基于MATLAB的电力系统仿真98514
Matlab中的电力系统仿真方法

Matlab中的电力系统仿真方法引言:随着电力系统的迅速发展和复杂性增加,电力系统仿真成为电力工程研究和设计的重要工具。
Matlab作为一种强大的数学计算工具,为电力系统仿真提供了丰富的功能和灵活性。
本文将探讨在Matlab中进行电力系统仿真的方法和技术,以及如何利用Matlab解决电力系统设计和优化的问题。
一、概述电力系统仿真是一种模拟电力系统运行和行为的技术,能够帮助分析和解决电力系统中的各种问题。
Matlab在电力系统仿真中具有广泛的应用,提供了强大的建模和计算功能。
利用Matlab进行电力系统仿真可以有效地模拟电力系统的运行和优化算法的性能,为电力系统的设计和运行提供重要参考。
二、电力系统建模在进行电力系统仿真之前,需要对电力系统进行准确的建模。
Matlab提供了各种建模工具和函数,可以用于描述电力系统中的各种元件和拓扑结构。
例如,可以使用Matlab的电路元件库模型化发电机、变压器、线路和负荷等元件,并使用节点和支路等数据结构描述电力系统的拓扑。
同时,Matlab还提供了用于构建电力系统模型的函数和工具箱,如Power System Toolbox和Simulink Power System Blockset。
这些工具提供了模型建立、参数设定和仿真运行等功能,方便用户创建和分析电力系统模型。
三、电力系统仿真技术1. 静态潮流计算静态潮流计算是电力系统仿真中常用的一种方法,用于研究电力系统的潮流分布和电压稳定性等问题。
Matlab提供了多种求解潮流计算的方法,例如基于牛顿-拉夫逊法的Power Flow Toolbox和基于改进迭代法的Fast-Decoupled Power Flow。
这些方法可以通过Matlab编程实现,计算电力系统中各节点的电压、相角和功率等参数。
利用这些计算结果,可以评估电力系统的稳定性、检测潮流拥挤和进行电力负荷分析等。
2. 动态稳定分析动态稳定分析是研究电力系统在暂态和稳态过程中的稳定性问题。
基于matlab的电力系统潮流计算仿真分析

基于matlab的电力系统潮流计算仿真分析本文旨在介绍电力系统潮流计算仿真分析的背景和目的,并简要概述本文的主要内容和结构安排。
潮流计算是电力系统运行中的重要环节,通过计算电力系统中各节点的电压和功率分布情况,可以帮助分析系统的运行状态、调控能力以及潜在的问题。
随着电力系统的规模不断扩大和复杂性的增加,利用计算机进行潮流计算仿真分析已成为一种必要且有效的方法。
而matlab作为一种功能强大的科学计算软件,被广泛应用于电力系统的潮流计算仿真分析。
本研究的目的是基于matlab,开展电力系统潮流计算仿真分析,以探究系统运行状态、发现潜在的问题,并提出相应的优化方案。
通过仿真分析,可以评估系统的稳定性、安全性和可靠性,为电力系统运行与规划提供重要的参考依据。
本文主要包括以下内容:研究背景和意义:介绍电力系统潮流计算仿真分析的背景和其在电力系统运行中的重要性。
相关理论与方法:介绍电力系统潮流计算的基本理论和常用的计算方法,以及matlab在电力系统仿真中的应用。
模型构建与数据处理:详细阐述潮流计算仿真中的模型构建过程,以及对系统数据的处理和准备。
仿真结果与分析:展示仿真计算得到的结果,并进行相应的分析和讨论。
优化方案提出与评估:根据仿真结果,提出相应的优化方案,并进行评估和比较。
结论与展望:总结全文的研究内容和结论,并展望未来进一步的研究方向。
通过本文的研究和分析,我们将深入了解电力系统潮流计算仿真分析的原理和方法,为电力系统的优化和运行提供有效的技术支持。
本部分将介绍电力系统的组成,包括发电机组、输电网和配电网等,以及相关概念和术语,为后续的潮流计算仿真分析奠定基础。
潮流计算是电力系统中重要的分析方法,用于计算系统中各节点的电压幅值和相角,以及线路和设备的功率潮流分布。
潮流计算的基本原理是建立节点潮流方程和数学模型,通过求解这些方程来得到系统的潮流状态。
节点潮流方程节点潮流方程描述了电力系统中各节点的电压和功率之间的关系。
基于Matlab 的电力系统故障的仿真分析

基于Matlab 的电力系统故障的仿真分析计算机仿真技术已成为电力系统研究、规划、设计和运行等各个方面的重要方法和手段,由于Matlab 具有很良好的开发性、高效的数据仿真分析, 特别是信号处理和直观的图形显示功能,且Matlab/ Simulink 环境下的PSB 模型库及Simulink强大的二次开发功能和丰富的工具箱,能快速而准确地对电路及更复杂的电气系统进行仿真、计算. 因此,它已成为电力科研工作者和工程技术人员应用它来进行电力系统有关问题的仿真分析和辅助设计的理想工具.文章介绍了Matlab/ Simulink 的基本特点及应用Matlab 进行电力系统仿真分析的基本方法和步骤,探讨了综合利用其Simulink 环境、电力系统模块库和相关工具进行电力系统的控制设计和仿真分析,通过对具有同步发电机光控励磁系统的电力系统故障仿真分析,说明了Matlab 在电力系统仿真中强大的功能.1 应用Matlab/ Simulink 进行电力系统仿真分析的基本方法1. 1 Simulink 环境下仿真工具图形编辑器( Power System Blockset 以下简称PSB) 是一个图形编辑器工具,在Simulink 环境下能建立电力系统原理并进行仿真计算. PSB 库提供了电力系统仿真通用的元件和装置,包括RLC支路和负载、变压器、传输线、避雷器、电机、电力电子装置等. 只需通过点击和拖放PSB 库内的模型即可建立用户所需要的电力系统仿真原理图,并利用模型元件的对话框来设置相关参数. 使用Simulink 提供的示波器模型,可显示观测点处的仿真结果及其波形.1. 2 模型库根据电力系统各种电气设备特性,可将PSB 库内的模型分为电源、元件、电力电子器件、电机、连接器和测量等部分. 元件包括单相RLC 支路和和负载模块、变压器、互感器、π型传输线、避雷器、断路器、n 相分布参数线路模型等. 利用Simulink 二次开发功能,可方便地编辑出更复杂的元件模型和集成参数对话框. 电力电子包括通用的半导体元件,每个元件(除二极管外) 都有门极控制输入端和Simulink 输出端,可显示开关的电压和电流值. 电机包括简化的和详细的同步电机、异步电机、励磁机、永磁同步电机和涡轮机等. 每个模块有一个Simu2link 输出来显示内部变量状态值.1. 3 仿真方法和步骤Matlab 实现对电力系统的仿真和分析至少有二种独立的方法.1) 传统的编程方法,即通过大量的代码来实现电力系统的建模、稳态计算和暂态分析等等;但由于Matlab 提供了用户可以直接调用已有的高性能数值计算. 如矩阵求逆、数值微积分等等,较使用C 或Fortran 语言开发其源程序却要简洁得多,可节省大量内存空间和开发时间.2) Simulink 平台上进行仿真分析,按建模方法分为器件级仿真(又称为物理建模) 和系统仿真(又称为数学建模) . 其中器件级仿真是利用Mat2lab 的PSB 中固有元件模型构建新元件的物理模型,该方法一般适用于探讨元件的内部性能;系统仿真是利用MatlabPSimulink 中的控制模块来构建新元件的数学模型,该方法是研究元件的外部特性. 在MatlabPSimulink 平台上,借助于鼠标点击和拖放以及一些必要的参数设置即可实现对电力系统的稳态和暂态分析,并可方便地研究各种先进的控制方法对电力系统的控制效果. 实际上,在实际应用中,特别是对复杂电力系统的仿真分析,两种方法通常交替融合使用.应用Matlab 进行电力系统仿真的主要步骤为:a 系统模型的建立;b 设置仿真参数和控制算法的实现;c 进_______行动态仿真(包括稳态分析和暂态仿真) ;d 结果分析.2 仿真实例使用Matlab6. 0 的Simulink 建立单机对无穷大系统的仿真模型如图(1) 所示.单机即光控励磁图1 光控励磁同步发电机系统故障模型系统同步发电机[1 ] ;无穷大系统模型,用powerlib中inductive source with neutral 模块表示;发电机模型(synchronous machine) 、变压器模型(linear trans2formerd ,yg) 以及调速系统模( hydraulic turbineand governor 即HTG) ;系统负荷10mV;故障时间由Timer 模块控制. powergui 模块中的machine loadflow ;Bus type 为pv generator ;仿真参数如下:同步发电机容量200MW ;UAB = 15. 75kV;变压器容量240MVA;电压变比15. 75kVP230kV.其仿真结果:当Fault 模块为单相故障时,模块内部构成如图2 (a) 所示,以A 相故障为例.其中负荷为10MW, 选择SimulationPStart 按钮,开始仿真. 在t = 1s 发生故障切除后母线电流、电压波形,用Matlab6. 0 中Subplot 及Plot 命令绘出仿真结果,如图3 (a) 所示.当Fault 模块为两相接地故障时,见图2 (b) ,以A、B 两相短路,测得A 相电压、电流波形,如图3 (b) 所示.当Fault 模块为三相接地故障时,见图2 (c) ,测得A 相电压、电流波形,如图3 (c) 所示.由上述三种短路故障时的仿真波形图可看出光控励磁系统同步电机- 无穷大系统在故障过程中的动态响应过程,恢复正常运行时的电压基准值相对稳定.图2 Fault 模块故障模型图3 故障电压波形图压力锅的强度就由该部位控制. 从计算结果可以看到,当锅内压力为80KPa 时,牙边缘处的应力是88. 7MPa ,而当锅内压力达到泄压压力160KPa 时,该处的应力达到177. 4MPa. 因此,如何降低锅牙处的应力成为压力锅设计与分析的一个焦点.3) 压力锅其余部位的应力在表1 中均不大.如,当锅内压力达到160KPa 时,锅底部分的应力是34. 3MPa ,牙槽部分是47. 4MPa ,离材料的极限应力较远,具有较多的安全储备. 但若考虑到压力锅长期使用下的疲劳以及锅底受热部分在高温下材料性质的降低,则该应力也就是恰当的应力水平了.4 结论利用有限元软件ANSYS 对压力锅进行了三维应力分析,部分数据与薄壁圆桶计算结果对比,本文计算结果是可靠的. 牙体及附近是压力锅的最大应力所在部位,其最大应力在报警压力时达到177MPa ,当锅内压力进一步增大时,该应力还将增加,直至达到屈服应力和破坏应力而造成压力锅“爆锅”. 因此,在压力锅设计时,应对牙部仔细分析,以降低牙部的应力,增加压力锅的安全性.参考文献:[1 ] GB13623~2003 ,铝压力锅安全及性能要求[ S] .[2 ] 王勖成,邵敏. 有限单元法基本原理和数值方法[M] 北京:清华大学出版社. 1997. 97~98.[3 ] 刘鸿文. 材料力学[M] . 北京:高等教育出版社,1992.285~289.[4 ] 龚曙光. ANSYS 工程应用实例解析[M] 北京:机械工业出版社,2003. 103~117.(上接第47 页)结论通过对整个系统的仿真,可以得到以下结论:1)Matlab6. 0 中的PSB 是一种专门应用于电力系统动态仿真的工具箱,其中的电力系统的元件模型相当丰富,模糊逻辑控制可通过工具箱中用户界面建立的模糊推理系统FIS(Fuzzy InferenceSystem) 来实现,用户还可以利用Matlab 本身的一些工具来建立自定义模型.2) 当改变元器件本身的参数,如电机的功率、转子和定子的电阻、电感,负载的功率、变压器的容量等,就能实现对电力系统不同工况下运行过程的仿真分析,便于对不同参数和负载情况进行比较.3) 利用Matlab 可以方便地进行电力系统潮流计算、稳态分析、暂态仿真和新元件的设计及测定. 界面灵活、开放直观、互动性强等优点.4) 由于PSB 简化了开关元件的处理,认为是理想模型,在提高仿真速度、简化电路设计的同时,对系统的暂态过程描述不够精确.参考文献:[1 ] 盛义发,邓国扬,王浩宇,等. 同步发电机新型励磁系统的研究[J ] . 南华大学学报,2002 (4) :24~27.[2 ] 邓国扬,盛义发. 基于MatlabPSimulink 的电力电子系统的建模与仿真[J ] . 南华大学学报,2003 (1) :1~6.[3 ] 清源计算机工作室.Matlab6. 0 基础及应用[M] . 北京:机械工业出版社,2001.[4 ] 何仰赞,温增银,汪馥英,等. 电力系统分析[M] . 武汉:华中理工大学出版社,1996.。
基于-Matlab的电力系统潮流仿真计算

基于-Matlab的电力系统潮流仿真计算南阳理工学院本科生毕业设计(论文)学院:电子与电气工程学院专业:电气工程及其自动化学生:指导教师:完成日期2014 年 5 月南阳理工学院本科毕业设计(论文)电力系统潮流仿真计算Load Flow Calculation of Power System学院:电子与电气工程学院专业:电气工程及其自动化学生姓名:学号:指导教师(职称):评阅教师:完成日期:南阳理工学院Nan yang Institute of Technology电力系统潮流仿真计算[摘要] 众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算。
本文首先简单介绍了潮流计算的基本原理和意义,然后用具体的实例介绍了如何进行电力系统中的潮流计算。
在复杂电力系统潮流计算中,本文选用了牛顿-拉夫逊算法。
牛顿-拉夫逊法是电力系统潮流计算的常用算法之一,它具有收敛性好,迭代次数少等特点。
在软件选择中,本文选择了MATLAB作为计算工具,MTALAB具有数学计算编程简易方便等特点。
[关键词] 电力系统;潮流计算;牛顿-拉夫逊;矩阵实验室Load Flow Calculation of Power SystemElectrical Engineering and Automation Specialty NIE Zhang-yuAbstract: As we all know, the power flow calculation is a calculation of the power system steady state operation conditions. This paper first introduces the basic principles and sense of power flow calculation, and then use concrete examples on how to conduct power system load flow calculation. In the complex power flow calculation, the paper selects the Newton - Raphson algorithm. Newton - Raphson method is commonly used in power flow calculation algorithm, it has good convergence, fewer iterations and so on. In the software selection, this paper chose MATLAB as a computational tool, MTALAB with mathematical programming simple and convenient.Key words:Power system; load flow calculation; Newton –Raphson method; matlab目录1 引言 (1)1.1 潮流计算的目的和意义 (1)1.2 潮流计算的发展历史及现状 (1)1.3 基于MATLAB的电力系统潮流计算发展前景 (2)2 简单电力系统潮流计算的手工方法 (2)2.1 开式网络的潮流计算 (2)2.2 闭式网络的潮流计算 (4)2.3 手工计算算例 (6)2.3.1简单配电网络算例 (6)2.3.2计算各支路的功率损耗和功率分布 (6)2.2.3求出线路各点电压 (7)2.2.4重新计算各线路功率损耗和始端功率 (7)3 复杂电力系统潮流计算的计算机方法 (7)3.1 潮流计算的计算机算法简介 (7)3.2 电力系统的节点分类 (8)3.3 节点导纳矩阵 (8)3.4 潮流计算的约束条件 (10)3.5 牛顿-拉夫逊法 (11)3.5.1牛顿-拉夫逊法基本原理 (11)3.5.2节点电压用直角坐标表示时的牛顿-拉夫逊法潮流计算 (12)3.5.3直角坐标形式的牛顿-拉夫逊法计算步骤 (15)3.6 牛顿-拉夫逊法与P-Q分解法的比较 (16)3.7 电力系统潮流计算的前沿算法及发展背景 (17)4 基于MATLAB的牛顿-拉夫逊算法 (17)4.1 MATLAB在潮流计算中的优势 (17)4.2 计算机算法中网络节点的优化 (19)4.3 某电网计算机算法及结果分析 (19)结束语 (22)参考文献 (23)附录 (25)致谢 (27)III1 引言电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件以及系统的界限情况确定整个电力系统各个部分的运行状态:系统的功率损耗,各元件流过的功率,各母线的电压等等,作为电力系统稳态分析、暂态分析和故障分析的基础。
基于MATLAB的电力系统潮流计算仿真分析

在用数字计算机解电力系统潮流问题的开始阶段,普遍采取以节点导纳矩阵 为基础的逐次代入法。这个方法的原理比较简单,要求的数字计算机内存量比较 下,适应 50 年代电子计算机制造水平和当时电力系统理论水平。但它的收敛性 较差,当系统规模变大时,迭代次数急剧上升,在计算中往往出现迭代不收敛的 情况。这就迫使电力系统计算人员转向以阻抗矩阵为基础的逐次代入法。阻抗法 改善了系统潮流计算问题的收敛性,解决了导纳法无法求解的一些系统的潮流计 算,在 60 年代获得了广泛的应用。阻抗法的主要缺点是占用计算机内存大,每 次迭代的计算量大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法 在内存和速度方面的缺点,60 年代中期发展了以阻抗矩阵为基础的分块阻抗法。 这个方法把一个大系统分割为几个小的地区系统,在计算机内只需要存储各个地 区系统的阻抗矩阵及它们之间联络线的阻抗,这样不仅大幅度地节省了内存容量, 同时也提高了计算速度。
1.1 潮流计算简介......................................................................................................................1 1.2 潮流计算的意义及其发展.................................................................................................1 第二章 潮流计算的数学模型........................................................................................................3 2.1 导纳矩阵的原理及计算方法..............................................................................................3 2.2 潮流计算的基本方程..........................................................................................................5 2.3 电力系统节点分类..............................................................................................................8 2.4 潮流计算的约束条件..........................................................................................................9 第三章 MATPOWER 在电力系统潮流计算中的应用.....................................................................10 3.1 MATPOWER 简介 .......................................................................................................10 3.2 根据上述模型编写的 MATPOWER 程序及其说明....................................................10 3.3 MATPOWER 程序在 Matlab 中运行所得的结果 .......................................................12 第四章 电力系统潮流计算中的仿真............................................................................................14 4.1 Matlab/Simulink 仿真模型及其简介.............................................................................14 4.2 牛顿-拉夫逊法基本原理 .................................................................................................16 4.2 牛顿--拉夫逊法潮流求解过程 .........................................................................................17 4.3 Simulink 仿真所得的结果 .............................................................................................21 总结..................................................................................................................................................23 参 考 文 献....................................................................................................................................24
基于MATLAB的电力系统故障仿真与检测技术研究

基于MATLAB的电力系统故障仿真与检测技术研究电力系统是一个复杂的动态系统,在运行过程中,经常会发生故障。
本论文针对电力系统常见的4种短路故障(三相短路、单相接地、两相短路、两相短路接地)进行了理论分析,并利用MATLAB/Simulink 仿真软件搭建出了仿真模型,仿真出了4种短路故障短路点的电压与电流波形,而且,利用三相序量分析器将短路点电压与电流分解得到了A相的正序、负序和零序分量,结果表明,仿真与理论分析相一致。
通过比较不同故障短路点的电流波形可知,三相短路故障短路点电流最大,危害最严重;通过比较不同故障短路点的电压与电流序分量波形可知,单相接地短路故障和两相接地短路故障均含有正序、负序和零序分量;而两相短路故障只含有正序和负序分量。
最后介绍了常用的短路电流检测方法,重点研究了利用负序和零序分量的短路电流检测方法,研究表明:以负序分量为特征量的检测方法在各种情况下,从反应程度和快速性上来说都十分理想。
目录1引言 (2)1.1研究背景和意义 (2)1.2本论文主要工作 (3)2电力系统故障类型及理论分析 (3)2.1电力系统的构成 (3)2.2故障概述 (4)2.3各种短路故障的理论分析 (5)2.3.1三相短路故障的分析 (5)2.3.2单相接地短路故障的分析 (8)2.3.3两相短路故障的分析 (10)2.3.4两相接地短路故障的分析 (12)2.4本章小结 (14)3基于MATLAB的故障仿真分析 (15)3.1 MATLAB简介 (15)3.1.1概述 (15)3.1.2 MATLAB的电力系统工具箱介绍 (15)3.2电力系统仿真模型的建立与仿真参数设置 (16)3.2.1电力系统仿真模型的建立 (17)3.2.2仿真参数设置 (18)3.3电力系统短路故障仿真结果及分析 (22)3.3.1三相短路故障仿真分析 (22)3.3.2 A相接地短路故障仿真分析 (24)3.3.3 BC两相短路故障仿真分析 (25)3.3.4 BC两相接地短路故障仿真分析 (27)3.3.5本章小结 (29)4基于序分量的短路电流检测技术的研究 (30)4.1短路电流检测技术概述 (30)4.2序分量检测技术的原理及实现 (30)4.3本章小结 (34)5结论与展望 (36)1 引言1.1研究背景和意义电力系统运行的基本要求就是:保证可靠地持续供电;保证良好的电能质量;保证系统运行的经济性[1]。
MATLAB与电力系统仿真全

金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
• (1)直流电压源元件(DC Voltage Source)
• 直流电压源元件在电力系统中可以用来实现一个直流的电 压源,如操作电源等。MATLAB软件提供的直流电源为理 想的直流电压源。
• (2)交流电压源元件(AC Voltage Source) • 交流电压源可以用来实现理想的单相正弦交流电压。 • (3)交流电流源元件(AC Current Source) • MATLAB软件提供的交流电流源为一理想电流源 • (4)受控电压源元件(Controlled Voltage Source) • MATLAB软件提供的受控电压源是由激励信号源控制的,
• (2)利用开始(Start)导航区启动:
单击开始按钮,选择仿真(Simulink)命令,再选择电力 系统仿真命令(SimPowerSystem),在弹出的对话框中选择 电力系统元件库(Block Library)命令即可
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
采样时间(Sample time):0
测量选项(Measurements):选择不测量电气量
步骤1:复制交流电压源元件并改名为U2
u1 100sin(120t )
6
步骤2:双击交流电压源元件,对交流电压源元件的参数进行如下设置:
峰值振幅(Peak Amplitude):75
初始相位(Phase):60
• •
步骤1:将电压源元件改名为U1 步骤2:双击交流电压源元件,对交
图5-20
交流电压源的叠加电路图
流电压源元件的参数进行如下设置:
第五章MATLAB在电力系统故障分析中的仿真实例精选全文

第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
无阻尼绕组同步发电机三相短路电流计算
第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
图5-13 发电机端突然发生三相短路的Simulink仿真模型
第五章MATБайду номын сангаасAB在电力系统故障分析 中的仿真实例
图5-14 同步发电机模块的参数设置
第五章MATLAB在电力系统故障分析 中的仿真实例
图5-15 升压变压器模块的参数设置
第五章MATLAB在电力系统故障分析 中的仿真实例
第五章MATLAB在电力系统故障分析 中的仿真实例
6)Transition status和Transition times用来设置转换状态和转换时间; 其中,Transition status表示故障开关的状态,通常用“1”表示闭合, “0”表示断开;Transition times表示故障开关的动作时间;并且 每个选项都有两个数值,而且它们是一一对应的。 7)Snubbers resistance和snubbers Capacitance用来设置并联缓冲电 路中的过渡电阻和过渡电容。 8)Measurements 用来选择测量量。
图5-16 利用Powergui模块的潮流计算和电机初始化窗口计算初始参数
第五章MATLAB在电力系统故障分析 中的仿真实例
•5.3 单相短路故障仿真
•当网络元件只用电抗表示时,不对称短路的序网络方程
第五章MATLAB在电力系统故障分析 中的仿真实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力系统设计》报告
题目: 基于MATLAB的电力系统仿
学院:电子信息与电气工程学院
班级:13级电气1 班
姓名:田震
学号:20131090124
日期:2015年12月6日
基于MATLAB的电力系统仿真
摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规
模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。
另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。
从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。
电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。
本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。
通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。
关键词:电力系统;三相短路;故障分析;MATLAB仿真
目录
一.前言 (4)
二.无穷大功率电源供电系统仿真模型构建 (5)
1.总电路图的设计 (5)
2.各个元件的参数设定 (7)
2.1供电模块的参数设定 (7)
2.2变压器模块的参数设置 (7)
2.3输电线路模块的参数设置 (8)
2.4三相电压电流测量模块 (9)
2.5三相线路故障模块参数设置 (9)
2.6三相并联RLC负荷模块参数设置 (10)
3.仿真结果 (11)
一.前言:电力系统故障分析主要是研究电力系统中由于故障所引起的电磁暂态过程,搞清楚暂态发生的原因、发展过程及后果,从而为防止电力系统故障、减小故障损失提供必要的理论知识。
电力系统可能发生的故障类别比较多,一般可分为简单故障和复合故障。
简单故障指的是电力系统正常运行时某一处发生短路或断相故障,而复合故障则是指两个或两个以上简单故障组合。
在这些故障中,三相短路故障是电力系统中危害最严重的故障。
本次通过对无穷大功率电源供电系统三相短路仿真,来简要的介绍下MATLAB在电力系统故障分析中的应用。
短路问题是电力技术方面的基本问题之一。
在发电厂、变电站以及整个电力系统的设计和运行工作中,都必须事先进行短路计算和仿真,以此作为合理选择电气接线、选用有足够热稳定度和动稳定度的电气设备及载流导体、确定限制短路电流的措施、在电力系统中合理地配置各种继电保护并整定其参数等的重要依据。
为此,掌握短路发生以后的物理过程以及对短路过程的仿真计算方法是非常必要的。
二.无穷大功率电源供电系统仿真模型构建1.总电路图的设计
设线路参数为L=50Km ,Km x Ω=4.01,Km r Ω=17.01;变压器的额定
容量
A MV
n S 20=,短路电压
5.1000=s U ,短路损耗kW S P 135=∆,空载损耗
kW P 220=∆,空载电流8.000=O I ,变比11110=T k ,高低压绕组均为Y 形联
接;并设供电点电压为110kV 。
其对应的Simulink 仿真模型如下:
图1 无穷大功率电源供电系统的Simulink 仿真图
表1 仿真电路中各模块名称及提取路径 模块名
提取路径
无穷大功率电源10000MV/A ,110kV Source SimPowerSystems/Eletrical Sources 三相并联RLC 负荷模块5MW
SimPowerSystems/Elements 串联RLC 支路Three-PhaseSeries RLC Branch SimPowerSystems/Elements 双绕组变压器模块Three-PhaseTransformer SimPowerSystems/Elements 三相故障模块 Three-Phase Fault
SimPowerSystems/Elements 三相电压电流测量模块 Three-Phase Fault SimPowerSystems/Measurements 示波器模块 Scope
Simulink/Sinks 电力系统图形用户截面 Powergui
SimPowerSystems
2.各个元件的参数设定 2.1供电模块的参数设定
图 2
供
图2 供电模块的参数设置
2.2变压器模块的参数设置
变压器T 采用标幺值,则在Simulink 的三相变压器模型中,一次、二次绕组漏感和电阻的标幺值以额定功率和一次、二次侧各自的额定线电压为基准值,励磁电阻和励磁电感以额定功率和一次侧额定线电压为基准值。
则一次侧的基准值为
Ω=Ω==
⋅605201102211S U N
N
base R
H =H ⨯⨯⨯=∏⨯=⋅927.15014.3220110222
11f
S U N N base
L
二次侧的基准值为
Ω=Ω==
⋅05.620112222S U N
N
base R
H =H ⨯⨯⨯=∏⨯=⋅01927.05014.32201122222f
S U N N base
L
因此,一次绕组漏感和电阻的标幺值为
0033.0605
08
.45.05.011=⨯=
⨯⋅=
*R R base
T
R 052.0927
.1202
.05.05.011=⨯=
⨯⋅=*L
R base
T
L
同理,
0033.02=*R ,052.02=*L ,09.909=*m R ,3.106=*m L ,则变压器
模块的参数设置如下图3所示:
图3 采用标幺值时变压器模块的参数设置
2.3输电线路模块的参数设置
输电线路L 采用“Three-Phase Series RLC Branch ”模型。
根据给定的参数计算可得:
Ω=Ω⨯=⨯=5.85017.01l r L R Ω
=Ω⨯=⨯=20504.01l X L X ,
H =H ⨯⨯=∏=064.050
14.3220
2f X L L
L 输电线路模块的参数设置如下图4所
示:
图4 输电线路模块的参数设置
2.4三相电压电流测量模块
三相电压电流测量模块“Three-PhaseV-1 Measurement”将在变压器低压侧测量到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,其参数设置如下图5所示。
图5 三相电压电流测量模块
2.5三相线路故障模块参数设置
仿真时,故障点的故障类型等参数采用三相线路故障模块“Three-Phase Fault”来设置,如图6所示。
该模块参数区域中的主要选项说明如下:
1)Phase A Fault、Phase B Fault和Phase C Fault用来选择短路故障相。
2)Fault resistaances 用来设置短路点的电阻,此值不能为零。
3)Ground Fault 选项用来选择短路故障是否为短路接地故障。
4)Ground resistances 当故障类型是短路接地故障时显示该项,用来设置接地故障时的大地电阻。
5)External control of fault timing可以添加控制信号来控制该模块故障的启动和停止。
6)Transition status和Transition times用来设置转换状态和转换时间;其中,Transition status表示故障开关的状态,通常用“1”表示闭合,“0”表示断开;Transition times表示故障开关的动作时间;并且每个选项都有两个数值,而且它们是一一对应的。
7)Snubbers resistance和snubbers
Capacitance用来设置并联缓冲电路中
的过渡电阻和过渡电容。
8)Measurements 用来选择测量量。
6
图6 三相线路故障模块参数设置
2.6三相并联RLC负荷模块参数设置
基于MATLAB
的水电站运行仿真
页脚内容
图7 三相并联RLC 负荷模块参数设置
3.仿真结果
图中,黄色线电流数据,代表了“A ”相闭合,“B 、C ”相断开; 蓝色线电流数据,代表了“B ”相闭合,“A 、C ”相断开; 紫丝线电流数据,代表了“C ”相闭合,“A 、B ”相断开。