单片机驱动LED数码管原理
3.2 单片机控制LED数码管的显示

5.3.2 LED数码管的静态显示与动态显示
2. 动态显示方式
图5-9 4位LED数码管动态显示示意图
5.3.2 LED数码管的静态显示与动态显示
2. 动态显示方式
各位数码管轮流点亮的时间间隔(扫描间隔)应根据实 际情况定。发光二极管从导通到发光有一定的延时,如果点 亮时间太短,发光太弱,人眼无法看清;时间太长,产生闪 烁现象,且此时间越长,占用单片机时间也越多。另外,显 示位数增多,也将占用单片机大量时间,因此动态显示实质 是以执行程序时间来换取I/O端口减少。下面是动态显示实 例。
void main(void)
ห้องสมุดไป่ตู้
{
P0=0xa4;
//将数字"2"的段码送P0口
P1=0xf8;
//将数字"7"的段码送P1口
while(1)
//无限循环
;
}
5.3.2 LED数码管的静态显示与动态显示
2. 动态显示方式
显示位数较多时,静态显示所占的I/O口多,这时常 采用动态显示。为节省I/O口,通常将所有显示器段码 线相应段并联在一起,由一个8位I/O口控制,各显示位 公共端分别由另一单独I/O口线控制。
// 如段码为0x01,表明一个循环显示已结束 } }
5.3.1 LED数码管显示原理
void delayms(uint j) { uchar i; for(;j>0;j--)
{ i=250; while(--i); i=249; while(--i);
} }
// 延时函数
5.3.1 LED数码管显示原理
图5-10 8只数码管分别滚动显示单个数字1~8
5.3.2 LED数码管的静态显示与动态显示
单片机控制数码管动态扫描显示原理

P02 P03 P04 P05 P06
11 P01
P00
7 4 2 110
3
a b c d e f g dp
DPY
a
a
a
a
f g bf g bf g bf g b
e
ce
ce
ce
c
d
d
d
d
dp
dp
dp
dp
DPY 4 -LED
P20 P21 6 C0 P22 8 C2 P23 9 C3
12 C4
LED
U1
一、工作方式寄存器TMOD
工作方式寄存器TMOD用于设置定时/计数器的 工作方式,低四位用于T0,高四位用于T1。其格式 如下:
GATE:门控位。GATE=0时,只要用软件使TCON中的 TR0或TR1为1,就可以启动定时/计数器工作;GATA=1时, 要用软件使TR0或TR1为1,同时外部中断引脚INT0/1也为 高电平时,才能启动定时/计数器工作。即此时定时器的启 动条件,加上了INT0/1引脚为高电平这一条件。
VCC GND RXD TXD ALE/ P PSEN
40 20 10 11 30 29
P 14 P 15 P 16 P 17
8 K9 C K13
9 K10 D K14
A K11 E K15
B F
动态显示
动态显示的特点是将所有位数码管的段选线并联在 一起,由位选线控制是哪一位数码管有效。这样一来, 就没有必要每一位数码管配一个锁存器,从而大大地简 化了硬件电路。选亮数码管采用动态扫描显示。所谓动 态扫描显示即轮流向各位数码管送出字形码和相应的位 选,利用发光管的余辉和人眼视觉暂留作用,使人的感 觉好像各位数码管同时都在显示。动态显示的亮度比静 态显示要差一些,所以在选择限流电阻时应略小于静态 显示电路中的。
51单片机数码管显示数字原理

主题:51单片机数码管显示数字原理内容:1. 介绍51单片机在现代的电子产品中,单片机被广泛应用于各个领域,它是一种集成了微处理器、存储器和输入/输出端口的集成电路芯片。
其中,51单片机即指的是基于Intel 8051架构的单片机,它具有低功耗、高性能和丰富的外设接口,因此被广泛应用于嵌入式系统设计中。
2. 数码管的基本原理数码管是一种能够显示数字和部分字母的显示器件,它由多个发光二极管组成,可以显示0-9的数字。
数码管按照结构可以分为共阳数码管和共阳数码管两种类型。
共阳数码管的显示原理是通过控制各个发光二极管的通断状态来显示不同的数字,而共阴数码管则是通过控制对应的极性来实现数字的显示。
3. 51单片机连接数码管的原理通过51单片机控制数码管显示数字,需要用到引脚的输出功能。
在连接共阳数码管时,需要通过51单片机的输出引脚控制各个发光二极管的状态;而在连接共阴数码管时,则是通过控制对应的极性来实现数字的显示。
4. 51单片机连接数码管的实现步骤由于51单片机有多个通用IO口,因此可以连接多个数码管。
连接数码管的步骤如下:1)确定数码管的类型,共阴还是共阳2)连接数码管的正极和负极到单片机的对应IO口3)编写程序控制51单片机的IO口输出状态,以显示所需的数字5. 51单片机连接数码管的程序设计下面是一个简单的示例程序,演示了如何使用51单片机连接数码管,并控制其显示数字的过程:```C#include <reg51.h>sbit DIG1 = P0^0; // 数码管第一位sbit DIG2 = P0^1; // 数码管第二位sbit DIG3 = P0^2; // 数码管第三位sbit DIG4 = P0^3; // 数码管第四位void m本人n(){unsigned char DisplayData[] ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; // 0-9的显示码unsigned char i;while(1){for(i=0; i<10; i++){DIG1=0; // 打开第一位数码管P2=DisplayData[i]; // 发送段码delay(100); // 延时DIG1=1; // 关闭第一位数码管// 同样的方法依次打开其他位数码管并发送段码// 这里省略其他三个数码管的控制}}}通过以上程序设计,我们可以实现用51单片机控制数码管显示0-9的数字。
单片机实验3 数码管控制实验-动态显示

;实验名称:数码管动态显示
;功能:4位数码管循环显示“0123”“4567”“89AB”“CDEF”,间隔0.5S。
;编写人:陈建泽
;编写时间:2010年11月2日
/**********************程序代码************************/
D1MS: MOV R2,#250 ;250*(1+1+2)=1000us=1ms
L1:NOP
NOP
DJNZ R2,L1
RET
/*****************中断服务子程序*****************/
T0_INT:MOV TH0,#(65536-50000)/256
MOV TL0,#(65536-50000)MOD 256
MOV A,R4
CJNE A,#16,L3
AJMP MAIN
L3:MOV R5,A
AJMP L1
DIS:MOV P2,R6;用A作为中间寄存器,因后面要循环显示
MOV A,R5
ACALL SQR ;查表
MOV P0,A
ACALL D1MS ;1ms
INC R5
MOV A,R6
RL A;指向下一位
MOV R6,A
RET;子程序返回
TAB: DB 0C0H,0F9H,0A4H,0B0H ;共阳极字型码表0、1、2、3
DB 99H, 92H, 82H, 0F8H;共阳极字型码表4、5、6、7
DB 80H, 90H, 88H, 83H;共阳极字型码表8、9、A、B
DB 0C6H,0A1H,86H, 8EH;共阳极字型码表C、D、E、F
单片机实验报告——LED数码管显示实验

单⽚机实验报告——LED数码管显⽰实验(此⽂档为word格式,下载后您可任意编辑修改!)《微机实验》报告LED数码管显⽰实验指导教师:专业班级:姓名:学号:联系⽅式:⼀、任务要求实验⽬的:理解LED七段数码管的显⽰控制原理,掌握数码管与MCU的接⼝技术,能够编写数码管显⽰驱动程序;熟悉接⼝程序调试⽅法。
实验内容:利⽤C8051F310单⽚机控制数码管显⽰器基本要求:利⽤末位数码管循环显⽰数字0-9,显⽰切换频率为1Hz。
提⾼要求:在4位数码管显⽰器上依次显⽰当天时期和时间,显⽰格式如下:yyyy (年份)mm.dd(⽉份.⽇).asm;Description: 利⽤末位数码管循环显⽰数字0-9,显⽰切换频率为1Hz。
;Designed by:gxy;Date:2012117;*********************************************************$include (C8051F310.inc)ORG 0000H ;复位⼊⼝AJMP MAINORG 000BH ;定时器0中断⼊⼝AJMP TIME0MAIN: ACALL Init_Device ;初始化配置MOV P0,#00H ;位选中第⼀个数码管MOV R0,#00H ;偏移指针初值CLR PSW.1 ;标志位清零SETB EA ;允许总中断SETB ET0 ;允许定时器0中断MOV TMOD,#01H ;定时器0选⼯作⽅式1MOV TH0,#06HMOV TL0,#0C6H ;赋初值,定时1sLOOP: MOV A,R0ADD A,#0BH ;加偏移量MOVC +PC ;查表取,段码MOV P1,A ;段码给P1显⽰SETB TR0 ;开定时LOOP1: JNB PSW.1,LOOP1 ;等待中断CLR PSW.1INC R0 ;偏移指针加⼀CJNE R0,#0AH,LOOP3MOV R0,#00H ;偏移指针满10清零AJMP LOOP ;返回DB 0FCH,60H,0DAH,0F2H,66H ;段码数据表:0、1、2、3、4 DB 0B6H,0BEH,0E0H,0FEH,0F6H; 5、6、7、8、9 ;***************************************************************** ; 定时器0中断;***************************************************************** TIME0: SETB PSW.1 ;标志位置⼀MOV TH0,#06H ;定时器重新赋值MOV TL0,#0C6HLOOP3: CLR TR0 ;关定时RETI;***************************************************************** ;初始化配置;***************************************************************** PCA_Init:anl PCA0MD, #0BFhmov PCA0MD, #000hretTimer_Init:mov TMOD, #001hmov CKCON, #002hretPort_IO_Init:; P0.0 - Unassigned, Open-Drain, Digital ; P0.1 - Unassigned, Open-Drain, Digital ; P0.2 - Unassigned, Open-Drain, Digital ; P0.3 - Unassigned, Open-Drain, Digital ; P0.4 -Unassigned, Open-Drain, Digital ; P0.5 - Unassigned, Open-Drain, Digital ; P0.6 - Unassigned, Open-Drain, Digital ; P0.7 - Unassigned, Open-Drain, Digital ; P1.0 - Unassigned, Open-Drain, Digital ; P1.1 - Unassigned, Open-Drain, Digital ; P1.2 - Unassigned, Open-Drain, Digital ; P1.3 - Unassigned, Open-Drain, Digital ; P1.4 - Unassigned, Open-Drain, Digital ; P1.5 - Unassigned, Open-Drain, Digital ; P1.6 - Unassigned, Open-Drain, Digital ; P1.7 - Unassigned, Open-Drain, Digital ; P2.0 - Unassigned, Open-Drain, Digital ; P2.1 -Unassigned, Open-Drain, Digital ; P2.2 - Unassigned, Open-Drain, Digital ; P2.3 - Unassigned, Open-Drain, Digital mov XBR1, #040hretInterrupts_Init:mov IE, #002hretInit_Device:lcall PCA_Initlcall Timer_Initlcall Port_IO_Initlcall Interrupts_Initretend提⾼部分:;*********************************************************;Filename: shumaguan2.asm;Description:在4位数码管显⽰器上依次显⽰当天时期和时间,显⽰格式如下:; 2012 (年份); 12.07(⽉份.⽇); 12.34(⼩时.分钟);Designed by:gxy;Date:2012117;*********************************************************$include (C8051F310.inc)ORG 0000HAJMP MAINORG 000BHAJMP TIME0MAIN: ACALL Init_DeviceMOV R0,#00H ;⽤于位选MOV R1,#00H ;⽤于段选MOV R2,#22H ;置偏移量,⽤于控制模式MOV R4,#8MOV R5,#250CLR PSW.1 ;标志位清零SETB EA ;允许总中断SETB ET0 ;允许定时器0中断MOV TMOD,#01H ;定时器0选⼯作⽅式1MOV TH0,#0FFHMOV TL0,#0C0H ;定时器赋初值1msBACK: MOV P0,R0 ;位选MOV A,R0ADD A,#40H ;选下⼀位MOV R0,AMOV A,R1ADD A,R2 ;加偏移量MOVC +PC ;查表取段码MOV P1,A ;段码给P1显⽰LOOP: SETB TR0 ;开定时HERE: JNB PSW.1,HERE ;等待中断CLR PSW.1DJNZ R5,BACKMOV R5,#250DJNZ R4,BACKMOV R4,#8 ;循环2000次(2s)MOV A,R2ADD A,#04H ;偏移量加04H,到下⼀模式段码初值地址 MOV R2,ACJNE R2,#2EH,LOOP2MOV R2,#22H ;加三次后偏移量回到初值LOOP2: AJMP BACK ;返回进⼊下⼀模式;段码数据表:DB 0DAH,60H,0FCH,0DAH ; 2102DB 0E0H,0FCH,61H,60H ; 701. 1DB 66H,0F2H,0DBH,60H ; 432. 1;*****************************************************************; 定时器0中断;***************************************************************** TIME0: MOV TH0,#0FFH MOV TL0,#0C0HCLR TR0SETB PSW.1INC R1 ;偏移指针加⼀CJNE R1,#04H,LOOPMOV R1,#00H ;偏移指针满04H清零RETI;***************************************************************** ; 初始化配置;***************************************************************** PCA_Init:anl PCA0MD, #0BFhmov PCA0MD, #000hretTimer_Init:mov TMOD, #001hmov CKCON, #002hretPort_IO_Init:; P0.0 - Unassigned, Open-Drain, Digital; P0.1 - Unassigned, Open-Drain, Digital; P0.2 - Unassigned, Open-Drain, Digital; P0.3 - Unassigned, Open-Drain, Digital; P0.4 - Unassigned, Open-Drain, Digital; P0.5 - Unassigned, Open-Drain, Digital; P0.6 - Unassigned, Open-Drain, Digital; P0.7 - Unassigned, Open-Drain, Digital; P1.0 - Unassigned, Open-Drain, Digital; P1.1 - Unassigned, Open-Drain, Digital; P1.2 - Unassigned, Open-Drain, Digital; P1.3 - Unassigned, Open-Drain, Digital; P1.4 - Unassigned, Open-Drain, Digital; P1.5 - Unassigned, Open-Drain, Digital; P1.6 - Unassigned, Open-Drain, Digital; P1.7 - Unassigned, Open-Drain, Digital; P2.0 - Unassigned, Open-Drain, Digital; P2.1 - Unassigned, Open-Drain, Digital; P2.2 - Unassigned, Open-Drain, Digital; P2.3 - Unassigned, Open-Drain, Digitalmov XBR1, #040hretInterrupts_Init:mov IE, #002hretInit_Device:lcall PCA_Initlcall Timer_Initlcall Port_IO_Initlcall Interrupts_Initretend六、程序测试⽅法与结果、软件性能分析软件调试总体截图:基础部分:软件运⾏时,我们发现P0端⼝为00H,P1端⼝以依次为FCH、60H、DAH、F2H、66H、B6H、BEH、E0H、FEH、F6H。
51单片机第四节数码管

51单⽚机第四节数码管本笔记默认学习者已拥有:1.Keil5和stc 烧写⼯具 等各种软件、驱动、环境;2.有⼀个属于⾃⼰的 51单⽚机开发板及相关零件 ;3.认识C 语⾔的语法;本⼈使⽤的51开发板为 郭天祥C51 TX-1C 增强版开发板 ;本笔记根据B 站up 主:江科⼤⾃化协的教学视频 整理得到ヾ(•ω•)4-1 静态数码管显⽰上图为TX-1C 的 数码管及LED 模块 原理图138译码器和74HC245 都是⽤来控制 数码管显⽰ 的;单数码管1.上图为 ⼀位数码管,数码管有两种连接⽅式(对应 右边上下两幅图);2.右上图的原理图,8个LED的阴极都连在⼀个引脚上,称为共阴极连接;3.右下图的原理图,8个LED的阳极都连在⼀个引脚上,称为共阳极连接;TX-1C 开发板的连接⽅式是 共阴极连接;4.左下⾓的 左边图⽚ ,定义了8个LED的名称;5.左下⾓的 右边图⽚ ,定义了引脚的名称,与右图的引脚名称⼀⼀对应假设数码管连接⽅式为 共阳极连接,观察可以发现,数码管中的 LED 的引脚引出,使⽤的是就近原则;假设数码管连接⽅式为 共阴极连接,如果上数码管显⽰ 数字6 ?1.要让数码管显⽰ 数字6,让要 LED-A、C、D、E、F、G亮起;2.共阴极的公共端 要接地(给数据‘0’,或者是低电平);3.阳极(称为位选端)根据LED的亮灭需求给 数据0或1(1亮、0灭) ,称为 段码(阳码) (1011 1110 即为段码);如果 共阳极连接,共阳极端 要接到 VCC (⾼电平),阴极给 数据0或1 (1灭,0亮),称为 段码(阴码),和共阴极正好是相反关系;共阳极连接→共阳极端接VCC 并选中→阴极(位选端)传递(阴码)段码(1亮、0灭)→数码管显⽰共阴极连接→共阴极端接GND 并选中→阳极(位选端)传递(阳码)段码(1灭、0亮)→数码管显⽰四位⼀体数码管开发板上即为 四位⼀体的数码管,且有两个,正好组成了 ⼋位数码管;⽽TX-1C 上 包含的是六位数码管,⽽⾮⼋位;1.四位数码管 也有 两种连接⽅式,即 共阴极连接 和 共阳极连接 ;{Processing math: 100%2.四位数码管,(每位的公共端 单独引出来,位选端全部连在⼀起(所有A段连在⼀起、所有B段连在⼀起……),总共有12个引脚;假设数码管连接⽅式为共阴极连接,如何在第三位显⽰数字1 ?1.给第三位的公共端 赋值 0(低电平),给其他位的公共端 赋值 1(⾼电平);这样等同于 其他位的公共端(负极)接到了正极上,⽆论如何都亮不了;只有第三位能亮;2.这样给 LED-B、C 的位选端 赋值 1,其他 位选端 赋值0共阳极连接即为公共端赋值 1(⾼电平)亮,其他以此类推;3.发现这样⼀个现象,数码管⽆法在同⼀时间显⽰多个数字,其在同⼀时刻下只能有⼀个显⽰,只有⼀个数码管能被点亮,即使有多个被选中的数码管,显⽰的数字也是相同的;这种共⽤引脚的现象,是为了减少控制数码管IO⼝;(四位数码管有32个LED,如果都采⽤共阴极连接的⽅式,也要32+1(公共端)=33个引脚;)(采⽤这种链接,就只需要12个引脚即可控制四位数码管;)如何让数码管多位显⽰不同数字(动态数码管显⽰)?1.利⽤ ⼈眼视觉的暂留 和 数码管显⽰的余辉 的原理先让第⼀位数码管显⽰1,然后很快地让第⼆位数码管显⽰2,再很快地让第三位数码管显⽰3,让它不断地扫描,重复显⽰1、2、3的过程,这样三个数字就“同时”显⽰了;原理分析138译码器1.观察到 原理图右图 与数码管有关的,有138译码器(74LS138)和74HC245两枚芯⽚;TX-1C的原理图为左图,也有两个74HC573芯⽚与数码管有关;芯⽚名称与功耗、电压、说明符号有关,具体内容不做分析;2.如图,数码管连接⽅式为 共阴极连接,这样传输数据,就能让第三位显⽰ 数字1 了;3.⽽上⾯的 LED1 ~ 8,其实接在了138译码器的输出端,138译码器正好可以实现让LED1 ~ 8输出 0或1;LED1 ~ 8 对应了 TX-1C 六位数码管的SEG DS 1 ~ 6;4.138译码器可将LED 1 ~ 8的⼋个端⼝ 转化为 由 3个端⼝ (P22、P23、P24)控制,⽽G1、G2A、G2B端⼝ 被 称为 使能端;使能端相当于⼀种开关,如果电平有效,它就可以⼯作;如果电平⽆效,它就不⼯作;观察原理图发现,使能端是已经接好 VCC 和 GND 的,也就是说,其上电其实就会⼯作TX-1C的74HC573也是同理,但其并未压缩控制端⼝的数量;5.138译码器也叫“38线译码器”,是由3个线到8个线,其中C是⾼位、A是低位,CBA组成的数符合8进制,控制着Y0 ~ Y7 这8个端⼝;6.所以,138译码器的作⽤就是⽤来选中某⼀位数码管的74HC2451.74HC245是⼀种 双向数据缓冲器,VDD、GND都可视为电源,OE为使能(其 接地 就⼯作);2.DIR(direction),是⽅向的意思,它接到了VCC(⾼电平)上,将数据从左边输出到右边,从右边将数据读取回左边;DIR若接到低电平上,会将数据从右边输出到左边,从左边将数据读取回右边;3.单⽚机的⾼电平 驱动能⼒有限,其输出的最⼤电流不能太⼤;其低电平 驱动能⼒强;因此,LED模块才采⽤了低电平点亮的模式;4.如果⽤⾼电平 直接点亮 数码管,电流会很⼩,灯会很暗;所以其加⼀个缓冲器,缓冲器可以提⾼ 其驱动能⼒,如果直接将 数据 输出 给 数码管,数据就会被视为 驱动数据;现在增加了缓冲器,数据 就变成了 控制信号,控制信号 只需要很微弱,缓冲器 就可以接收到,缓冲器再通过⾃⼰接到的电源,输出 数据 到引脚上,这样控制的电流只需要⾮常⼩,就能驱动数码管 以⽐较亮的形式显⽰;2电容 是⽤来 稳定电源的,叫电源滤波;6.图右有 ⼀ 排阻,阻值为100R(即为100Ω),作⽤为 限流电阻 ,防⽌数码管的电流过⼤;TX-1C既没有电容,也没有排阻;原理总结1.⽤ 138译码器 使 数码管 的某⼀位 被选中;2.再给P0⼝⼀个 段码数据;TX-1C虽然⽤P0⼝控制段码输⼊,但也⽤P0⼝控制位选;需要先⽤ P2.6⼝和P2.7⼝控制输⼊数据是段码还是位选;P2.6⼝控制段码的输⼊;P2.7⼝控制位选的输⼊;例,给P2.6 数据1 (⾼电压)、给P2.7 数据 0 (低电压),就可以确定现在给数据是段码;1.由TX-1C的原理图可知,数码管内 LED灯 与 P0端⼝ 的顺序关系:(1)LED的名称定义是通⽤⽆疑的;(2)数码管本⾝的引脚名称不重要,重要的是 LED与哪个 P0 的 引脚 相连;2.由TX-1C的原理图可知, P0.0引脚 控制 数码管的最左位,P0.5引脚控制 数码管的最右位,剩余引脚是没有控制 数码管 位选 的作⽤的,哪个P0 的 引脚 控制 六位数码管的 哪位 很重要;代码实现静态数码管显⽰(让数码管第三位显⽰3).c#include<reg51.h>sbit D=P2^6; //段码⼝sbit W=P2^7; //位选⼝void main(){D=0;W=1;P0=0xFB;//1111 1011W=0;D=1;P0=0x4F;//0100 1111while(1);}下⾯写出了⼀个通⽤函数,可以让数码管在 第⼏个位置 显⽰ 哪个数#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;void NixieTube(uchar wei,uchar duan){ //NixieTube是数码管的英⽂uchar WEI,DUAN; //(Nixie是⼥⽔妖的意思)D=0;W=1;switch(wei){ //位选部分case 1:WEI=0xFE; break;case 2:WEI=0xFD; break;case 3:WEI=0xFB; break;case 4:WEI=0xF7; break;case 5:WEI=0xEF; break;case 6:WEI=0xDF; break;}P0=WEI;W=0;D=1;switch(duan){ //段码部分case 0:DUAN=0x3F; break;case 1:DUAN=0x06; break;case 2:DUAN=0x5B; break;case 3:DUAN=0x4F; break;case 4:DUAN=0x66; break;case 5:DUAN=0x6D; break;case 6:DUAN=0x7D; break;case 7:DUAN=0x07; break;case 8:DUAN=0x7F; break;case 9:DUAN=0x6F; break;case 10:DUAN=0x77; break; //Acase 11:DUAN=0x7F; break; //Bcase 12:DUAN=0x39; break; //Ccase 13:DUAN=0x3F; break; //Dcase 14:DUAN=0x79; break; //Ecase 15:DUAN=0x71; break; //Fcase 16:DUAN=0x80; break; //.}P0=DUAN;}void main(){NixieTube(3,3);while(1);}运⾏结果如下:4-2 动态数码管显⽰1.如果只是单纯让其显⽰完⼀个再显⽰⼀个,代码如下:#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;uchar Nixiewei[]={0,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF};uchar Nixiecode[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71,0x80};//将两个switch改进为数组void NixieTube(uchar wei,uchar duan){D=0;W=1;P0=Nixiewei[wei];W=0;D=1;P0=Nixiecode[duan];}void main(){while(1){NixieTube(1,1);NixieTube(2,2);NixieTube(3,3);}}运⾏结果如下:2.这是⼀个数码管的常见问题,称为 数码管的消影 ;位选-->段选-->位选-->段选-->位选-->......在这⼀位的段选(输⼊段码)结束,进⾏下⼀位的位选时,很短的时间内,上⼀位的数据会串到下⼀位数据⾥⾯去;所以我们在段选和位选之间,增加⼀个 P0 清零的操作;动态数码管显⽰(数码管同时显⽰123).c#include<reg51.h>#define uchar unsigned charsbit D=P2^6;sbit W=P2^7;uchar Nixiewei[]={0,0xFE,0xFD,0xFB,0xF7,0xEF,0xDF};uchar Nixiecode[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7F,0x39,0x3F,0x79,0x71,0x80};void Delayms(unsigned int x){unsigned int j;for(;x>0;x--) for(j=110;j>0;j--);}void NixieTube(uchar wei,uchar duan){D=0;W=1;P0=Nixiewei[wei];W=0;D=1;P0=Nixiecode[duan];Delayms(1); //让数码管稳定显⽰,⽴刻清零会让数码管显⽰较暗P0=0; //清零操作}void main(){while(1){NixieTube(1,1);NixieTube(2,2);NixieTube(3,3);}}运⾏结果如下:相关知识1.在运⾏某些代码时,TX-1C的LED点阵模块会乱闪2.将左下⾓ DOT-OE旁的跳线帽 拔下来即可 断开LED点阵模块,3.拔下来的跳线帽不要乱丢,可以 只插⼀个脚放在原处,也可以妥善保管在其他地⽅上图即为拔下来的跳线帽1.此元件为电容;2.104的数量规则与 第⼆节 所讲的电容是相同的,其单位是pF1000pF=1nF, 1000nF=1uF, 1000uF=1000mF, 1000mF=1FF 是⼀个很⼤的单位,正常电容都是uF、nF级别的;超级电容能达到1 ~ 2 F,其⼀般作为备⽤电池;3.TX-1C的原理图上,电容的量都是直接⽤单位标记好的。
第3节-数码管驱动(项目3)

}
void main (void)
{
unsigned char i;
ห้องสมุดไป่ตู้
// 变量 i 作为数组的0~9编号
P2 = 0;//P2.0 = 0,通过反相器反相后,加在数码管公共端上的电压
while (1)
{ P0 = seven_seg[i]; delay(50000); i++;
//输出0~9到共阳七段显示器 //调用时间延迟函数delay()
在程序设计时,库函数可以很方便的被用户程序调用。 例如,利用库函数实现的跑马灯程序为
/************************/
#include<reg51.h> #include<intrins.h>//库函数的头文件
void delay(unsigned int x)
while (1)
{ …….. delay(1000); …… }
}
//调用时间延迟函数,实参为1000
三、有返回值函数
如果函数中要返回数值时,必须使用return命令。 并且返回值的类型必须与函数的类型一致。如把8位8421二 进制码转换成8421BCD码函数。
unsigned char DEC_BCD_conv(unsigned char x)
if(i == 10)
i = 0;
}
}
当程序中使用常量数据时,如共阳数码管数字显示编 码、液晶显示器的汉字编码等,一般希望这些数据当程序 下载到单片机时存放在单片机的ROM区,对此类数据声明前 面需要加上关键字code或const,如数码管的显示编码。
利用数码管也可以显示日期和时间,但是在本项目中, 数字变化时间是由延时函数实现的,由于C语言程序进过编 译后的生成的汇编程序与直接采用汇编语言编写的程序
单片机串口连接两个74LS164驱动两个LED数码管学习资料

单片机串口连接两个74L S164驱动两个L E D数码管单片机应用设计课题:串口连接两个74LS164驱动2个LED数码管显示班级学号: 14110501xx 姓名: xx1设计要求1.1 设计内容设晶体为12MHz,将拨码开关数据串行输入到74LS164,并行输出到2个LED数码管进行相应的数码显示。
设计包括:系统设计分析、系统原理图设计、程序流程图设计、源程序设计、系统调试与仿真及调试结果分析、对本课程学习的感想与收获、对老师的意见与建议、期望成绩等。
1.2 学习目的该作业具有较强的实用性,许多同学已经认识到自己完全有能力设计一个实用的单片机应用系统,对单片机设计由感兴趣已经变为爱好了,为后面的实际应用系统设计奠定了较好的基础。
2 系统设计分析2.1 单片机最小系统+串口+74LS164+LED数码管单片机的最小系统是单片机能够工作的最小硬件组合,对于8051系列单片机,其电路的最小系统大致相同,主要包括电源、晶体振荡电路、复位电路等。
2.1.1 串口数据通信方式包括并行通信和串行通信两种。
并行通信就是多条数据线上同时传送,其优点:速度快,只适于近距离通信。
串行通信就是数据以为以为的顺序传送,其优点:线路简单,成本低,适合远距离通信。
串行通信方式包括:异步串行通信和同步串行通信。
异步方式,数据传送不连续,时间间隔任意。
同步方式,发送与接收同步。
数据传送方式:单工、半双工、全双工、多工。
常见的串行通讯有:RS-232、RS-485、CAN总线等。
串行口控制寄存器包括:串行口控制寄存器SCON(控制工作方式)、电源控制寄存器PCON(控制波特率)。
SM0、SM1选择工作方式,SM2用于多机通信,REN允许接收控制位,TB8/RB8发送/接收数据D8位,TI/RI为发送/接收中断标志位。
2.1.2 74LS164串行口工作于方式0,发送数据时,是把串行端口设置成“串入并出的”输出口。
将它设置为“串入并出”输出口时,需外接1片“串入并出”同步移位芯片74LS164或CD4094,本次设计,用74LS164。