画展示,扫清了学生的思维障碍,更好地突破了教学的重难点,体验数学的简约美学情分析全国卷对于截面问题的考察灵活多变,常出现在选择或填空的压轴题中,对于进行一轮复习即将高考的学生而言更是急需攻克的难关,在诸多截面问题中,几何体截面问题与最值求值问题结合在一起嵌入题目里,很多学生无从下手。

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何

2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何

江苏 新高考高考对本专题内容的考查一般是“一小一大”,小题主要考查体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考查形式单一,难度一般.第1课时立体几何中的计算(基础课) [常考题型突破]空间几何体的表面积与体积 空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆).(3)球的表面积和体积公式: ①S 球=4πR 2(R 为球的半径); ②V 球=43πR 3(R 为球的半径).[题组练透]1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3 cm ,母线长为5 cm ,所以圆锥的高为52-32=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3=12π,所以该铁球的半径是39cm.答案:392.(2017·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2017·南通、泰州一调)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为_______cm 3.解析:三棱锥D 1-A 1BD 的体积等于三棱锥B -A 1D 1D 的体积,因为三棱锥B -A 1D 1D 的高等于AB ,△A 1D 1D 的面积为矩形AA 1D 1D 的面积的12,所以三棱锥B -A 1D 1D 的体积是正四棱柱ABCD -A 1B 1C 1D 1的体积的16,所以三棱锥D 1-A 1BD 的体积等于16×32×1=32.答案:324.如图所示是一个直三棱柱(以A 1B 1C 1为底面)被一个平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,A 1A =4,B 1B =2,C 1C =3,则此几何体的体积为________.解析:在A 1A 上取点A 2,在C 1C 上取点C 2,使A 1A 2=C 1C 2=BB 1,连结A 2B ,BC 2,A 2C 2,∴V =VA B C A BC 11122-+VB A ACC 22-=12×1×1×2+13×(1+2)2×2×22=32. 答案:325.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是________.解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=⎝⎛⎭⎫r 1r 22=94.答案:94[方法归纳]解决球与其他几何体的切、接问题(1)解题的关键:仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面:要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系,达到空间问题平面化的目的.(3)认识球与正方体组合的3种特殊截面:(4)熟记2个结论:①设小圆O 1半径为r ,OO 1=d ,则d 2+r 2=R 2;②若A ,B 是圆O 1上两点,则AB =2r sin ∠AO 1B 2=2R sin ∠AOB 2.[题组练透]1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:322.(2017·全国卷Ⅲ改编)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34×π×1=3π4.答案:3π43.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=3,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为________.解析:如图所示,BE过球心O,∴DE=42-32-(3)2=2,∴V E -ABCD=13×3×3×2=2 3.答案:2 34.(2017·南京、盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC =2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.解析:因为将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,所以三棱锥O-EFG的高为圆柱的高,即高为AB,所以当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=12×4×2=4,所以三棱锥O-EFG体积的最大值(V O-EFG)max=13×(S△EFG)max×AB=13×4×3=4.答案:4[方法归纳]多面体与球的切接问题的解题技巧[必备知识]将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.[题组练透]1.(2017·南通三模)已知圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,则这个圆锥的高为________.解析:因为圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,所以圆锥的母线长l =3,设圆锥的底面半径为r ,则底面周长2πr =3×2π3,所以r =1,所以圆锥的高为32-12=2 2. 答案:2 22.(2017·南京考前模拟)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则棱锥E -DFC 的体积为________.解析:S △DFC =14S △ABC =14×⎝⎛⎭⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12. V E -DFC =13×S △DFC×h =324. 答案:3243.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时, 设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0, ∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312× 25a 4-533a 5. 令t =25a 4-533a 5,则t ′=100a 3-2533a 4, 由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG=36BC , 设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52, 则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2, 则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415 [方法归纳][A 组——抓牢中档小题]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是棱B 1B 的中点,则三棱锥B 1-ADE 的体积为________.解析:VB 1-ADE =VD -AEB 1=13S △AEB 1·DA =13×12×12×1×1=112.答案:1122.若两球表面积之比是4∶9,则其体积之比为________.解析:设两球半径分别为r 1,r 2,因为4πr 21∶4πr 22=4∶9,所以r 1∶r 2=2∶3,所以两球体积之比为43πr 31∶43πr 32=⎝⎛⎭⎫r 1r 23=⎝⎛⎭⎫233=8∶27.答案:8∶273.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=4π3×278=92π.答案:92π4.已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 解析:设圆锥底面圆的半径为r ,母线长为l ,则侧面积为πrl =10πr =60π,解得r =6,则圆锥的高h =l 2-r 2=8,则此圆锥的体积为13πr 2h =13π×36×8=96π.答案:96π5.(2017·扬州期末)若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm 2),则它的体积为________(单位:cm 3).解析:因为正四棱锥的底面边长为2,侧面积为8,所以底面周长c =8,12ch ′=8,所以斜高h ′=2,正四棱锥的高为h =3,所以正四棱锥的体积为13×22×3=433.答案:4336.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π得,a 313πr 3=3π,得a=r ,从而S 1S 2=62π=32π.答案:32π7.(2017·苏北三市三模)如图,在正三棱柱ABC -A1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.解析:三棱锥的底面积S △ABA 1=12×3×3=92,点P 到底面的距离为△ABC 的高h =32-⎝⎛⎭⎫322=332,故三棱锥的体积VP -ABA 1=13S △ABA 1×h =934. 答案:9348.(2017·无锡期末)已知圆锥的侧面展开图为一个圆心角为2π3,且面积为3π的扇形,则该圆锥的体积等于________.解析:设圆锥的母线为l ,底面半径为r , 因为3π=13πl 2,所以l =3,所以πr ×3=3π,所以r =1,所以圆锥的高是32-12=22,所以圆锥的体积是13×π×12×22=22π3.答案:22π39.(2017·徐州古邳中学摸底)表面积为24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为________.解析:设圆柱的高为h ,底面半径为r , 则圆柱的表面积S =2πr 2+2πrh =24π, 即r 2+rh =12,得rh =12-r 2, ∴V =πr 2h =πr (12-r 2)=π(12r -r 3), 令V ′=π(12-3r 2)=0,得r =2,∴函数V =πr 2h 在区间(0,2]上单调递增,在区间[2,+∞)上单调递减,∴r =2时,V 最大,此时2h =12-4=8,即h =4,r h =12.答案:1210.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为________.解析:把三棱锥P -ABC 看作由平面截一个长、宽、高分别为1、1、3的长方体所得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 答案:5π11.已知正三棱锥P -ABC 的体积为223,底面边长为2,则侧棱PA 的长为________.解析:设底面正三角形ABC 的中心为O ,又底面边长为2,故OA =233,由V P -ABC =13PO ·S △ABC ,得223=13PO ×34×22,PO =263,所以PA =PO 2+AO 2=2. 答案:212.(2017·苏州期末)一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.解析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种情况:①孔高为3,则2πr 2=2πr ×3,解得r =3;②孔高为8,则r =8;③孔高为9,则r =9.而实际情况是,当r =8,r =9时,因为长方体有个棱长为3,所以受限制不能打,所以只有①符合.答案:313.如图所示,在体积为9的长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于点E ,则四棱锥E -A 1B 1C 1D 1的体积V =________.解析:连结B 1D 1交A 1C 1于点F ,连结BD ,BF ,则平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF .因为F 是A 1C 1的中点,所以BF 是中线,又B 1F 綊12BD ,所以FE EB =12,故点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以四棱锥E -A 1B 1C 1D 1的体积V =13×S 四边形A 1B 1C 1D 1×13BB 1=19V 长方体ABCD -A 1B 1C 1D 1=1.答案:114.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.解析:依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).答案:16(π-2)[B 组——力争难度小题]1.已知三棱锥S -ABC 所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若SC =AB =AC =1,∠BAC =120°,则球O 的表面积为________.解析:∵AB =AC =1,∠BAC =120°, ∴BC =12+12-2×1×1×⎝⎛⎭⎫-12=3, ∴三角形ABC 的外接圆直径2r =3sin 120°=2,∴r =1.∵SC ⊥平面ABC ,SC =1, ∴该三棱锥的外接球半径R =r 2+⎝⎛⎭⎫SC 22=52,∴球O 的表面积S =4πR 2=5π. 答案:5π2.(2017·南京三模)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.解析:在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,所以BB 1⊥AB ,又因为∠ABC =90°,即BC ⊥AB ,又BC ∩BB 1=B ,所以AB ⊥平面BB 1C 1C, 因为AB =1,BC =2,点D 为侧棱BB 1上的动点,所以侧面展开,当AD +DC 1最小时,BD =1,所以S △BDC 1=12×BD ×B 1C 1=1,所以三棱锥D -ABC 1的体积为13×S △BDC 1×AB =13.答案:133.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析:如图所示,AB =2,CD =a ,设点E 为AB 的中点,则ED ⊥AB,EC⊥AB,则ED=AD2-AE2=22,同理EC=22.由构成三角形的条件知0<a<ED+EC=2,所以0<a< 2.答案:(0,2)4.如图,已知AB为圆O的直径,C为圆上一动点,PA⊥圆O所在的平面,且PA=AB=2,过点A作平面α⊥PB,分别交PB,PC于E,F,当三棱锥P-AEF的体积最大时,tan∠BAC=________.解析:∵PB⊥平面AEF,∴AF⊥PB.又AC⊥BC,AP⊥BC,∴BC⊥平面PAC,∴AF⊥BC,∴AF⊥平面PBC,∴∠AFE=90°.设∠BAC=θ,在Rt△PAC中,AF=AP·ACPC=2×2cos θ21+cos2θ=2cos θ1+cos2θ,在Rt△PAB中,AE=PE=2,∴EF=AE2-AF2,∴V P-AEF=16AF·EF·PE=16AF·2-AF2·2=26·2AF2-AF4=26·-(AF2-1)2+1≤26,∴当AF=1时,V P-AEF取得最大值26,此时AF=2cos θ1+cos2θ=1,∴cos θ=13,sin θ=23,∴tan θ= 2.答案: 2第2课时平行与垂直(能力课) [常考题型突破][例1](2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD . 因为AD ⊂平面ABD , 所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC . 又因为AC ⊂平面ABC , 所以AD ⊥AC . [方法归纳]1.(2017·苏锡常镇一模)如图,在斜三棱柱ABC -A1B 1C 1中,侧面AA 1C 1C 是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.(1)求证:E 是AB 的中点; (2)若AC 1⊥A 1B ,求证:AC 1⊥BC .证明:(1)连结BC1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1 .因为侧面AA 1C 1C 是菱形,AC 1∩A 1C =O , 所以O 是AC 1中点,所以AE EB =AO OC 1=1,E 是AB 的中点.(2)因为侧面AA 1C 1C 是菱形,所以AC 1⊥A 1C,又AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.2.(2017·苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2.(1)若点Q是PD的中点,求证:AQ⊥平面PCD;(2)证明:BD∥平面PEC.证明:(1)因为PA=AD,Q是PD的中点,所以AQ⊥PD.又PA⊥平面ABCD,所以CD⊥PA.又CD⊥DA,PA∩DA=A,所以CD⊥平面ADP.又因为AQ⊂平面ADP,所以CD⊥AQ,又PD∩CD=D,所以AQ⊥平面PCD.(2)取PC的中点M,连结AC交BD于点N,连结MN,ME,在△PAC中,易知MN=12PA,MN∥PA,又PA∥EB,EB=12PA,所以MN=EB,MN∥EB,所以四边形BEMN是平行四边形,所以EM∥BN.又EM⊂平面PEC,BN⊄平面PEC,所以BN∥平面PEC,即BD∥平面PEC.[例2]ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点.求证:(1)平面MON∥平面PAC;(2)平面PBC⊥平面MON.[证明](1)因为M,O,N分别是PB,AB,BC的中点,所以MO∥PA,NO∥AC,又MO∩NO=O,PA∩AC=A,所以平面MON∥平面PAC.(2)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.由(1)知,MO∥PA,所以MO⊥BC.连结OC,则OC=OB,因为N为BC的中点,所以ON⊥BC.又MO∩ON=O,MO⊂平面MON,ON⊂平面MON,所以BC⊥平面MON.又BC⊂平面PBC,所以平面PBC⊥平面MON.[方法归纳]1.(2017·无锡期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.证明:(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,因为四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF,因为四边形ABCD为矩形,所以O点为AC的中点,因为E为PC的中点,所以OE∥PA,因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD,同理可得:OF∥平面PAD,又因为OE∩OF=O,所以平面OEF∥平面PAD,因为EF⊂平面OEF,所以EF∥平面PAD.2.(2016·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D ⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.[例3]圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.(1)求证:平面AFC⊥平面CBF.(2)在线段CF上是否存在一点M,使得OM∥平面ADF?并说明理由.[解](1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF ⊂平面ABEF ,∴AF ⊥CB .又AB 为圆O 的直径, ∴AF ⊥BF .又BF ∩CB =B , ∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF . (2)当M 为CF 的中点时,OM ∥平面ADF . 证明如下:取CF 中点M ,设DF 的中点为N ,连结AN ,MN , 则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO ,∴四边形MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF , ∴OM ∥平面DAF . [方法归纳]与平行、垂直有关的存在性问题的解题步骤[变式训练]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BFBE 的值. 解:(1)证明:∵四边形ABCD 为矩形,∴AB ⊥BC , ∵平面ABCD ⊥平面BCE , ∴AB ⊥平面BCE ,∴CE ⊥AB . 又∵CE ⊥BE ,AB ∩BE =B , ∴CE ⊥平面ABE ,又∵CE ⊂平面AEC ,∴平面AEC ⊥平面ABE . (2)连结BD 交AC 于点O ,连结OF .∵DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF . ∴DE ∥OF ,又在矩形ABCD 中,O 为BD 中点,∴F 为BE 中点,即BF BE =12.2.如图,在矩形ABCD 中,E ,F 分别为BC ,DA 的中点.将矩形ABCD 沿线段EF 折起,使得∠DFA =60°.设G 为AF 上的点.(1)试确定点G 的位置,使得CF ∥平面BDG ; (2)在(1)的条件下,证明:DG ⊥AE .解:(1)当点G 为AF 的中点时,CF ∥平面BDG .证明如下:因为E ,F 分别为BC ,DA 的中点, 所以EF ∥AB ∥CD .连结AC 交BD 于点O ,连结OG ,则AO =CO . 又G 为AF 的中点, 所以CF ∥OG .因为CF ⊄平面BDG ,OG ⊂平面BDG . 所以CF ∥平面BDG .(2)因为E ,F 分别为BC ,DA 的中点,所以EF ⊥FD ,EF ⊥FA . 又FD ∩FA =F , 所以EF ⊥平面ADF , 因为DG ⊂平面ADF , 所以EF ⊥DG .因为FD =FA ,∠DFA =60°, 所以△ADF 是等边三角形,DG ⊥AF , 又AF ∩EF =F , 所以DG ⊥平面ABEF . 因为AE ⊂平面ABEF , 所以DG ⊥AE .[课时达标训练]1.如图,在三棱锥V -ABC 中,O ,M 分别为AB ,VA 的中点,平面VAB ⊥平面ABC ,△VAB 是边长为2的等边三角形,AC ⊥BC 且AC =BC .(1)求证:VB ∥平面MOC ;(2)求线段VC的长.解:(1)证明:因为点O,M分别为AB,VA的中点,所以MO∥VB.又MO⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,AC⊥BC,AB=2,所以OC⊥AB,且CO=1.连结VO,因为△VAB是边长为2的等边三角形,所以VO= 3.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC⊂平面ABC,所以OC⊥平面VAB,所以OC⊥VO,所以VC=OC2+VO2=2.B1C1中,AC⊥BC,A1B2.(2017·南通二调)如图,在直三棱柱ABC-A与AB1交于点D,A1C与AC1交于点E.求证:(1)DE∥平面B1BCC1;(2)平面A1BC⊥平面A1ACC1.证明:(1)在直三棱柱ABC-A1B1C1中,四边形A1ACC1为平行四边形.又E为A1C与AC1的交点,所以E为A1C的中点.同理,D为A1B的中点,所以DE∥BC.又BC⊂平面B1BCC1,DE⊄平面B1BCC1,所以DE∥平面B1BCC1.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,又BC⊂平面ABC,所以AA1⊥BC.又AC⊥BC,AC∩AA1=A,AC⊂平面A1ACC1,AA1⊂平面A1ACC1,所以BC⊥平面A1ACC1.因为BC⊂平面A1BC,所以平面A1BC⊥平面A1ACC1.3.(2017·南京三模)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.证明:(1)因为BD∥平面AEF,BD⊂平面BCD,平面AEF∩平面BCD=EF,所以BD∥EF.因为BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.(2)因为AE⊥平面BCD,CD⊂平面BCD,所以AE⊥CD.因为BD⊥CD,BD∥EF,所以CD⊥EF,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,所以CD⊥平面AEF.又CD⊂平面ACD,所以平面AEF⊥平面ACD.4.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD;(2)当PD∥平面AEC时,求PE∶EB的值.解:(1)证明:在平面ABCD中,过A作AF⊥DC于F,则CF=DF=AF=1,∴∠DAC=∠DAF+∠FAC=45°+45°=90°,即AC⊥DA.又PA⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PA.∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴AC⊥平面PAD.又AC⊂平面AEC,∴平面AEC⊥平面PAD.(2)连结BD交AC于O,连结EO.∵PD∥平面AEC,PD⊂平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO,则PE∶EB=DO∶OB.又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1,∴PE∶EB的值为2.5.(2017·扬州考前调研)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD.证明:(1)连结OQ,因为AB∥CD,AB=2CD,所以AO =2OC ,又PQ =2QC , 所以PA ∥OQ ,因为OQ ⊂平面QBD ,PA ⊄平面QBD , 所以PA ∥平面QBD .(2)在平面PAD 内过P 作PH ⊥AD 于H ,因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD , 所以PH ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PH ⊥BD .又PA ⊥BD ,且PA ∩PH =P ,PA ⊂平面PAD ,PH ⊂平面PAD , 所以BD ⊥平面PAD ,又AD ⊂平面PAD ,所以BD ⊥AD .6.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)若P 为BD 的中点,试问:在线段AE 上是否存在点Q ,使得PQ ∥平面BCE ?若存在,找出点Q 的位置;若不存在,请说明理由.解:(1)证明:如图,取EF 的中点G ,连结AG ,因为EF =2AB ,所以AB =EG ,又AB ∥EG ,所以四边形ABEG 为平行四边形,所以AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2,所以AG 2+AF 2=GF 2,所以AG ⊥AF . 因为四边形ABCD 为矩形,所以AD ⊥AB ,又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB ,AD ⊂平面ABCD , 所以AD ⊥平面ABEF ,又AG ⊂平面ABEF ,所以AD ⊥AG . 因为AD ∩AF =A ,所以AG ⊥平面ADF . 因为AG ∥BE ,所以BE ⊥平面ADF . 因为DF ⊂平面ADF ,所以BE ⊥DF .(2)存在点Q ,且点Q 为AE 的中点,使得PQ ∥平面BCE . 证明如下:连结AC ,因为四边形ABCD 为矩形, 所以P 为AC 的中点.在△ACE中,因为点P,Q分别为AC,AE的中点,所以PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,所以PQ∥平面BCE.。

高考数学专题四立体几何 微专题30 截面、交线问题

高考数学专题四立体几何 微专题30 截面、交线问题

跟踪训练1 (1)(多选)已知正方体ABCD-A1B1C1D1,若AC1⊥平面α,则 关于平面α截此正方体所得截面的判断正确的是
√A.截面形状可能为正三角形
B.截面形状可能为正方形
√C.截面形状可能为正六边形
D.截面形状可能为五边形
如图,在正方体ABCD-A1B1C1D1中,连接A1B, A1D,BD,则AC1⊥平面A1BD, 所以平面α与平面A1BD平行或重合, 所以平面α与正方体的截面形状可能是正三角形、 正六边形,但不可能是五边形和四边形,故A,C 正确,B,D错误.
12345678
在平面A1B1C1D1内取一点G,使得A1G=1, 则AG= 5, 所以以A为球心, 5 为半径的球面与底面A1B1C1D1
的交线为以A1为圆心,1为半径的 RGQ ,
其长度为14×2π×1=π2,故选 A.
12345678
设正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为a,高为h. 若要使该正六棱柱的体积最大,正六棱柱应为球的内接正六棱柱中体
积最大者,
所以h42+a2=22,即 a2=4-h42,
又正六棱柱的底面积 S=6× 43a2, 所以该正六棱柱的体积 V=S·h=6× 43a2h=383(16-h2)h.
则 EF=
362-
332=
33=ME,
所以∠FME=45°,
圆与三角形截得的三部分,由对称性可知,圆心角都
为90°,故该球的球面与侧面PCD的交线长度为截面圆周长的 14, 即为14×2π×MF= 66π,故选 A.
总结提升
截面和交线问题在高考中一般为选择和填空题,难度较大.探究找 截面一是几何法,常用直接连接、作平行线或作延长线找交点, 找交线的方法常用线面交点法和面面交点法,二是利用空间向量法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在长方体中,作图作平面ABC 与平面DEF 的交线。

2. 3. 4.B
A
C
D
E
7. 如图2,有一圆锥形粮堆,其主视图是边长为6 m的正三角形ABC,母线AC的中点P
处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是
m.(结果不取近似数)
10米,母线PB长40米,节日期间,计划从A处开始绕侧面
8.一个圆锥形建筑物高15
一周到母线PA上的点C处都挂上彩带.已知PC=10米,问需要彩带多少米(结果不取近似值。


1.(2013昆明市市二统)如图,四棱锥P- ABCD的底面ABCD是矩形,侧面PAB是正三角形,AB=2,BC=2,PC=6,
(I)求证:PD⊥AC;
(II)已知棱PA上有一点E,若二面角E—BD—A
的大小为45°,试求BP与平面EBD所成角的正弦值。

1
A
2. (2012昆明市市二统)如图长方体
1111
ABCD A B C D
-中,P是线段
任意一点.
(Ⅰ)判断直线
1
B P与平面
11
AC D的位置关系并证明;
(Ⅱ)若AB BC
=,E是AB的中点,二面角
111
A DC D
--的余弦值是
,求直线
1
B E与平面
11
AC D所成角的正弦值.
3. (2013昆明市市二统)如图,四边形ABCD是正方形,PD MA
∥,
MA AD
⊥,PM CDM
⊥平面,
1
2
MA PD
=.
(Ⅰ)求证:平面ABCD⊥平面AMPD;
(Ⅱ)若BC与PM所成的角为45,求二面角M BP C
--的余弦
值.
A
B
C
D
P
M
4.(2014届昆明市市二统)四棱锥P-ABCD的底面是正方形,每条侧棱的长都等于底面边长,AC∩BD=O,E、F 、G 分别是PO 、AD 、AB 的中点。

(1)求证:PC ⊥面EFG ;
(2)求面EFG 与面PAB 所成的二面角的正弦值。

5.(河北省邯郸市第一中学2016届高三数学下学期研七考试试题)如图1,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,E为BC上一点,BE=2EC,DE=3,将梯形ABCD沿DE折成直二面角B-DE-C,如图2所示。

(1)求证:面AEC⊥面ABED;
(2)设点A关于点D的对称点为G,点M在△BCE所在平面内,且直线GM与面ACE所成的角为3
,求出点M与点B的最短距离。

图A B C
D E

A
B
C
D
E
6.(江西省上饶市重点中学2016
届高三数学第一次联考试题)长方形ABCD 中,AB =2,AD =1,M 为DC 中点,将△ADM 沿AM 折起,使面ADM ⊥面ABCM 。

(1)求证:AD ⊥BM ;
(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E-AM-D的大小为
4。

7. (广东省东莞一中、松山湖学校2016届高三数学上学期12月联考试卷)如图,在四棱锥P ﹣ABCD 中,AD∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,
(Ⅰ)求证:平面PED ⊥平面PAC ;
(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为
,求二面角A ﹣PC ﹣D 的平面角的余弦值.
A
B
C
M
D
E
8. 【2015江苏高考,22】如图,在四棱锥P ABCD -中,已知PA ⊥平面
ABCD
,且四边形
ABCD






2
ABC BAD π
∠=∠=
,2,1PA AD AB BC ====
(1)求平面PAB 与平面PCD 所成二面角的余弦值;
(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段
BQ 的长
9.【2015高考天津,理17】(本小题满分13分)如图,在四棱柱
1111ABCD A B C D 中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB ,
1
2,5AC
AA AD CD
,且点M 和N 分别为11C D B D 和的中点.
(I)求证://MN 平面ABCD ;
(II)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为1
3
,求线段1A E 的长
N
1
D
P
A B
C
D
Q
10.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.
(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.
11.(2014-2015学年上学期云大附中星耀校区高二年级期末考试) 如图,在直三棱柱111C B A ABC -中,点D 是BC 的中点.请您在图中用黑色碳素笔.....作图,过点1A 作一截面与平面D AC 1平行,并证明;
C
1A 1
B 1
C D。

相关文档
最新文档