概率第一章(1)
概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:
完
随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象
(完整版)概率论第一章随机事件与概率

解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr
•
选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合
•
组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理
随机信号分析第一章 概率论1

例 从一批灯泡中抽取一只灯泡,测试它的使用寿命, 这是个随机试验. 设t表示灯泡的使用寿命,则样本空间 S={t|t≥0}.
• 特殊事件
样本空间Ω和空集Φ 作为Ω的子集也看作事件. 由于Ω包含所有的基本事件,故在每次试验中,必 有一个基本事件e∊ Ω发生,即在试验中,事件S必 然发生;因此, Ω是必然事件. 又因在Φ 中不包含任何一个基本事件,故在任何一 次试验中,Φ 永远不会发生;因此,Φ 是不可能事件. 常用Ω ,Φ 分别表示必然事件与不可能事件. 必然事件与不可能事件可以说不是随机事件,但是 为了研究的方便,还是把它们作为随机事件的两个 极端情形来处理.
(b)试验的所有可能的结果不止一个,而且是事先 已知的; (c)每次试验总是恰好出现这些可能结果中的一个, 但究竟出现哪一个结果,试验之前是不能确切预言的
人们将满足上述(a)、( b )、( c )三个条件的试 验,称为随机试验,简称为试验,以字母E来表示.
随机试验的每一个可能的结果称为基本事件,也称 作样本点,用字母e表示. • 随机试验E的全体基本事件所构成的集合,称为E的 的样本空间,记为Ω. 例 将一枚质量均匀对称的硬币投掷两次,观察正反 面出现情况,这也是个随机试验. 故样本空间 S={(正,正),(正,反),(反,正),(反,反)}.
在这个随机试验中,若设 A表示事件“第一次出现正面”.
在一次试验中,A发生当且仅当在这次试验中出现 基本事件 (正,正),(正,反) 中的一个. 这样可以认为A是由(正,正),(正,反)组成的, 而将A定义为它们组成的集合 A={(正,正),(正,反)}. 又如 事件B表示“两次出现同一面”
都发生的对立事件是至少一个不发生;至少一个发 生的对立事件是都不发生. 对偶原理在事件的运算中经常用到,它可以推广到 更多个事件的情况,即
概率第一章 概 率 论

第三节 概率的加法与乘法公式
由条件概率计算公式,可直接推得概率的乘法公式: 例6 讨论抓阄的公平性.设有10个阄中只有一个物阄,10个人不论 先后顺序抓阄,每人只能抓一次、一个阄,试讨论其结果与顺序 无关.
解 设Ai表示第i(i=1,2,…,10)个人抓到物阄,则第
6)是随机试验的6个基本事件,由于骰子的对称性,出现各个 基本事件的可能性相同,都为1/6,这个结果是可信的,没有人 会怀疑的.这种计算方法就叫做概率的古典概型方法. (1)有限性——样本空间的元素(基本事件)只有有限个,即Ω={ω 1,ω2,ω3,…,ωn}; (2)等可能性——每一个基本事件发生的可能性都相同,即 例2 先后抛掷两枚均匀的硬币,求出现一个正面一个背面的概率.
表格
例1 为实验炮弹在正常条件下的合格率,
第二节 随机事件的概率
对100000发炮弹中的100发炮弹进行发射试验,结果有90发炮弹正 常,合格的频率为90/100=0.9,因此,可以认为该批炮弹的 合格率基本在0.9左右,即任意从中抽取一发炮弹,能正常发射的 可能性为0.9. (1)0≤P(A)≤1; (2)P(Ω)=1; (3)P(⌀)=0; (4)若A⊂B,则P(A)≤P(B); (5)P(A)=1-P(). 二、概率的古典定义
事件组合而成的事件称为复合事件. 二、事件的关系与运算
在随机试验中有许多事件发生,而这些事件之间往往又有联 系.研究事件之间的各种关系与运算,可以帮助我们更深刻地认 识随机事件. 1.事件的包含与相等
第一节 随 机 事 件
2.事件的和(或并)
图 1-1
第一节 随 机 事 件
事件A与事件B至少有一个发生的事件,称为事件A与事件 B的和(或并)事件,记为A∪B(或A+B)(图1⁃2中的阴影 部分).因此,事件的和可以描述为:当且仅当事件A,B中至 少有一个发生时,事件A∪B发生.即A∪B={A,B至少有一 个发生}.
概率第一章

随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
概率论第1章(第一节)

本学期的研究内容
教材中的第一章---第四章 教材中的第一章---第四章 ---
第一章 随机事件与概率
随机事件及其运算 事件的概率 条件概率 事件的独立性
1.1 随机事件及其运算
一、基本概念:随机试验、样本空间、随机事件 基本概念:随机试验、样本空间、 概念 1、随机试验(简称“试验”) 、随机试验(简称“试验” 如果试验(或观察)具有下面三个特点: 如果试验(或观察)具有下面三个特点: (1)重复性:试验可以在相同条件下重复进行; 重复性:试验可以在相同条件下重复进行; 预知性:试验的全部可能结果不止一个, (2)预知性:试验的全部可能结果不止一个,但都是 可以预知的; 可以预知的; 随机性:每次试验前, (3)随机性 : 每次试验前 ,不能确定会出现哪一种结 果。 这样的试验(或观察)称为随机试验,一般记为 。 这样的试验(或观察)称为随机试验,一般记为E。
二、事件的关系 事件的包含与相等 事件的和(并) 事件的积(交) 事件的差 互斥事件(互件的包含与相等 事件的包含与相等
若事件A发生必导致事件B发生 称事件A包 若事件 发生必导致事件 发生,称事件 包 发生必导致事件 发生, 含于事件B, 包含A,记为A⊂ ,也称A是 的 含于事件 ,或B包含 ,记为 ⊂B,也称 是B的 包含 子事件。 子事件。
记作B = A ,称为A的对立事件 易见A − B = AB ;
A与B对立: 对立:
事件A 与B 既不能同 时发生, 时发生,又不能同时 不发生。 不发生。即在每次试 验中, 验中,A 与B 有且仅 有一个发生。 有一个发生。
注:对立事件必为互斥事件,但互斥事件 对立事件必为互斥事件, 未必是对立事件。 未必是对立事件。
概率论的发展
1657年,荷兰的数学家惠根斯 年 荷兰的数学家惠根斯(1629-1695)亦用自己的方法 惠根斯 亦用自己的方法 解决了上述问题,更写成了《论赌博中的计算》一书, 解决了上述问题,更写成了《论赌博中的计算》一书,这 就是概率论最早的论著。并由此奠定了古典概率论的基础。 就是概率论最早的论著。并由此奠定了古典概率论的基础。 世纪到19 世纪,贝努利、隶莫弗、拉普拉斯、高斯、 从 17 世纪到 世纪,贝努利、隶莫弗、拉普拉斯、高斯、 泊松、马尔可夫等著名数学家都对概率论的发展做出了杰 泊松、马尔可夫等著名数学家都对概率论的发展做出了杰 出的贡献。 出的贡献。 1933 年,苏联数学家柯尔莫哥洛夫发表了著名的《概率论 苏联数学家柯尔莫哥洛夫发表了著名的《 柯尔莫哥洛夫发表了著名的 的基本概念》,用公理化结构, 》,用公理化结构 的基本概念》,用公理化结构,为概率论确定严密的理论 是概率论发展史上的一个里程碑, 基础 ,是概率论发展史上的一个里程碑,为以后的概率论 的迅速发展奠定了基础。 到了近代,出现了理论概率及应用概率的分支, 到了近代,出现了理论概率及应用概率的分支,将概率论 应用到不同范畴,开展了不同学科。因此, 应用到不同范畴,开展了不同学科。因此,现代概率论已 经成为一个非常庞大的数学分支。 经成为一个非常庞大的数学分支。
概率论第一章

下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。
概率论第一章习题参考解答(高等教育出版社)

第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P ∴ )()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂ 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”,用B 表示事件“4只中至少有2只红球”, 用C 表示事件“4只中没有只白球”(1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P (3)99749535)(41247===C C C P 6.解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,用B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P(2)31123112)(=⨯⨯⨯⨯=B P 8、解 1.0)(,3.0)(,5.0)(===AB P B P A P (1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P 7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P )()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0== 717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P = 0408.020592840124135127116==⨯⨯⨯=9、解: 用A 表示事件“取到的两只球中至少有1只红球”,用B 表示事件“两只都是红球”方法1 651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算 51)(=A B P 10、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥5.045.005.0)()()()(=+=+==∴B A P AB P B A AB P A P同理 15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P11、解:用A 表示事件“任取6张,排列结果为ginger ”92401)(61113131222==A A A A A A P 12、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状” 由已知2.0)(=B A P 3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S =且B A AB B A B A ,,,互斥()6.01.03.02.0)()()(=++=++=∴AB P B A P B A P B A P 4.06.01)(1)()(=-=-==B A P B A P B A P()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P)()()(])[()(B P AB P B P B AB P B AB P ==414.01.0== 13、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受” ;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得 9996.02.09997.01.09999.03.09998.04.0)()()(41⨯+⨯+⨯+⨯==∑=ii iA B P A P B P99978.0=14、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知 1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则 9.0)(=A P ,15.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得15、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”,C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”由已知得 6.0)(=A P ,3.0)(=B P ,1.0)(=C P ;01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得 )()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==⨯+⨯+⨯⨯=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005.03.0==⨯+⨯+⨯⨯=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==⨯+⨯+⨯⨯=16、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P17、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”,C 表示事件“两次得同一面”则 ,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P)()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===∴ C B A ,,∴两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ≠ C B A ,,∴不是相互独立的18、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”,C 表示事件“运动员C 进球”,由已知得 5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则 5.0)(=A P ,3.0)(=B P ,4.0)(=C P(1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,( 29.06.03.05.04.07.05.04.03.05.0=⨯⨯+⨯⨯+⨯⨯=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=⨯⨯+⨯⨯+⨯⨯= (3){})(C B A P P =至少有一人进球 )(1C B A P -= )(1C B A P -=)()()(1C P B P A P -= 相互独立)C B A ,,( 4.03.05.01⨯⨯-= 94.0=19、解:用i A 表示事件“第i 个供血者具有+-RH A 血型”, ,3,2,1=iB 表示事件“病人得救”,4321321211A A A A A A A A A A B =4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立 ()()(1P A P B P +=∴+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=⨯+⨯+⨯+=20、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立 方法1:54321A A A A A B =)()(54321A A A A A P B P =∴()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=方法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A ()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----= ()相互独立54321,,,,A A A A A ()()()221111p p p ----= 543222p p p p p +--+= 21、解:用A 表示事件“真含有杂质”,用B 表示事件“次检验认为不含有杂质次检验认为含有杂质次检验中有123”由已知得 4.0)(=A P ,6.0)(=A P ,2.08.0)(223⨯⨯=C A B P ,9.01.0)(223⨯⨯=C A B P由贝叶斯公式得9.01.06.02.08.04.02.08.04.0)()()()()()()(223223223⨯⨯⨯+⨯⨯⨯⨯⨯⨯=+=C C C A B P A P A B P A P A B P A P B A P 905.016981536==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规定: Ai lim Ai
i 1 n i 1
4 交
n
A B
A B
事件A, B同时发生的事件。
推广1: Ai 表示A1 , A2 ,, An同时发生.
i 1
推广2:
i 1
Ai lim Ai
n i 1
n
A B
5 差 A B
事件A发生而事件B不发生
§1· 随机事件与样本空间 1
一 随机试验
一个试验如果满足下列条件则称为随机试验。 (1)试验可以在相同的条件下重复进行。 (可重复性) (2)试验的所有结果明确可知,并且不止一个。 (全部可知性) (3)每次试验只能出现一个结果,并且事先不能确定。(随机性)
二 随机事件
1 基本事件(样本点) 用 试验中的每一个基本的结果称为基本事件(样本点)。 表示 2 样本空间 全体样本点构成的集合。 用 表示
出正面次数
1061 2048 6019 12012
出正面频率
0.518 0.5069 0.5016 0.5005
频率的 性质: 1º非负性: 2º规范性:
f n ( A) 0 f n ( ) 1
3º 有限可加性: f n ( A B ) f n ( A) f n ( B ) ( AB )
ABC
AB AC BC
ABC
(4) A , B, C 中恰好有两个发生 ABC ABC ABC
(5) A , B, C 中至多有一个发生
ABC ABC ABC ABC
2 运算规律
1)交换律:
A B B A
A B B A
( A B) C ( A B) C
个人各抽一张,在未抽完之前先抽者不准宣布结果。试证
明:每个人抽的甲级票的概率相等皆为k/n,而与取的先
后顺序无关。
例4 从1,2,·,9共9个数字中任取一个,然后放回,先 · · 后取出5个数字,求下列事件的概率
(1)A:最后取出的数字是奇数
(2)B:五个数字全不相同
(3)C:1恰好出项两次
(4)D:1至少出现两次
i 1 i 1
2) 概率是定义在事件域上非负 规范 可列可加的集合函数。
四、 概率空间
设 --样本空间 F—事件域 P—概率 称三元总体( , F , )为概率空间。
五 概率的性质
1 P ( ) 0
2 P ( Ai ) P ( Ai )
i 1 i 1 n n
………(1)
r1 r2 rs n ,则 分法总数为: n! r1! r2 ! rs !
二 古典概型
1 定义: 若随机试验具有下列性质
1º 具有有限个样本点 1 , 2 , n
2º 每个样本点出现的机会均等 则称此试验为古典概型。 2 概率计算:
k A中所含基本事件数 A中样本点数 P ( A) n 基本事件总数 样本点总数
序 论
一 概率论与数理统计研究的对象
1 确定性现象
在一定条件下必然发生的某种确定性现象。
2 随机现象
在一定的条件下进行观察和试验,其结果不能事先确
定的现象。 (偶然性、规律性) 概率统计是研究随机现象统计规律的一门数学学科。 二 概率统计的起源与发展 三 概率论的广泛应用
第一章
事件与概率
本章主线提示:先由随机试验引出样本空间,并 给出概率的描述性定义,然后介绍古典概型与几 何概型中概率的求法。在对概率有了一些直观了 解的基础上,引出了事件的域,进而给出了概率 的公理化定义,并由此定义导出概率的基本性质。
Ai A j (1 i j n)
……..(2)
3 对任意事件A有, P ( A) 1 P ( A) (3)
(4)
4 若A B , 则 1o P ( A B ) P ( A) P ( B ) 2o P ( A) P ( B )
A AB B
B AB
§1.4 概率的公理化定义及概率的性质
引例1 某汽车站每隔5分钟有一辆汽车到站,乘客到达车
站的时刻是随机的,求一个乘客候车时间不超过3分钟的
概率。 引例2 如果在一个5平方公里的海域里有表面达40平方公 里的大陆架蕴藏着石油,假设在这海域里随意任取一点
钻探,问钻到石油的概率是多少? 引例3 在400ml的自来水中有一个大肠杆菌,今从中随 机取出2ml水,放在显微镜下观察,求发现大肠杆菌的概
n! r n (C n C n r r !( n r )!
r r r C n C n1 C n1 )
r (1 r n)
可重复组合:
r C n r 1
多组组合: 将n个不同的元素分成 s组,使第一组有 r 1 个元素, 第二组 r 2 有个元素,第s组有 rS 个元素 ,且有
A B A B
注:差运算不满足交换律 6 互不相容(互斥)
若事件A,B不能同时发生 A B
7 对立事件(逆事件)
若A B ,A B 记为 A B
1o A A 2o A A
A
A
3o A B AB
例2 设 A , B, C 是 中的随机事件,试用事件间的运算关 系表示下列事件: (1) A , B, C 中至少有一个发生 (2) A , B, C 中至少有两个发生 (3)事件 A 与 B 发生 而 C 不发生
例4(Buffon投针问题)平面上画着一些平行线,它们之
间的距离为a,向此平面内任投一长度为L(L<a)的 针,求此针与某一 行线相交的概率。
二 、事件域
1. 布尔代数
设是集合, F是由 的一些子集组成的集合族,如果满足:
1o F 2o 若 A F , 则 A F
n i 1
o
例1 在自然数1,2,…120中任取一数,求此数能被3整除的概率。
解: 设 A=“此数能被3整除” {1 , 2 ,120 } n 120
n A 120 40 3 40 P ( A) 120 1 由古典概型的计算公式: 3
例2 100只同批生产的外形完全一样同型号的三极管中按
若F由样本空间的一些子集构成一个域,则称它为
事件域。 F中的元素称为事件。
三、概率的公理化定义
1) 定义在事件域F上的集合函数P称为概率, 如果满足:
(P.1)非负性:
P () 0 P ( ) 1
(P.2)规范性:
(P.3)可列可加性: 若
Ai F , i 1,2, Ai A j ( i j ) , 则 P ( Ai ) P ( Ai )
(5)E:恰好出现两对不同的数字
例5 9个国籍不同的乒乓球队,内有3个亚洲国家队,抽
签分成3组进行预赛,(每组3队),试求:
(1)3个组各有1个亚洲国家队的概率。
(2)3个亚洲国家队集中在第一组的概率。
(3)3个亚洲国家队集中在某一组的概率。
例6(分房问题 分球入盒问题)将n个不同的球以同样的 概率分到N(n N)个盒子中去,试求下列事件的概率。 (1)指定的n个盒子各有一个球。 (2)恰好有n个盒子各有一个球。 例7 在例7中假定n个球是不可分辨的,求 (1)(2)两
(1)
P (1 ) P ( 2 ) P ( n ) 1 n
3
概率的古典定义
k P ( A) 称为事件A发生的概率。 将 n
----古典定义
o n n i 1 i 1
4 性质: 1 P ( A) 0
o
2 P ( ) 1 3 P ( Ai ) P ( Ai )
例1 写出下列试验的样本空间
1) 抛掷一枚均匀的硬币,观察出现正反面的情况。 2)连续投两枚硬币,观察出现正反面的情况。 3)对某一目标进行射击,直到击中为止。
4)研究电视机的使用寿命。
3 随机事件 定义:样本空间中具有某种性质的样本点的集合。 4
必然事件
不可能事件
A
A
率是多少?
一、 几何概型
定义:
若随机试验满足以下条件,则称其为几何概型。
1º 有无限个样本点,且样本空间是几何空间中的一个
有限区域。
2º样本点落在有限区域的概率与区域的度量大小成正比
而与区域的位置形状无关。
计算公式:
A的度量 A P ( A) 的度量
几何概率
性质: 1º非负性
2º规范性
( 2)结合律: A B ) C ( A B ) C
3)分配律: ( A B ) C ( A C ) ( B C )
A B A B A B A B
i 1
4)对偶律: ( D.Morgan律 ) 5)幂等律:
i 1
Ai Ai
i 1
A { 3 , 6 ,120 }
电流放大系数分类,有40只属于甲类,60只属于乙类。在 按 1)有放回抽样 2)不放回抽样下,求下列事件的概率 A= “从100只中任取3只,3只都是乙类”
B=“从100只中任取3只,其中有2只是甲类,1只是乙类”
例3 设有n个人定了n张票,其中有k张甲级票,现让这n
A B
A
5
对任意两个事件A,B 有:
P ( A B) P ( A) P ( B) P ( A B) (5)
推广: 设A1,A2, ,An F,则有:
P( Ai) P(Ai)
i 1 i 1 n n 1 i〈j n
3o 若Ai F , i 1,2, n, 则 Ai F
则称 F 为布尔代数.
2.
o