不等式(B卷 滚动提升检测)3——新高考数学复习专题测试附答案解析

合集下载

新高考数学一轮复习练习-一元二次不等式解法及运用(提升)(解析版)

新高考数学一轮复习练习-一元二次不等式解法及运用(提升)(解析版)

2.1 一元二次不等式解法及运用(提升)一、单选题1.(2021·广东珠海市·高三二模)已知,满足,,,则( )A .B .C .D .【答案】C【解析】因,,则a>0,b<0,,A 不正确;,则,B 不正确;又,即,则,,C 正确;由得,D 不正确.故选:C2.(2021·天津高三一模)已知,则( )A .B .C .D .【答案】A 【解析】(由函数为增函数)对于A ,,故正确;对于B ,取,,故错误;对于C ,取,显然不成立,故错误;对于D ,假设成立,则,即,可得,而时,不能一定有,故不成立.,a b ∈R 0ab <0a b +>a b >11a b<0b a a b+>22a b >a b<0ab <a b >110,0a b><0,0b a a b <<0b aa b +<0a b +>0a b >->22()a b >-22a b >0a b >->||a b >0,0,lnlg y xx y x y >>>11x y>sin sin y x>y x x y<10x y yxe >lnlg y x x y> ln ln lg lg y x x y ∴->-ln lg ln lg y y x x∴+>+0x y ∴>>ln lg y x x =+011x x y y>>⇒>,2y x ππ==sin 0sin 1y x =<=2,1y x ==10x y yxe >ln ln10x y yxe >ln10y xx y>22ln10y x >0y x >>22ln10y x >故选:A3.(2021·全国高三专题)若关于的不等式()的解集为空集,则的最小值为( )AB .C .D.【答案】D【解析】关于的不等式()的解集为空集所以,,得,∴,令,则,∴,当且仅当时,等号成立,即的最小值为4,故选:D.4.(2020·上海市建平中学)已知关于的一元二次不等式的解集中有且仅有3个整数,则所有符合条件的整数的值之和是( )A .13B .18C .21D .26【答案】C 【解析】x 210x bx c a++<1ab >1(2)2(1)1a b c T ab ab +=+--24x 210x bx c a++<1ab >10a >240c b a -≤24ab c ≥221(2)122(1)12(1)a b c ab a b T ab ab ab +++=+≥---1ab m -=0m >212(1)(1)22422m m m T m m++++≥=++≥2m =1(2)2(1)1a b c T ab ab +=+--设,其图象是开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式的解集中有且仅有3个整数,则,即,解得5<a ⩽8,又a ∈Z ,∴a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.故选C.5.(2020·全国高三)设是关于的一元二次方程的两个实根,则的最小值是( )A .B .18C .8D .-6【答案】C【解析】因为是关于的一元二次方程的两个实根所以由韦达定理得 ,且所以2()6f x x x a =-+260x x a -+≤()()2010f f ⎧⎪⎨>⎪⎩…2226201610a a ⎧-⨯+⎨-⨯+>⎩…,a b x 2260x mx m -++=22(1)(1)a b -+-494-,a b x 2260x mx m -++=26a b m ab m +=⎧⎨=+⎩()2460m m ∆=--≥()()22222224(1)(1)610a b ab b y m a b a m =+-=-+--++=--2349444m ⎛⎫=-- ⎪⎝⎭且或由二次函数的性质知,当时,函数取得最小值为即的最小值为故选C.6.(2021·山西太原市)设不等式x2-2ax+a+2≤0的解集为A,若A⊆[1,3],则实数a的取值范围是( )A.B.C.D.【答案】A【解析】设,则不等式的解集,①若,则,即,解得②若,则,∴综上,故实数的取值范围是故选A.7.(2021·全国高三专题练习)已知x∈(0,+∞)时,不等式9x-m·3x+m+1>0恒成立,则m的取值范围是()A.2-<m<2+B.m<2C.m<2+D.m≥2+【答案】C【解析】令t=3x(t>1),则由已知得函数f(t)=t2-mt+m+1的图象在t∈(1,+∞)上恒在x轴的上方,则对于方程f(t)=0,有或,3m≥2m≤-3m=2349444y m⎛⎫=--⎪⎝⎭822(1)(1)a b-+-8111,5⎛⎤- ⎥⎝⎦111,5⎛⎤⎥⎝⎦112,5⎛⎤⎥⎝⎦(]1,3-222f x x ax a=-++()2220x ax a-++≤[]13A⊆,A∅=24420a a=-+V()<220a a--<12a<<-A∅≠()()103013ffa∆≥⎧⎪≥⎪⎨≥⎪⎪<<⎩1125a≤≤1115a-<≤a111]5-(,()()2410m m∆=--+<()121110mf m m∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩解得,所以m <2+.故选:C8.(2021·全国高三专题练习)若不等式对于一切恒成立,则的最小值是( )A .0B .-2C .D .-3【答案】B【解析】,,由对勾函数性性质可知,当为减函数,当时,为增函数,故,即恒成立,,故的最小值为-2故选:B9.(2021·浙江高三专题练习)若不等式恒成立,则实数的取值范围是( )A .B .C .D .【答案】B【解析】不等式恒成立,即,即恒成立,即恒成立,所以,解得,所以实数的取值范围是,故选B.10.(2021·全国高三专题练习)当时,不等式恒成立,则的取值范围是( )A .B .C .D .【答案】A【解析】根据题意构造函数:,由于当时,不等式恒成立,即,解得,即 ,故选A.11.(2021·四川成都市·高三月考)给出下列命题:①且;②22m -<<+2m ≤-210x ax ++≥(]0,2x ∈a 52-(]0,2x ∈ 2110x ax x a x∴++≥⇔+≥-()0,1,x ∈()1f x x x =+()12x ,∈()1f x x x=+()()min 1112f x f ==+=2a -≤2a ≥-a ()2223122x axx a -+<a (0,1)-3(,)4+∞3(0,43(,)4-∞22231()22x axx a -+<222(3)11()()22x ax x a --+<222(3)x ax x a ->-+22(32)0x a x a +-+>22(32)40a a ∆=--<34a >a 3(,)4+∞()1,2x ∈240x mx ++<m 5m ≤-5m <-5m <5m ≥()()241,2f x x mx x =++∈,12x ∈(,)240x mx ++<()()1020f f ⎧≤⎪⎨≤⎪⎩45m m ≤-⎧⎨≤-⎩5m ≤-11x y x y -≠⇔-≠1y x -≠;③.其中真命题的个数为( )A .B .C .D .【答案】C【解析】对于①,且的逆否命题为:或,因为:或是真命题,所以原命题是真命题;对于②,由得,解得或,所以是假命题;对于③,由得,由得,即,因为, 即,所以是真命题.故选:C.12.(2021·全国高三专题练习)下列选项中,使成立的的取值范围是A .B .C .D .【答案】A【解析】故选A.13.(2020·湖北高三期中)已知,恒成立,则实数a 的取值范围为( )A .B .C .D .【答案】B【解析】由题意,函数,令,111x x <⇒>22330aba b ab a b>⇔>-012311x y x y -≠⇔-≠1y x -≠1x y -=1y x -=⇔1x y -=1x y -=1y x -=⇔1x y -=11x <10xx-<1x >0x <22a b ab >()0ab a b ->330ab a b>-()330ab a b ->()()220ab a b a ab b -++>22223024b a ab b a b⎛⎫⎛⎫++=++> ⎪ ⎪ ⎪⎝⎭⎝⎭()()3300ab a b ab a b ->⇔->22330aba b ab a b >⇔>-21x x x<<x (,1)-∞-(1,0)-(0,1)(1,)+∞22(1)(1)11,01{,{{ 1.11,0(1)(1)0x x x x x xxx x x x x x x x x+-<<<-<<∴∴∴<-><-++<> 或原不等式可化为,或2()41f x x x a =+++,(())0x R f f x ∀∈≥⎫+∞⎪⎪⎭[2,)+∞[1,)-+∞[3,)+∞2()41f x x x a =+++()2241(2)33t f x x x a x a a ==+++=+-+≥-又由恒成立,即对任意恒成立,当时,即时,,解得,此时无解;当时,即时,,解得,综上可得,实数a 的取值范围为.14.(2020·浙江宁波市·高三期中)已知,,对任意的实数均有,则的最小值为( )A .B .C .D .【答案】D【解析】因为,,对任意的实数均有,令,则有对任意的恒成立;若,则,原不等式可化为,因为,所以解不等式可得或,因,所以不满足原不等式对任意的恒成立;即不满足题意;若,当时,,则原不等式可化为,令,则是开口向上的二次函数,且零点为和,为使对任意的恒成立;只有;当时,;若,则由不等式可得或,解得或,因为,所以不能满足原不等式对任意的恒成立;若,则由不等式可得或,(())0x R f f x ∀∈≥()0f t ≥3t a ≥-32a -≤-1a ≤()min (2)30f t f a ==-≥3a ≥32a ->-1a >()2min (3)20f t f a a a =-=--≥2a ≥[2,)+∞a b R ∈x ()()()210x a x b x a +---≥2+a b 1581782a b R ∈x ()()()210x a x b x a +---≥t x =()()()210t a t b t a +---≥[)0,t ∈+∞0b ≤0t b -≥()()210t a t a +--≥()2221311024a a a a a ⎛⎫+--=++=++> ⎪⎝⎭()()210t a t a +--≥21t a ≥+t a ≤-21a a +>-[)0,t ∈+∞0b ≤0b >0a ≥0t a +≥()()210t b t a ---≥()()()21f t t b t a =---()f t t b =21t a =+()()210t b t a ---≥[)0,t ∈+∞21b a =+0a <0a ->21a b a -<<+()()()210t a t b t a +---≥()()210t a t b t a +≥⎧⎪⎨---≥⎪⎩()()210t a t b t a +≤⎧⎪⎨---≤⎪⎩21t a ≥+a t b -≤≤21b a <+[)0,t ∈+∞21b a a <-<+()()()210t a t b t a +---≥()()2010t b t a t a -≥⎧⎪⎨+--≥⎪⎩,解得或,因为,所以不满足原不等式对任意的恒成立;若,则由不等式可得或,解得或,因为,所以不满足原不等式对任意的恒成立;若,则不等式可化为,解得或,不满足原不等式对任意的恒成立;若,则不等式可化为,解得,不满足原不等式对任意的恒成立;综上,为使对任意的恒成立,只有,所以,令,则其是开口向上的二次函数,对称轴为,所以其在上单调递增,因此.故选:D.二、多选题15.(2021·烟台市教育局高三三模)已知,,且,则( )A .B .C .D .【答案】ACD【解析】对A ,由,,且可得,则,()()210t b t a t a -≤⎧⎪⎨+--≤⎪⎩21t a ≥+b t a ≤≤-21a a -<+[)0,t ∈+∞21a a b -<+<()()()210t a t b t a +---≥()()2010t a t b t a +≥⎧⎪⎨---≥⎪⎩()()210t a t b t a +≤⎧⎪⎨---≤⎪⎩t b ≥21a t a -≤≤+21a b +<[)0,t ∈+∞=-b a ()()()210t a t b t a +---≥()()2210t a t a +--≥21t a ≥+t a =-[)0,t ∈+∞21b a =+()()()210t a t b t a +---≥()()2210t a t a +--≥t a ≥-[)0,t ∈+∞()()()210t a t b t a +---≥[)0,t ∈+∞21a b a ≥⎧⎨=+⎩222111511522222216848a b a a a a a ⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪⎝⎭⎝⎭2211522248y a a a ⎛⎫=++=++ ⎪⎝⎭14a =-[)0,+∞2220022y a a =++≥++=0a >0b >1a b -=e e 1a b ->e e 1a b -<914a b-≤222log log 2a b -≥0a >0b >1a b -=0a b >>()()11ba abbb eee e e e -=-=--,,又,,即,故A 正确;对B ,令,则,故B 错误;对C ,,当且仅当时等号成立,故C正确;对D ,,当且仅当,即时等号成立,故D 正确.故选:ACD.16.(2021·重庆巴蜀中学高三月考)已知实数a ,b ,c ,则下列命题为真命题的是( )A .若,则B .若,则的最小值为8C .若,,则D .若,则【答案】ABC 【解析】选项A 中,则A 正确;B ,,当且仅当,即时,等号成立,则B 正确;选项C 中,因为,所以,则,所以,则C 正确;若,满足,而,D 不正确,故选:ABC .17.(2021·全国高三专题练习)下列四种说法中正确的有( )A .命题“,”的否定是“,”;B .若不等式的解集为,则不等式的解集为C .复数满足,在复平面对应的点为,则D .已知,,若是的充分不必要条件,则实数的取值范0b > 1b e ∴>11e ->()11be e ∴->e e 1a b ->2,1a b ==e e 211e a b =-->()9191910104b a a b a b a b a b ⎛⎫⎛⎫-=--=-+≤-= ⎪ ⎪⎝⎭⎝⎭9b a a b =()22222222112log log log log lo 2g 22log b a b b b b a b ⎛⎫+⎛⎫==++≥+= ⎪ ⎪ ⎪⎝⎭⎭-⎝=1b b=1b =0a b >>11a b>0,0,21a b a b >>+=21a b+0a b >>1ab =12a b a b<+0a b >>sin sin a b>110b a a b ab --=>214(2)48b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭4b a a b =11,24a b ==1,0ab a b =>>10>>>a b 11122,222a ab a a b a +=>=<⋅12a b a b <+,2a b ππ==0a b >>sin sin a b <x R ∀∈231x x >+x R ∃∈231x x <+210ax bx ++>{}13x x -<<23650ax bx ++<()(),15,-∞-+∞ z 21z i -=z (),x y ()2221x y +-=1:32p x ≤≤()21:100q x a x a a ⎛⎫-++≤> ⎪⎝⎭p q a围是【答案】BCD【解析】选项A :命题“,”的否定应该是“,”,故选项A 错误;选项B :因为不等式的解集为,所以方程的两个根为和3,且.由,解出.所以不等式可化为:,即,解得或.所以不等式的解集为,故选项B 正确;选项C :设,,所以满足.故选项C 正确;由得到:.当时,,所以有.由题意可得:,解得;当时,,[)10,3,3⎛⎤+∞ ⎥⎝⎦U x ∀∈R 231x x >+0x ∃∈R 02031xx ≤+210ax bx ++>{}13x x -<<210ax bx ++=1-0a <213b a a ⎧-=⎪⎪⎨⎪=-⎪⎩1323a b ⎧=-⎪⎪⎨⎪=⎪⎩23650ax bx ++<2450x x -++<2450x x -->1x <-5x >23650ax bx ++<()(),15,-∞-+∞ i z a b =+()2i 2i 1z a b -=+-==()2221x y +-=()21100x a x a a ⎛⎫-++≤> ⎪⎝⎭()10x a x a ⎛⎫--≤ ⎪⎝⎭1a ≥1a a>1:q x a a≤≤1123a a ⎧≤⎪⎨⎪≥⎩3a ≥01a <<1a a<所以有.由题意可得:,解得.因此,实数的取值范围是.故选项D 正确.故选:BCD.18.(2021·全国高三专题练习)已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值可以是( ).A .6B .7C .8D .9【答案】ABC【解析】设,其图像为开口向上,对称轴是的抛物线,如图所示.若关于的一元二次不等式的解集中有且仅有3个整数,因为对称轴为,则解得,.又,故可以为6,7,8.故选:ABC19.(2021·全国高三专题练习)若“”是“”的充分不必要条件,则实数可以是( )A .-8B .-5C .1D .41:q a x a≤≤1213a a⎧≤⎪⎪⎨⎪≥⎪⎩103a <≤a [)10,3,3⎛⎤+∞ ⎥⎝⎦U a Z ∈x 260x x a -+≤a 26y x x a =-+3x =x 260x x a -+≤3x =2226201610⎧-⨯+≤⎨-⨯+>⎩a a 58a <≤a Z ∈a 2340x x +-<()222330x k x k k -+++>k【答案】ACD【解析】,解得,即,解得或,由题意知,所以或,即.故选:ACD三、填空题20.(2020·奉新县第一中学高三月考)若一元二次方程的两个实根都大于,则的取值范围____【答案】或.【解析】由题意得应满足解得:或.故答案为:或.21.(2020·全国高三专题练习)要使关于的方程的一根比1大且另一根比1小,则的取值范围是__________.【答案】【解析】由题意,设,要使得关于的方程的一根笔译1大且另一根比1小,根据二次函数的图象与性质,则满足,即,即,解得,即实数的取值范围是.22.(2021·固原市第五中学高三期末)若对时,不等式恒成立,则实数的取值范围是____________..2340x x +-<41x -<<()222330x k x k k -+++>()[(3)]0x k x k --+>x k <3x k >+(4,1)-n (,)(3,)k k -∞⋃++∞1k ³34k +≤-(,7][1,)k ∈-∞-⋃+∞2(1)30mx m x -++=1-m 2m <-5m ≥+0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩2m <-5m ≥+2m <-5m ≥+x ()22120x a x a +-+-=a 21a -<<()22(1)2f x x a x a =+-+-x 22(1)20x a x a +-+-=()10f <220a a +-<(1)(2)0a a -+<21a -<<a 21a -<<(,1]x ∈-∞-21()2()12x xm m --<m【答案】【解析】不等式转化为,化简为,令,又,则,即恒成立,令,又,当时,取最小值,所以,恒成立,化简得,解不等式得.故答案为:23.(2021·全国高三专题练习)设关于x 的不等式,只有有限个整数解,且0是其中一个解,则全部不等式的整数解的和为____________【答案】【解析】设,其图象为抛物线,对于任意一个给定的值其抛物线只有在开口向下的情况下才能满足而整数解只有有限个,所以,因为0为其中一个解可以求得,又,所以或,则不等式为和,可分别求得和,因为位整数,所以和,所以全部不等式的整数解的和为.故答案为:.24.(2021·全国高三专题练习)设函数,若对于恒成立,则的取值范围是________.【答案】()2,3-()21212xxm m ⎛⎫--< ⎪⎝⎭2214x x m m +-<2211(22x x m m -<+12x t =(],1x ∈-∞-[)2,t ∈+∞22m m t t -<+2()f t t t =+[)2,t ∈+∞2t =()f t min ()(2)6f t f ==26m m -<260m m --<23m -<<()2,3-28(1)7160,()ax a x a a Z ++++≥∈10-28(1)716y ax a x a =++++a 0y ≥0a <167a ≥-a Z ∈2a =-1a =-22820x x --+≥290x -+≥22x --≤≤-33x -≤≤x 4,3,2,1x =----3,2,1,0,1,2,3x =---10-10-2()1,(0)f x mx mx m =--≠[1,3],()5x f x m ∈<-+m 6|007m m m ⎧⎫<<<⎨⎬⎩⎭或【解析】 要使上恒成立,则在上恒成立.令,当时,在上是增函数,,则当时,在上是减函数,,故:综上所述,的取值范围是.故答案为:.四、解答题25.(2021·全国高三专题练习)解关于x 的不等式ax 2-(a +1)x +1<0(a ∈R ).【答案】答案见解析【解析】若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,原不等式等价于,解得或x >1.若a >0,原不等式等价于.①当a =1时,,无解; [1,3],()5x f x m ∈<-+∴260mx mx m -+-<2136024m x m ⎛⎫-+-< ⎪⎝⎭[1,3]x ∈213()624g x m x m ⎛⎫=-+- ⎪⎝⎭[1,3]x ∈0m >[1,3]∴max ()(3)760g x g m ==-<∴67m <607m <<0m <()g x [1,3]∴max ()(1)60g x g m ==-<∴6m <0m <m 6|007m m m ⎧⎫<<<⎨⎬⎩⎭或6|007m m m ⎧⎫<<<⎨⎬⎩⎭或()110x x a ⎛⎫--> ⎪⎝⎭1x a <()110x x a ⎛⎫--< ⎪⎝⎭11a =()110x x a ⎛⎫--< ⎪⎝⎭②当a >1时,,解,得;③当0<a <1时, ,解,得;综上所述,当a <0时,解集为或; 当a =0时,解集为{x |x >1};当0<a <1时,解集为; 当a =1时,解集为∅;当a >1时,解集为.26.(2021·上海市)已知,其中.(1)当时,解关于的不等式;(2)若在时恒成立,求实数的取值范围.【答案】(1)见解析;(2).【解析】(1)∵,∴,∵,∴当时,的解集为当时,的解集为当时,的解集为(2)根据题意得,在时恒成立,即在时恒成立,即在时恒成立,即在时恒成立即11a <()110x x a ⎛⎫--< ⎪⎝⎭11x a <<11a >()110x x a ⎛⎫--< ⎪⎝⎭11x a <<1|x x a ⎧<⎨⎩}1x >1|1x x a ⎧⎫<<⎨⎬⎩⎭1|1x x a ⎧⎫<<⎨⎬⎩⎭()()21f x ax a x =-+()13g x a x =-+a R ∈0a <x ()0f x <()()f x g x <[]2,3x ∈a 6a ≤()()21f x ax a x =-+()()21010ax a x ax a x -+<⇔--<0a <01a >>-()0f x <()1,0,a a ⎛⎫-∞+∞ +⎪⎝⎭ 1a =-()0f x <()(),00,-∞+∞ 1a <-()0f x <(),0,1a a ⎛⎫-∞+∞+⎪⎝⎭ ()2113ax a x a x -+<-+[]2,3x ∈()2140ax a x a -++<[]2,3x ∈()2114a x x x -+≤[]2,3x ∈21414111x a x x x x≤=-++-[]2,3x ∈min 1411a x x ⎛⎫ ⎪≤ ⎪ ⎪+-⎝⎭∵在,单调递增,∴,∴,∴实数的取值范围是.27.(2021·全国高三)解关于x 的不等式:.【答案】见解析【解析】将不等式变形为.当a <0或时,有a < a 2,所以不等式的解集为或;当a =0或时,a = a 2=0,所以不等式的解集为且;当0< a <1时,有a > a 2,所以不等式的解集为或;28.(2021·全国高三专题练习)解关于的不等式:.【答案】答案不唯一,具体见解析【解析】原不等式移项得,即.∵,∴当时,当时,当时,综上所述:当时,解集为当时,解集为当时,解集为29.(2021·全国高三专题练习)解关于的不等式:【答案】当时,解集为 ;当 时,解集为或; 11y x x =+-[]2,3x ∈max 173133y =+-=14673a ≤=a 6a ≤()2230x a ax a -++>()2230x a a x a -++>()()20x a x a -->1a >{|x x a <2}x a >1a ={|,x x R ∈}x a ≠2{|x x a <}x a >x ()2220ax x ax a -≥-<()2220ax a x +--≥()()120x ax +-≥0a <()210x x a ⎛⎫+-≤ ⎪⎝⎭20a -<<21x a≤≤-2a =-1x =-2a <-21x a -≤≤20a -<<21x x a ⎧⎫≤≤-⎨⎬⎩⎭2a =-{}1x x =-2a <-21x x a ⎧⎫-≤≤⎨⎬⎩⎭x 22(2)20().ax a x a a R -++>∈0a ={}0x x <0a <<2{|x x a>}x a <当或;当 时,解集为;当 时,解集为; 当;当;【解析】由则 因为,故对分情况讨论当时,则,所以,不等式的解集为 当 时,由,不等式的解集或 当或当 时,不等式的解集为当 时,不等式的解集为 当当30.(2021·全国高三专题练习)解关于的不等式【答案】当时,不等式的解集是或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.当时,不等式的解集为.【解析】不等式可化为.①当时,原不等式可以化为,根据不等式的性质,这个不等式等价于.a >{|x x a >2}x a <0a <<2{|}x x a a <<a <2{|}x a x a <<a ={|x x ≠a =∅22(2)20().ax a x a a R -++>∈(2)()0ax x a -->a R ∈a 0a =20x ->0x <{}0x x <0a <<(2)()0ax x a -->2{|x x a >}x a <a >{|x x a >2}x a <0a <<2{|}x x a a<<a <2{|}x a x a <<a ={|x x ≠a =∅x 2(21)20()ax a x a R -++<∈0a <1{|x x a <2}x >0a ={|2}x x >102a <<1{|2}x x a <<12a =∅12a >1{|2}x x a<<(1)(2)0ax x --<0a >1(2)0a x x a ⎛⎫--< ⎪⎝⎭1(2)0x x a ⎛⎫--< ⎪⎝⎭因为方程的两个根分别是2,,所以当时,,则原不等式的解集是;当时,原不等式的解集是;当时,,则原不等式的解集是.②当时,原不等式为,解得,即原不等式的解集是.③当时,原不等式可以化为,根据不等式的性质,这个不等式等价于,由于,故原不等式的解集是或.综上所述,当时,不等式的解集是或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.当时,不等式的解集为.1(2)0x x a ⎛⎫--= ⎪⎝⎭1a 102a <<12a<1|2x x a ⎧⎫<<⎨⎬⎩⎭12a =∅12a >12a <1|2x x a ⎧⎫<<⎨⎬⎩⎭0a =(2)0x --<2x >{|2}x x >0a <1(2)0a x x a ⎛⎫--< ⎪⎝⎭1(2)0x x a ⎛⎫--> ⎪⎝⎭12a<1{|x x a<2}x >0a <1{|x x a <2}x >0a ={|2}x x >102a <<1{|2}x x a <<12a =∅12a >1{|2}x x a <<。

高考数学压轴专题新备战高考《不等式》专项训练解析附答案

高考数学压轴专题新备战高考《不等式》专项训练解析附答案

新高考数学《不等式》练习题一、选择题1.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值.【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.2.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D 【解析】 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0)∴目标函数z =5x +y 的最小值为z =5 故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B .|||a b b a < C .ln ln a b b a -<- D .|||a b b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1a b e b a e ==-,可排除A 、D 项;取11,49a b ==711812a b b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.4.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即2()320f x x bx '=+>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以2()32f x x bx '=++()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 2a c b B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.5.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解.【详解】 由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=,即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式213tan tan ββ≤=+当且仅当tan β=时等号成立, 因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.6.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.7.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -,目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.8.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( )A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.9.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n+的最小值.【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.10.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m +=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x nx m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形.故选:A . 【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++ 4n 4mm n⋅=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) ABCD.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.13.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.14.若实数x ,y 满足不等式组11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最小值是( )A .3B .32C .0D .3-【答案】D 【解析】 【分析】根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆, 由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距 把直线:2l y x =-向上平移到A 时,z 最小,此时由1y xy =⎧⎨=-⎩可得(1,1)A --此时3z =-, 故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.15.已知正数x ,y 满足144x y+=,则x y +的最小值是( ) A .9B .6C .94D .52【答案】C 【解析】 【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解.【详解】Q 正数x ,y 满足144x y+=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y xx yx y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号.故选:C 【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2-B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.17.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).AB.C.2D.【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b = 所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥= 当且仅当2a b a b-=-,即a b -=时等号成立 所以22a b a b +-的最下值为故答案选D考点:基本不等式.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A .12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】作出不等式121x y x +⎧⎨-⎩剟…表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-…,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.。

2022版新高考数学总复习真题专题--不等式及其解法(解析版)

2022版新高考数学总复习真题专题--不等式及其解法(解析版)

2022版新高考数学总复习--第七章 不等式§7.1 不等式及其解法— 五年高考 —考点1 不等式的概念和性质1.(多选题)(2020新高考Ⅰ,11,5分)已知a >0,b >0,且a +b =1,则 ( ) A.a 2+b 2≥12 B.2a -b>12C.log 2a +log 2b ≥-2D.√a +√b ≤√2 答案 ABD2.(2018天津文,5,5分)已知a =log 372,b =(14)13,c =lo g 1315,则a ,b ,c 的大小关系为 ( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b 答案 D3.(2017山东理,7,5分)若a >b >0,且ab =1,则下列不等式成立的是 ( )A .a +1b <b2a <log 2(a +b ) B .b2a <log 2(a +b )<a +1b C .a +1b<log 2(a +b )<b 2a D .log 2(a +b )<a +1b <b 2a 答案 B4.(2019北京理,14,5分)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 答案 ①130 ②15 以下为教师用书专用(1—3)1.(2019课标Ⅰ理,4,5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5-12√5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 ( )A.165 cmB.175 cmC.185 cmD.190 cm答案 B 本题主要考查学生的数学应用意识、抽象概括能力、运算求解能力,以及方程思想;考查的核心素养为数学抽象、数学建模以及数学运算.由人体特征可知,头顶至咽喉的长度应小于头顶至脖子下端的长度,故咽喉至肚脐的长度应小于260.618≈42 cm ,可得到此人的身高应小于26+42+26+420.618≈178 cm ;同理,肚脐至足底的长度应大于腿长105 cm ,故此人的身高应大于105+105×0.618≈170 cm ,结合选项可知,只有B 选项符合题意,故选B . 一题多解 用线段代替人,如图.已知a b =c d =√5-12≈0.618,c <26,b >105,c +d =a ,设此人身高为h cm ,则a +b =h ,由{b >105,a ≈0.618b⇒a >64.89,由{c <26,c ≈0.618d⇒d <42.07,所以c +d <26+42.07=68.07,即a <68.07, 由{a <68.07,a ≈0.618b⇒b <110.15, 整理可得64.89+105<a +b <68.07+110.15, 即169.89<h <178.22(单位:cm ).故选B .2.(2015浙江文,6,5分)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c.在不同的方案中,最低的总费用(单位:元)是 ( )A.ax +by +czB.az +by +cxC.ay +bz +cxD.ay +bx +cz答案 B 用粉刷费用最低的涂料粉刷面积最大的房间,且用粉刷费用最高的涂料粉刷面积最小的房间,这样所需总费用最低,最低总费用为(az +by +cx )元,故选B .3.(2015北京文,10,5分)2-3,312,log 25三个数中最大的数是 .答案 log 25 解析 ∵2-3=18<1,1<312<2,log 25 >2,∴这三个数中最大的数为log 25.考点2 不等式的解法1.(2020浙江,9,4分)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则 ( ) A.a <0 B.a >0 C.b <0 D.b >0 答案 C2.(2019天津文,10,5分)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为 . 答案 (-1,23)以下为教师用书专用(1—7)1.(2014大纲全国文,3,5分)不等式组{x (x +2)>0,|x |<1的解集为( )A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1}答案C由x(x+2)>0得x>0或x<-2;由|x|<1得-1<x<1,所以不等式组的解集为{x|0<x<1},故选C.2.(2014浙江文,7,5分)已知函数f(x)=x3+ax2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9答案C由0<f(-1)=f(-2)=f(-3)≤3,得0<-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c≤3,由-1+a-b+c=-8+4a-2b+c,得3a-b-7=0①,由-1+a-b+c=-27+9a-3b+c,得4a-b-13=0②,由①②,解得a=6,b=11,∴0<c-6≤3,即6<c≤9,故选C.3.(2013重庆,7,5分)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a= ()A.52B.72C.154D.152答案A解法一:∵不等式x2-2ax-8a2<0的解集为(x1,x2),∴x1,x2是方程x2-2ax-8a2=0的两根.由根与系数的关系知{x1+x2=2a,x1x2=-8a2,∴x2-x1=√(x1+x2)2-4x1x2=√(2a)2-4(-8a2)=15,又∵a>0,∴a=52,故选A.解法二:由x2-2ax-8a2<0,得(x+2a)(x-4a)<0,∵a>0,∴不等式x2-2ax-8a2<0的解集为(-2a,4a),又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1=-2a ,x 2=4a.∵x 2-x 1=15,∴4a -(-2a )=15, 解得a =52,故选A .4.(2015江苏,7,5分)不等式2x 2-x<4的解集为 .答案 {x |-1<x <2} 解析 不等式2x 2-x<4可转化为2x2-x<22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.5.(2015广东,11,5分)不等式-x 2-3x +4>0的解集为 .(用区间表示) 答案 (-4,1)解析 不等式-x 2-3x +4>0等价于x 2+3x -4<0,解得-4<x <1.6.(2014湖南文,13,5分)若关于x 的不等式|ax -2|<3的解集为x -53<x <13,则a = . 答案 -3解析 依题意,知a ≠0.|ax -2|<3⇔-3<ax -2<3⇔-1<ax <5,当a >0时,不等式的解集为(-1a ,5a ),从而有{5a=13,-1a=-53,此方程组无解. 当a <0时,不等式的解集为(5a ,-1a ),从而有{5a=-53,-1a=13,解得a =-3.7.(2013广东理,9,5分)不等式x 2+x -2<0的解集为 . 答案 {x |-2<x <1}解析 x 2+x -2=(x +2)(x -1)<0,解得-2<x <1,故不等式的解集是{x |-2<x <1}.— 三年模拟 —A 组 考点基础题组考点1 不等式的概念和性质1.(2019福建厦门一模,4)已知a >b >0,x =a +b e b,y =b +a e a,z =b +a e b,则 ( )A.x <z <yB.z <x <yC.z <y <xD.y <z <x 答案 A2.(2021上海杨浦一模,13)设a >b >0,c ≠0,则下列不等式恒成立的是 ( )A.1a >1bB.ac 2>bc 2C.ac >bcD.c a <cb答案 B3.(多选题)(2020海南三模,9)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是 ( ) A.1a >1b B.2 020a -b>1C.ln a >ln bD.a (c 2+1)>b (c 2+1) 答案 BD考点2 不等式的解法1.(2021湖北4月调研,5)下列对不等关系的判断,正确的是 ( ) A.若1a <1b ,则a 3>b 3B.若|a |a 2>|b |b2,则2a<2bC.若ln a 2>ln b 2,则2|a |>2|b |D.若tan a >tan b ,则a >b 答案 C2.(2020山东全真模拟,5)若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( )A.(-43,1) B.(-∞,1)∪(43,+∞) C.(-1,4) D.(-∞,-2)∪(1,+∞) 答案 A3.(2021河北石家庄一模,4)“a >2”是“a +2a >3”的 ( ) A.充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件 答案 C4.(多选题)(2021山东枣庄二模,9)已知a >0,b >0,a +b 2=1,则 ( )A.a +b <54 B.a -b >-1 C.√a ·b ≤12 D.√ab -2≥-√33 答案 BCDB 组 综合应用题组时间:20分钟 分值:35分一、单项选择题(每小题5分,共25分)1.(2020广东佛山质检一,2)已知x ,y ∈R ,且x >y >0,则 ( ) A.cos x -cos y >0 B.cos x +cos y >0 C.ln x -ln y >0 D.ln x +ln y >0 答案 C2.(2021广东揭阳4月联考,8)已知函数f (x )的定义域为R ,满足f (x )=f (2-x ),且对任意1≤x 1<x 2均有(x 1-x 2)·[f (x 1)-f (x 2)]<0成立,则满足f (2x -1)-f (3-x )≥0的x 的取值范围是 ( ) A.(-∞,-2)∪[23,+∞) B.(-∞,0)∪[43,+∞) C.[-2,23] D.[0,43] 答案 D3.(2020重庆巴蜀中学月考,7)已知实数a >b >0,则下列不等关系中错误的是 ( ) A.b a <b+4a+4 B.lga+b 2>lga+lgb2 C.a +1b >b +1a D.√a -√b >√a -b 答案 D4.(2020山东泰安一中月考,6)设m 为实数,若函数f (x )=x 2-mx +2在区间(-∞,2)上是减函数,对任意的x 1,x 2∈[1,m2+1],总有|f (x 1)-f (x 2)|≤4,则m 的取值范围为 ( ) A.[4,6] B.(4,6) C.(4,6] D.[4,6) 答案 A5.(2021浙江绍兴一模,10)已知a ,b ,c ∈R ,若关于x 的不等式0≤x +ax +b ≤cx -1的解集为[x 1,x 2]∪{x 3}(x 3>x 2>x 1>0),则 ( )A.不存在有序数组(a ,b ,c ),使得x 2-x 1=1B.存在唯一有序数组(a ,b ,c ),使得x 2-x 1=1C.有且只有两组有序数组(a ,b ,c ),使得x 2-x 1=1D.存在无穷多组有序数组(a ,b ,c ),使得x 2-x 1=1 答案 D二、多项选择题(共5分)6.(2021山东烟台一模,9)若0<a <b <1,c >1,则 ( )A.c a<c bB.ba c<ab cC.b -ac -a <bcD.log a c <log b c答案 ABC三、填空题(共5分)7.(2020江苏扬州江都大桥高级中学月考,15)已知1+2x+4x·a >0对一切x ∈(-∞,1]恒成立,则实数a 的取值范围是 . 答案 (-34,+∞)— 一年原创 —1.(2021 5·3原创题)下列命题中真命题的个数为 ( ) ①√e >32 ②ln π<23 ③ln 3<3e④20.1>log 32>lo g 13eA.0B.1C.2D.3 答案 D2.(2021 5·3原创题)已知函数f (x )={|x |-1,x ≤1,log 2x +2,x >1,则满足f (x )+f (x +1)>1的x 的取值范围为 ( )A.x <-2或x ≥0B.x >-2C.x <-2或x >0D.-2<x <0 答案 C3.(2021 5·3原创题)若关于x 的不等式3mx 2-2|x |+m ≥0的解集为R ,则实数m 的取值范围是 . 答案 [√33,+∞)4.(2021 5·3原创题)已知函数f (x )=2x+k ·2-x为奇函数,若关于x 的不等式f (4ax 2-2x-1)+f (1-2ax -2)<0只有一个整数解,则实数a 的取值范围为 . 答案 [1,2)5.(2021 5·3原创题)设函数f (x )=x 2-2mx +2m ,g (x )=mx -2m ,m ∈R . (1)当m >0时,对任意x 1,x 2∈[-2,0],恒有f (x 1)>-mg (x 2),求m 的取值范围;(2)若存在x 0∈R ,使得f (x 0)+g (x 0)<0与f (x 0)·g (x 0)>0同时成立,求m 的取值范围.解析 (1)f (x )=x 2-2mx +2m 图象的对称轴为直线x =m ,因为m >0,所以f (x )在[-2,0]上单调递减,所以在区间[-2,0]上, f (x )min =f (0)=2m. 因为-mg (x )=-m 2x +2m 2在[-2,0]上单调递减,所以在区间[-2,0]上,[-mg (x )]max =-mg (-2)=4m 2.由题意可知,在区间[-2,0]上, f (x )min >[-mg (x )]max ,所以2m >4m 2,又m >0,故0<m <12,故m 的取值范围为(0,12). (2)由f (x 0)+g (x 0)<0与f (x 0)·g (x 0)>0同时成立, 得f (x 0)<0且g (x 0)<0.①若m =0,则g (x )=0,不合题意,舍去. ②若m <0,则由g (x )<0可得x >2.原题可转化为在区间(2,+∞)上存在x 0,使得f (x 0)<0, 因为f (x )=x 2-2mx +2m 图象的对称轴为直线x =m (m <0),所以f (x )在(2,+∞)上单调递增, 所以f (2)<0,可得m >2,不合题意. ③若m >0,则由g (x )<0可得x <2.原题可转化为在区间(-∞,2)上存在x 0,使得f (x 0)<0. 当m ≥2时,由f (2)<0,解得m >2; 当0<m <2时,由f (m )<0, 解得m >2或m <0,不合题意.综上,m >2.故m 的取值范围是(2,+∞).解题思路 (1)分析函数f (x )和g (x )在区间[-2,0]上的单调性,将恒成立问题转化为最值问题,进而求解实数m 的取值范围.(2)问题转化为存在x 0,使得f (x 0)和g (x 0)同时小于0,由g (2)=0和函数g (x )的单调性,将问题转化为f (x )的零点问题.。

高考数学压轴专题最新备战高考《不等式》真题汇编及答案

高考数学压轴专题最新备战高考《不等式》真题汇编及答案

【最新】数学《不等式》期末复习知识要点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z的最小值为min314z=--=-,则1 222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.设变量,x y满足约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y=+的最大值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z=5x+y可化为y=-5x+z,即表示斜率为-5,截距为z的动直线,由图可知,当直线5z x y=+过点()1,0A时,纵截距最大,即z最大,由211x yx y+=⎧⎨+=⎩得A(1,0)∴目标函数z=5x+y的最小值为z=5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.若,,则()A.B.C.D.【答案】C【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都、两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一需要在A B件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.设x,y满足102024xx yx y-≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x=r,()1,b m y=-r,则满足a b⊥r r的实数m 的最小值为()A.125B.125-C.32D.32-【答案】B【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C.D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知,则A.n<m<1B.1<n<m C.1<m<n D.m<n<1【答案】B【解析】函数是减函数,所以故选B2.现将一个质点随即投入区域中,则质点落在区域内的概率是【答案】【解析】略3.不等式的解集为或,则实数的取值范围.【答案】【解析】略4.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】解:当直线过点(0,-1)时,最大,故选B5.一元二次不等式的解集为,则的最小值为.【答案】【解析】由已知得,解得,又,则。

【考点】一元二次不等式的解法及基本不等式的应用。

6.设,则函数的最小值是()A.2B.C.D.3【答案】C【解析】因为,所以,令,则,由于,故知函数是减函数,因此;故选C.【考点】1.换元法;2.函数的最值.7.若变量x,y满足约束条件,则的最小值为.【答案】-6【解析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由与的交点得到,∴,故答案为:﹣6.【考点】简单线性规划.8.已知的大小关系是()A.a<c<b B.b<a<e C.c<a<b D.a<b<c【答案】D【解析】因为.所以,故D正确.【考点】指数函数,对数函数.9.设,则,,的大小关系是__________________.(用“<”连接)【答案】【解析】令,则,∴函数为增函数,∴,∴,∴,∴,又,∴.【考点】利用导数研究函数的单调性、作差比较大小.10.对一切实数x,不等式恒成立,则实数a的取值范围是()A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)【答案】B【解析】对一切实数x,不等式恒成立,等价于对任意实数,恒成立,因此有或,解得,故选B.【考点】不等式恒成立,二次函数的性质.【名师点晴】本题考查不等式恒成立问题,由于题中含有绝对值符号,因此解题的关键是换元思想,设,这样原来对一切实数恒成立,转化为对所有非负实数,不等式恒成立,也即二次函数在区间上的最小值大于或等于0,最终问题又转化为讨论二次函数在给定区间的最值问题,解题中始终贯彻了转化与化归的数学思想.11.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.12.已知实数x、y满足,如果目标函数的最小值为-1,则实数m=().A.6B.5C.4D.3【答案】B【解析】将化为,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即变小,所以当直线过点时,取得最小值,即,解得;故选B.【考点】简单的线性规划.13.已知正数满足,则的最小值为()A.2B.0C.-2D.-4【答案】D【解析】作出题设约束条件表示的可行域,如图内部(含边界),作直线,直线的纵截距是,因此向上平移直线,当过点时,取得最小值,故选D.【考点】简单的线性规划问题.14.已知,满足约束条件若的最小值为,则()A.B.C.D.【答案】B【解析】先根据约束条件画出可行域,设,将最大值转化为轴上的截距,当直线经过点时,最小,由得:,代入直线,解得故答案选【考点】线性规划.15.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求实数的取值范围.【答案】(1)(2)【解析】(1)把要解的不等式等价转化为与之等价绝对值不等式,再求出此不等式的解集,即得所求(2)当时,即由此得讨论即可得到实数的取值范围试题解析:(1)当时,不等式为当时,不等式化为,不等式不成立;当时,不等式化为,解得;当时,不等式化为,不等式必成立.综上,不等式的解集为.(2)当时,即由此得当时,的最小值为7,所以的取值范围是【考点】绝对值不等式16.已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.【答案】(1);(2).【解析】(1)分析题意可知,不等式无解等价于恒成立,参变分离后即再进一步等价为,即可求解;(2)分析函数的单调性,可知其为单调递增函数,换元令,从而可将问题等价转化为二次方程根的分布,列得关于的不等式即可求解.试题解析:(1)∵,∴无解,等价于恒成立,即恒成立,即,求得,∴;(2)∵是单调增函数,∴,即,问题等价于关于的方程有两个不相等的解,令,则问题等价于关于的二次方程在上有两个不相等的实根,即,即,得.【考点】1.恒成立问题;2.二次方程的根的分布;3.转化的数学思想.17.选修4-5:不等式选讲已知函数(1)解不等式(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式,主要是分类讨论,分类标准由绝对值的定义确定;(2)不等式对任意的恒成立,即的最小值满足,由(1)的讨论,可得.试题解析:(1),当时,由,此时无解当时,由当时,由综上,所求不等式的解集为(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为,不等式,对任意的恒成立即,解得故的取值范围为.【考点】解绝对值不等式,不等式恒成立问题,函数的最值.18.若不等式组表示的平面区域为,不等式表示的平面区域为.现随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【答案】.【解析】不等式组表示的平面区域为,不等式表示的平面区域为.的面积为,其中满足的图形面积为,所以随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【方法点晴】本题属于几何概型的问题,通常在几何概型中,事件的概率计算公式为:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量.因此本题解题思路清晰,作出图形,计算相关三角形的面积,代入上述公式便得答案.19.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】试题解析:依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处取最大值是4,在处最小值是-2,所以,所以的最大值是4,故选B.【考点】简单线性规划20.选修4-5:不等式选讲已知命题“,”是真命题,记的最大值为,命题“,”是假命题,其中.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题解析:(Ⅰ)因为“,”是真命题,所以,恒成立,又,所以恒成立,所以,.又因为,“”成立当且仅当时.因此,,于是.(Ⅱ)由(Ⅰ)得,因为“,”是假命题,所以“,”是真命题.因为(),因此,,此时,即时.即,,由绝对值的意义可知,.【考点】不等式选讲21.已知实数满足不等式组则的最小值为______.【答案】【解析】由得,则当直线在y轴上的截距最大时取得最小值,所以当直线经过A(2,3)时,z最小,即当x=2,y=3,取得最小值-4.【考点】线性规划22.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】B【解析】如图,易知直线经过定点,又知道关于的不等式组,表示的平面区域是直角三角形区域,且,所以,解得,故选B.【考点】线性规划.23.已知函数,且关于的不等式的解集为R.(1)求实数的取值范围;(2)求的最小值.【答案】(1);(2)9【解析】(1)由绝对值的性质可知,由此解不等式即可求出结果;(2)由(1),根据基本不等式的性质,即可求出结果.试题解析:解:(1)依题意,(2)时,当且仅当,即时等号成立。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知变量满足:,则的最大值为()A.B.C.2D.4【答案】D【解析】由约束条件画出可行域,令,可知在点处取得最大值,所以的最大值为。

【考点】线性规划及指数函数的单调性。

2.若二元一次线性方程组无解,则实数的值是__________.【答案】-2【解析】二元一次线性方程组无解,则直线x+ay=3与ax+4y=6平行,则解得.【考点】二元一次方程组.3.若实数,满足,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出可行域,由图可知,可行域三个顶点分别为,将三个点的坐标分别代入目标函数得,所以目标函数的取值范围为,故选A.【考点】线性规划.4.(本题满分10分)选修4—5:不等式选讲设对于任意实数,不等式≥恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式:.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将不等式≥恒成立,转化为,用零点分段法,将转化为分段函数,再每一段分别求最值;第二问,结合第一问的结论,将m的值代入,利用零点分段法将绝对值不等式转化成不等式组,分别求解.试题解析:(1)设,则有当时有最小值8当时有最小值8当时有最小值8综上有最小值8所以(2)当取最大值时原不等式等价于:等价于:或等价于:或所以原不等式的解集为【考点】绝对值不等式的解法、恒成立问题.5.(本小题满分10分)选修4—5:不等式选讲设函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明详见解析.【解析】本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,先解不等式,再结合的解集为,从而得到a的值,再利用特殊值1将转化为,再利用基本不等式求函数的取值范围.试题解析:(1)当a=2时,不等式为,不等式的解集为;(2)即,解得,而解集是,,解得,所以所以.【考点】绝对值不等式的解法、基本不等式.6.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式,当时,;当时,;当时,;故取值范围为,故选C.【考点】1.简单的线性规划;2.向量的数量积.7.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.8.若是任意实数,且,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为函数在上是减函数,又,所以,故选D.【考点】不等式的性质.9.选修4-5:不等式选讲已知x,y为任意实数,有(1)若求的最小值;(2)求三个数中最大数的最小值.【答案】(1);(2).【解析】(1)利用消元法可得关于x的二次三项式,从而用配方法可求得最小值.(2)利用绝对值不等式可求最大值的最小值.试题解析:(1)解:当时,最小值为(2)设,则所以即中最大数的最小值为【考点】配方法,绝对值不等式,最值.10.若实数,满足不等式组.则的最大值是()A.10B.11C.13D.14【答案】D【解析】画出可行域如图:当时,作出目标函数线,平移目标函数线使之经过可行域,当目标函数线过点时纵截距最大同时也最大, 最大值为;当时,作出目标函数线,平移目标函数线使之经过可行域四边形但不包括边,当目标函数线经过点时纵截距最大同时也最大, 的最大值为.综上可得的最大值为14.【考点】简单的线性规划.11.已知函数,.(1)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.【答案】(1):,:;(2).【解析】(1)根据的取值情况进行分类讨论,将表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定的大致范围,再利根据条件方程在总存在两不相等的实数根,建立关于的不等式组,从而求解.试题解析:(1)∵,∴在单调递增,在单调递减,在单调递增,若:令解得:∴不等式的解为:;若:令,解得:,,根据图象不等式的解为:,综上::不等式的解为;:不等式的解为;(3),∵,∴在单调递增,在单调递减,在单调递增,∴或,∴在单调递增,∴,若:在单调递减,在单调递增,∴必须,即;若:在单调递增,在单调递减,,即;综上实数的取值范围是.【考点】1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.12.设函数.(1)若,解不等式;(2)如果,,求的取值范围.【答案】(1);(2).【解析】(1)当,圆不等式变为,可利用绝对值的集合意义求解,从而得到不等式的解集;(2)求当,,a的取值范围,可先对a进行分类讨论:,对后两种情形,只需求出的最小值,最后“,”的充要条件是,即可求得结果.试题解析:由题意得,(Ⅰ)当时,.由,得,(ⅰ)时,不等式化为,即.不等式组的解集为.(ⅱ)当时,不等式化为,不可能成立.不等式组的解集为.(ⅲ)当时,不等式化为,即.不等式组的解集为.综上得,的解集为.(Ⅱ)若,不满足题设条件.若的最小值为.若的最小值为.所以的充要条件是,从而的取值范围为.【考点】绝对值不等式的求解及其应用.13.变量满足约束条件,当目标函数取得最大值时,其最优解为.【答案】.【解析】作出可行域,画出目标函数的图象,由图知最优解为.【考点】线性规划.14.(1)选修4—4:坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长.(2)选修4—5:不等式选讲已知正实数满足,求证:.【答案】(1);(2)证明见解析.【解析】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;曲线的参数方程化为直角坐标方程,把直线的参数方程与曲线联立,利用韦达定理求线段的长.(2)利用基本不等式得,,再根据不等式的性质得,因为,得证.试题解析:(1)由直线的极坐标方程是,可得由直线的直角坐标方程是,化为参数方程为(为参数);曲线(为参数)可化为.将直线的参数方程代入,得.设所对应的参数为,,,所以.(2)证明:因为正实数,所以.同理可证:..,.当且仅当时,等号成立.【考点】1、极坐标方程;2、参数方程;3、直线与椭圆;4、基本不等式;5、不等式的性质.【方法点睛】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;再把曲线的参数方程化为直角坐标方程,然后把直线的参数方程与曲线联立,利用韦达定理和弦长公式求出线段的长.把直线的参数方程与曲线的直角坐标方程联立能够简化解题过程;(2)利用基本不等式及不等式的性质进行证明.15.已知满足约束条件,若的最大值为4,则()A.3B.2C.-2D.-3【答案】B【解析】将化为,作出可行域(如图所示),当时,当直线向右下方平移时,直线在轴上的截距减少,当直线过原点时,(舍);当时,当直线向右上方平移时,直线在轴上的截距增大,若,即时,当直线过点时,,解得(舍),当,即时,则当直线过点时,,解得;故选B.【考点】1.简单的线性规划;2.数形结合思想.【易错点睛】本题主要考查简单的线性规划与数形结合思想的应用,属于中档题;处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率的符号,还要讨论斜率与边界直线斜率的大小关系.16.如果实数满足关系,则的最小值是.【答案】2【解析】满足不等式组的平面区域,如图所示,因表示定点到平面区域内的点的距离,由图易知其最小距离为点到直线的距离,即,所以的最小值为2.【考点】1、平面区域;2、点到直线的距离公式.【方法点睛】(1)平面区域的确定,已知,则,表示的区域为直线的右方(右下方或右上方),表示的区域为直线的左方(左下方或左上方);(2)具有一定的几何意义,即几何意义为点到的距离的平方.17.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(1)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【答案】(1)原不等式的解集为{x|x≤0,或}.(2)[﹣].【解析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【考点】绝对值不等式的解法.18.不等式的解集是()A.B.C.D.【答案】B【解析】或.故B正确.【考点】一元二次不等式.19.直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,则+的最小值为()A.3+2B.4+2C.6+4D.8【答案】C【解析】根据已知条件得到a+b=,将其代入+,结合基本不等式的性质计算即可.解:∵直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,∴圆x2+y2+4x﹣2y﹣1=0的圆心(﹣2,1)在直线上,可得﹣2a﹣2b+1=0,即a+b=,因此2(+)(a+b)=2(3++)≥6+4,当且仅当:=时“=”成立,故选:C.【考点】直线与圆的位置关系.20.已知实数满足不等式组,则的最大值为________.【答案】9.【解析】作出不等式组表示的平面区域如下图:由图可知,当直线经过点时,取得最大值为:.故答案应填:9.【考点】线性规划.21.已知.(Ⅰ)求证:;(Ⅱ)若对任意实数都成立,求实数的取值范围.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)利用零点分段讨论法将绝对值符号去掉,得到分段函数,再求各段的值域即可;(Ⅱ)利用基本不等式和不等式恒成立进行求解.试题解析:(Ⅰ)∵,∴的最小值为5,∴.(Ⅱ)解:由(Ⅰ)知:的最大值等于5.∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数,都成立,∴.∴的取值范围为.【考点】1.零点分段讨论法;2.基本不等式.22.设函数,其中.(I)当时,解不等式;(II)若对于任意实数,恒有成立,求的取值范围.【答案】(I);(II).【解析】(I)采用零点分区间法求解;(II)先求出的最大值为,把问题转化为求解.试题解析:(Ⅰ)时,就是当时,,得,不成立;当时,,得,所以;当时,,即,恒成立,所以.综上可知,不等式的解集是.(Ⅱ) 因为,所以的最大值为.对于任意实数,恒有成立等价于.当时,,得;当时,,,不成立.综上,所求的取值范围是【考点】.绝对值不等式的解法;不等式恒成立问题23.已知函数.(1)解不等式;(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1) 不等式的解集为;(2) .【解析】(1)分区间去掉绝对值符号,将函数表示成分段函数的形式,在每个区间上分别解不等式,最后再求并集即可;(2) 不等式对任意的恒成立,由(1)求出函数的最小值,解不等式即可.试题解析:(1).当时,由,得,此时无解;当时,由,得,所以;当时,由,得,所以.综上,所求不等式的解集为.(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为不等式对任意的恒成立,即,解得,故的取值范围为.【考点】1.含绝对值不等式的解法;2.函数与不等式.24.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是()A.B.C.D.以上均不正确【答案】A【解析】因为正实数,则,要使为三边的三角形存在,则,即恒成立,故,令,则,取,递减,所以时,;同理取,递增,可知时,,故实数的取值范围是,故选A.【考点】基本不等式的应用.方法点睛:本题结合三角形的基本性质考查了基本不等式的应用,属于中档题.解答本题应先根据基本不等式求得,再三角形的性质任意两边之和大于第三边,任意两边之差小于第三边得到即得的不等式组,再利用基本不等式结合函数的单调性求出的取值范围.25.已知函数(是常数)和是定义在上的函数,对任意的,存在使得,,且,则在集合上的最大值为()A.B.C.4D.5【答案】D【解析】由题知,易知在上是减函数,在上是增函数,所以,又因为,所以,化简得,再由,可求得,所以,并且可判定在上是减函数,在上是增函数,由于,所以在集合上的最大值为,故选D.【考点】1、导数在函数研究中的应用;2、函数的最值.【思路点睛】本题是一个利用导数研究函数的单调性、最值方面的综合性问题,属于难题.解决本题的基本思路是,首先根据题意判断出的最值关系,再由条件求出函数在定义域上的最小值,进而判断出的最值情况,并据此求出的值,从而得到的解析式,进一步可求出的最大值,问题得以解决.26.已知直线经过点,则的最小值为()A.B.C.D.【答案】B【解析】因为直线经过点,所以,故,当且仅当时,等号成立.【考点】基本不等式.27.已知函数.(1)求不等式的解集;(2)若关于的表达式的解集,求实数的取值范围.【答案】(1);(2)或.【解析】(1)由绝对值的定义可分类讨论去绝对值,再分别解不等式即可;(2)由题意可得的值域为,要,需,解得实数的取值范围是或.试题解析:(1)由题意得:,则不等式等价于或,解得:或,∴不等式的解集.(2)∵,∴的值域为,∴的解集.要,需,即或,∴或,∴实数的取值范围是或.【考点】含绝对值不等式的解法.28.设函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式、存在性问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,解绝对值不等式,先得到与解集对应系数相等,解出的值;第二问,先整理,构造函数,画出函数图象,结合图象,得到,或,从而解出的取值范围.试题解析:(1)∵,∴,∴,∴,因为不等式的解集为,所以,解得.(2)由(1)得.∴,化简整理得:,令,的图象如图所示:要使不等式的解集非空,需,或,∴的取值范围是【考点】本题主要考查:1.绝对值不等式;2.存在性问题.29.若,若的最大值为3,则的值是___________.【答案】【解析】画出可行域如下图所示,为最优解,故.【考点】线性规划.30.选修4-5:不等式选讲若,且.(1)求的最小值;(2)是否存在,使得?并说明理由.【答案】(1)(2)不存在【解析】(1)利用基本不等式得,即,而,等号都是取得,(2)利用基本不等式得,即与矛盾,故不存在试题解析:解:(Ⅰ)由,得,且当时等号成立,故,且当时等号成立,∴的最小值为.(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,所以不存在,使得成立.【考点】基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.31.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.32.已知实数x,y满足,则z=4x+y的最大值为()A.10B.2C.8D.0【答案】C【解析】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当过点时,取最大值8.【考点】简单的线性规划问题.33.若实数满足约束条件,则的最大值为()A.B.1C.D.【答案】A【解析】因画出不等式组表示的区域如图, 的几何意义是区域内的动点与定点连线的斜率,借助图形不难看出区域内的点与定点连线的斜率最大,最大值为,所以的最大值为,应选A.【考点】线性规划的知识及运用.34.已知,使不等式成立.(1)求满足条件的实数的集合;(2)若,对,不等式恒成立,求的最小值.【答案】(1);(2).【解析】(1)运用分类讨论的方法分段求解;(2)借助题设条件及基本不等式求解.试题解析:(1)令,则,由于使不等式成立,有(2)由(1)知,,根据基本不等式,从而,当且仅当时取等号,再根据基本不等式当且仅当时取等号,所以的最小值为6【考点】绝对值不等式、基本不等式及运用.35.设变量满足不等式组则目标函数的最小值是______.【答案】7【解析】不等式组对应的可行域如图,由图可知,,目标函数表示斜率为的一组平行线当目标函数经过图中点时取得最小值.故填:7.【考点】线性规划36.设x,y满足约束条件且的最大值为4,则实数的值为____________.【答案】-4【解析】作出可行域,令得 .结合图象可知目标函数在处取得最大值,代入可得.故本题答案应填.【考点】线性规划.37.已知函数,其中为常数.(1)当时,求不等式的解集;(2)设实数,,满足,若函数的最小值为,证明:.【答案】(1);(2)证明见解析.【解析】(1)由.再由或或解集为;(2)由当且仅当,即时取等号,,则.解法一:由题设.解法二:由题设,,即,.试题解析:(1)当时,由,得或,即或所以不等式的解集为(2)因为,当且仅当,即时取等号,则.由已知,,则解法一:由题设,则,,解法二:由题设,,据柯西不等式,有,即,所以【考点】1、绝对值不等式;2、重要不等式;3、柯西不等式.38.若满足约束条件,则的最大值为.【答案】【解析】作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.【考点】简单线性规划的非线性运用.39.已知变量满足约束条件,目标函数的最大值为10,则实数的值等于()A.4B.C.2D.8【答案】A【解析】由不等式组可得可行域(如图),当直线经过点时,取得最大值,且由已知,解得.【考点】简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.40.已知变量满足约束条件,则的最大值为__________.【答案】1【解析】可行域为一个三角形ABC及其内部,其中,直线过点C时取最大值1.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.41.设,则a, b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a【答案】A【解析】,考察函数,该函数在上单调递减,,考察函数,该函数在上单调递增,,故选A.【考点】指数函数的单调性与幂函数的单调性.42.若满足约束条件,则当取最大值时,的值为()A.B.C.D.【答案】D【解析】作出可行域如图中阴影部分所示,的几何意义是:过定点与可行域内的点的直线的斜率,由图可知,当直线过点时,斜率取得最大值,此时的值分别为,所以.故选D.【考点】简单线性规划.43.若,则()A.B.C.D.【答案】A【解析】因为即,,所以,故选A.【考点】指数函数、对数函数的性质.44.已知实数满足不等式组则的最大值是___________.【答案】6【解析】作出不等式组表示的平面区域,如图所示,由图知当目标函数经过点时取得最大值,即.【考点】简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.45.选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集为非空集,求的取值范围.【答案】(1)详见解析;(2)(-1,0)【解析】(1)(当且仅当时取等号);(2)作出函数的图象,由图像可求出结果.试题解析:解:(1)(当且仅当时取等号)(2)函数的图象如图所示.当时,,依题意:,解得,∴的取值范围是(-1,0).【考点】1.绝对值不等式;2.基本不等式.46.选修4—5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.【答案】(I);(II).【解析】(I)分,,三种情况讨论,去掉绝对值符号,转化不等式求出解集,取并集即可;(II)移项可得,根据绝对值的几何意义,求出的最大值,即可求得实数的取值范围.试题解析:(I)①当时,,所以②当时,,所以为③当时,,所以综合①②③不等式的解集(II)即由绝对值的几何意义,只需【考点】绝对值不等式的解法和绝对值的几何意义.47.设,满足约束条件则的取值范围为.【答案】【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最小值为,在点处取得最大值为.【考点】线性规划.48.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处的最大值是,在最小值是,所以而,所以的最大值是,故选B.【考点】1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.49.选修4-5:不等式选讲已知函数.(Ⅰ)若,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(I)(II)【解析】(I)先根据绝对值定义将不等式转化为三个不等式组:,或,或,最后求三个不等式组解集的并集得原不等式的解集(II)先化简不等式为,再利用绝对值三角不等式求最值:,再转化解不等式得实数的取值范围.试题解析:不等式化为,则,或,或,……………………3分解得,所以不等式的解集为.……………………5分(2)不等式等价于,即,由绝对值三角不等式知.……………………8分若存在实数,使得不等式成立,则,解得,所以实数的取值范围是.……………………10分【考点】绝对值三角不等式,绝对值定义【名师】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.50.选修4-5:不等式选讲已知函数.(1)解不等式;。

2021学年高一数学必修一第2.3《等式与不等式》单元测试卷(B卷提升篇)同步双测新人教B版[解析版]

2021学年高一数学必修一第2.3《等式与不等式》单元测试卷(B卷提升篇)同步双测新人教B版[解析版]

『高一教材·同步双测』『A卷基础篇』『B卷提升篇』试题汇编前言:本试题选于近一年的期中、期末、中考真题以及经典题型,精选精解精析,旨在抛砖引玉,举一反三,突出培养能力,体现研究性学习的新课改要求,实现学生巩固基础知识与提高解题能力的双基目的。

(1)A卷注重基础,强调基础知识的识记和运用;(2)B卷强调能力,注重解题能力的培养和提高;(3)单元测试AB卷,期中、期末测试。

构成立体网络,多层次多角度为考生提供检测,查缺补漏,便于寻找知识盲点或误区,不断提升。

祝大家掌握更加牢靠的知识点,胸有成竹从容考试!专题2.3《等式与不等式》单元测试卷(B 卷提升篇)参考答案与试题解析第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2019·山东高一月考)不等式()9262x x +-≥-(其中x >2)中等号成立的条件是( ) A.x =5 B.x =-3 C.x =3 D.x =-5【答案】A 【解析】当2x >时,()9262x x +-≥=-, 等号成立的条件是922x x =-- , ()229x -= ,解得:5x =.故选A.2.(2020·山西省初一月考)若实数2是不等式340x a --<的一个解,则a 可取的最小正整数是( ) A .1 B .2C .3D .4【答案】C 【解析】∵实数2是不等式3x-a-4<0的一个解, ∴代入得:6-a-4<0, a >2,∴a 可取的最小整数是3, 故选C .3.(2020·河南省初三其他)若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数a 的取值范围是( ).A .2a ≥-B .2a <-C .2a ≤-D .2a >-【答案】D 【解析】0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-. 由②得:224x x -->--36x ->- 2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的a 的取值范围为:2a -<. ∴2a >-. 故选D .4.(2020·平江县南江中学初三二模)定义[]x 表示不超过x 的最大整数,如[]1.81=,[]1.42-=-,[]33-=-,函数[]y x =的图象如图所示,则方程[]212x x =的解为( )A .02B .1或2C .1或2-D 2或2-【答案】A 【解析】当1≤x <2时,12x 2=1,解得x 12,x 22(舍去); 当0≤x <1时,12x 2=0,解得x=0;当-1≤x <0时,12x 2=-1,方程没有实数解;当-2≤x <-1时,12x 2=-2,方程没有实数解;所以方程[x]= 12x 2的解为0. 故选:A .5.(2019·山东高一月考)在R 上定义运算⊙:2a b ab a b =++,则满足()20x x -<的实数x 的取值范围为( ) A.(0,2) B.(-1,2)C.()(),21,-∞-⋃+∞D.(-2,1)【答案】D 【解析】()22,2(2)2(2) 2.a b ab a b xx x x x x x x =++∴-=-++-=+-由()20xx -<得220,2 1.x x x +-<∴-<<∴满足()20xx -<的实数x 的取值范围为(-2,1).本题选择D 选项.6.(2020·福建省初三其他)函数226y x bx ++=的图象与x 轴两个交点的横坐标分别为1x ,2x ,且1x >1,214-=x x ,当1≤x ≤3时,该函数的最小值m 与b 的关系式是( )A .m =2b +5B .m =4b +8C .m =6b +15D .24m b +=-【答案】C 【解析】函数226y x bx =++的图象与x 轴两个交点的横坐标分别为1x ,2x , ∵126x x ⋅=,214-=x x ,解得:1x ﹣2,2x , ∵212x x b +=-,∴b=;函数的对称轴为直线x =1221()x x + 3 故当1≤x ≤3时,函数在x =3时,取得最小值,即m =226y x bx =++=15+6b ,故选:C .7.(2020·河南省高三三模(理))设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】C 【解析】 由a >b ,①当a >b ≥0时,不等式a |a |>b |b |等价为a •a >b •b ,此时成立.②当0>a >b 时,不等式a |a |>b |b |等价为﹣a •a >﹣b •b ,即a 2<b 2,此时成立. ③当a ≥0>b 时,不等式a |a |>b |b |等价为a •a >﹣b •b ,即a 2>﹣b 2,此时成立, 即充分性成立; 由a |a |>b |b |,①当a >0,b >0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )>0, 因为a +b >0,所以a ﹣b >0,即a >b . ②当a >0,b <0时,a >b .③当a <0,b <0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )<0, 因为a +b <0,所以a ﹣b >0,即a >b .即必要性成立, 综上可得“a >b ”是“a |a |>b |b |”的充要条件, 故选:C .8.已知a 、R b ∈,若0ab ≠,则下列不等式:①222a b ab+≥;②2b a a b +≥;③2b aa b+≥;④a b +≥. 其中恒成立的不等式序号是( ) A.①、③ B.①、②C.②、③D.②、④【答案】B 【解析】对于①中,因为222221()22022a b a b ab ab a b -++-==-≥,所以222a b ab +≥是正确的;对于②中,由0ab ≠,则0,0b a a b >>,所以2b a a b +≥=,当且仅当b a a b =时,即a b =±是等号成立,所以2b aa b+≥是正确的; 对于③中,当0ab <时,0b aa b +<,所以2b a a b+≥不正确;对于④中,当0,0a b <<时,0,0a b +<>,所以a b +≥不正确, 故选B.二、选择题:本题共4小题,每小题5分,共20分。

不等式(B卷 滚动提升检测)1——新高考数学复习专题测试附答案解析

不等式(B卷 滚动提升检测)1——新高考数学复习专题测试附答案解析

.是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。

如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。

计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法。

理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。

求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;理科用排列组合算数。

独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。

回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。

理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


y
【答案】[

理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。

如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。

计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法。

理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。

求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;理科用排列组合算数。

独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。

回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。

理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,
别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。

看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0、a<0、a>0和后两种情况下delt<=0、
delt>0)、求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。

证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。

多问的时候注意后面的问题一般需要用到前面小问的结论。

抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。

一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

第二问有直线与圆锥曲线相交时,记住我说的“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>0,设直线时注意讨论斜率是否存在。

第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三
点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。

)、最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。

抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

选修题说下参数方程与极坐标,各种曲线的参数方程的标准形式要记准,里面谁是参数,以及各量的意义以及参数的几何意义,一般都是先画成直角坐标,变成直角坐标题意就简单了,有的题要用到参数方程里参数的几何意义来解题(注意直线参数方程只有是标准的参数方程才能用t的几何意义,要不会差一个倍数,弦长|AB|=|t1-t2|,|PA||PB|=|t1t2|(注意P点得是你参数方程里前面的(a,b),只有这样联立后的参数t才表示PA、PB)),这时会简单许多。

极坐标也是,先化成直角坐标再解题,这样就简单了。

相关文档
最新文档