模式识别实验报告-实验一-Bayes分类器设计汇总
模式识别实验一

, n 是 n 维均值
向 量 , C i 是 n n 协 方 差 矩 阵 ; Ci 为 矩 阵 Ci 的 行 列 式 。 且 i Ei x ,
Ci Ei
x
i
x
i , Ei x 表示对类别属于 i 的模式作数学期望运算。
T
因此判别函数可表示为 J i ( x) P( x | i ) P(i ) 对判别函数取自然对数
1 1 J i ( x) ( x i ) Ci1 ( x i ) ln P(i ) ln Ci 2 2
然后根据(1)中所述最大后验准则判断样本所属类别。 三、实验过程 实验数据: IRIS 数据集 实验假设: 各类数据服从正态分布 实验方法: 最大后验概率 实验环境: MATLAB 2010b (1)数据导入
A , B 可设置每种类型的先验概率 P A , P B 。针对某一训练数据 x 计
算其判别函数 J A x , J B x ,比较两个值的大小,哪个最大,就可判断该数据 属于哪一类。最后统计分类器判决结果,设置矩阵存储被错误分类的数据,统计 A,B 两类测试数据的误判数,计算误判率。 %---------分类器测试----------% %选择分类组(w1,w2)(w1,w3)(w2,w3) %test = 1代表(w1,w2)分类 %test = 2代表(w1,w3)分类 %test = 3代表(w2,w3)分类 test = 1; if test==1 avr_A = avr_w1';var_A = var_w1'; avr_B = avr_w2';var_B = var_w2'; %合并待测数据 data_test = [data_test_w1;data_test_w2]; end if test==2 avr_A = avr_w1';var_A = var_w1'; avr_B = avr_w3';var_B = var_w3'; %合并待测数据 data_test = [data_test_w1;data_test_w3]; end if test==3 avr_A = avr_w2';var_A = var_w2'; avr_B = avr_w3';var_B = var_w3'; %合并待测数据 data_test = [data_test_w2;data_test_w3]; end %s设置先验概率 P_wA = 1/2; P_wB = 1/2;
模式识别第一次作业报告

模式识别第一次作业报告姓名:刘昌元学号:099064370 班级:自动化092班题目:用身高和/或体重数据进行性别分类的实验基本要求:用famale.txt和male.txt的数据作为训练样本集,建立Bayes分类器,用测试样本数据test1.txt和test2.txt该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
一、实验思路1:利用Matlab7.1导入训练样本数据,然后将样本数据的身高和体重数据赋值给临时矩阵,构成m行2列的临时数据矩阵给后面调用。
2:查阅二维正态分布的概率密度的公式及需要的参数及各个参数的意义,新建m函数文件,编程计算二维正态分布的相关参数:期望、方差、标准差、协方差和相关系数。
3.利用二维正态分布的相关参数和训练样本构成的临时数据矩阵编程获得类条件概率密度,先验概率。
4.编程得到后验概率,并利用后验概率判断归为哪一类。
5.利用分类器训练样本并修正参数,最后可以用循环程序调用数据文件,统计分类的男女人数,再与正确的人数比较得到错误率。
6.自己给出决策表获得最小风险决策分类器。
7.问题的关键就在于利用样本数据获得二维正态分布的相关参数。
8.二维正态分布的概率密度公式如下:试验中编程计算出期望,方差,标准差和相关系数。
其中:二、实验程序设计流程图:1:二维正态分布的参数计算%功能:调用导入的男生和女生的身高和体重的数据文件得到二维正态分布的期望,方差,标准差,相关系数等参数%%使用方法:在Matlab的命令窗口输入cansu(male) 或者cansu(famale) 其中 male 和 famale%是导入的男生和女生的数据文件名,运用结果返回的是一个行1行7列的矩阵,其中参数的顺序依次为如下:%%身高期望、身高方差、身高标准差、体重期望、体重方差、体重标准差、身高和体重的相关系数%%开发者:安徽工业大学电气信息学院自动化 092班刘昌元学号:099064370 %function result=cansu(file)[m,n]=size(file); %求出导入的数据的行数和列数即 m 行n 列%for i=1:1:m %把身高和体重构成 m 行 2 列的矩阵%people(i,1)=file(i,1);people(i,2)=file(i,2);endu=sum(people)/m; %求得身高和体重的数学期望即平均值%for i=1:1:mpeople2(i,1)=people(i,1)^2;people2(i,2)=people(i,2)^2;endu2=sum(people2)/m; %求得身高和体重的方差、%x=u2(1,1)-u(1,1)^2;y=u2(1,2)-u(1,2)^2;for i=1:1:mtem(i,1)=people(i,1)*people(i,2);ends=0;for i=1:1:ms=s+tem(i,1);endcov=s/m-u(1,1)*u(1,2); %求得身高和体重的协方差 cov (x,y)%x1=sqrt(x); %求身高标准差 x1 %y1=sqrt(y); %求身高标准差 y1 %ralation=cov/(x1*y1); %求得身高和体重的相关系数 ralation %result(1,1)=u(1,1); %返回结果 :身高的期望 %result(1,2)=x; %返回结果 : 身高的方差 %result(1,3)=x1; %返回结果 : 身高的标准差 %result(1,4)=u(1,2); %返回结果 :体重的期望 %result(1,5)=y; %返回结果 : 体重的方差 %result(1,6)=y1; %返回结果 : 体重的标准差 %result(1,7)=ralation; %返回结果:相关系数 %2:贝叶斯分类器%功能:身高和体重相关情况下的贝叶斯分类器(最小错误率贝叶斯决策)输入身高和体重数据,输出男女的判断%%使用方法:在Matlab命令窗口输入 bayes(a,b) 其中a为身高数据,b为体重数据。
bayes 分类器设置实验总结

bayes 分类器设置实验总结Bayes 分类器设置实验总结在机器学习领域中,分类算法是一个常见的任务之一。
Bayes 分类器是一种基于概率统计的分类算法,它基于贝叶斯定理对样本进行分类。
在本次实验中,我们将对Bayes 分类器的设置进行实验,并总结实验结果。
一、实验目的Bayes 分类器是一种简单但有效的分类算法,通过实验设置我们的目的是验证Bayes 分类器在不同参数下的分类效果,并探索如何对其进行优化。
我们希望通过实验的设计和分析,能够决定最佳的参数设置,并对Bayes 分类器的性能有更深入的了解。
二、数据集选择在进行实验之前,我们需要选择一个合适的数据集作为实验对象。
数据集应具备以下特点:1. 包含有标签的样本数据:由于Bayes 分类器是一种监督学习算法,我们需要有样本的标签信息来进行分类。
2. 具备多类别分类的情况:我们希望能够测试Bayes 分类器在多类别分类问题上的表现,以便更全面地评估其性能。
三、实验设置1. 数据预处理:根据所选数据集的特点,我们需要对数据进行适当的预处理。
可能的预处理步骤包括特征选择、特征缩放、处理缺失值等。
2. 分类器参数设置:Bayes 分类器的性能会受到不同参数的影响,我们希望通过实验找到最佳的参数设置。
例如,在朴素贝叶斯分类器中,我们可以选择不同的先验概率分布,或者使用不同的平滑技术来处理零概率问题。
3. 评价指标选择:为了评估分类器的性能,我们需要选择合适的评价指标。
常见的评价指标包括准确率、召回率、精确率和F1 分数等。
四、实验结果在实验完成后,我们将根据所选的评价指标对实验结果进行分析和总结。
我们可以比较不同参数设置下的分类器性能,并选择最佳的参数设置。
此外,我们还可以考虑其他因素对分类器性能的影响,如数据预处理方法和样本量等。
五、实验总结在本次实验中,我们通过对Bayes 分类器的设置进行实验,得到了一些有价值的结果和经验。
根据实验结果,我们可以总结以下几点:1. 参数设置的重要性:Bayes 分类器的性能受到参数设置的影响。
模式识别实验一.pdf

%计算三类训练数据的协方差矩阵 var_w1 = cov(data_train_w1(:,:)); var_w2 = cov(data_train_w2(:,:)); var_w3 = cov(data_train_w3(:,:));
%导入iris数据集
%---------抽取训练数据----------% %各组训练数据个数 NUM_train = 30; %在各组中随机抽取NUM_train个训练样本 %随机打乱各组数据顺序 temp_w1= randperm(50); temp_w2= randperm(50); temp_w3= randperm(50); %取随机打乱顺序后的前NUM_train个数据作为训练样本,并存储 %第5列数据代表其所属分类 for i=1:NUM_train
Ci Ei
x i
x
T i
, Ei x 表示对类别属于i 的模式作数学期望运算。
因此判别函数可表示为 Ji (x) P(x | i )P(i ) 对判别函数取自然对数
J
i
(
x)
1 2
(
x
i
)
Ci1
(
x
i
)
ln
P(i
)
1 2
ln
Ci
n ln(2 ) 2
(5)
在样本维数相同的情况下,上式中的最后一项为常数,与样本所属类别无关, 所以可以将其从判别函数中去掉,不会改变分类结果。判别函数化简为
一、实验目的 1. 掌握统计判别问题的含义,理解贝叶斯判别原理。 2. 编写两类正态分布模式的贝叶斯分类程序。 3. 观察各种因素对分类错误概率的影响。
二、实验原理 模式识别的分类问题是根据识别对象特征的观察值将其分到某个类别中去,
2018-分类器实验报告-word范文模板 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==分类器实验报告篇一:Bayes分类器设计实验报告装订线模式识别实验报告:学院计算机科学与技术专业 xxxxxxxxxxxxxxxx学号xxxxxxxxxxxx姓名xxxx指导教师xxxx201X年xx月xx日题目Bayes分类器设计一、实验目的对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
二、实验原理最小风险贝叶斯决策可按下列步骤进行:(1)在已知叶斯公式计算出后验概率: ???及给出待识别的X的情况下,根据贝(2)利用计算出的后验概率及决策表,按下面的公式计算出采取险的条件风(3)对(2)中得到的a个条件风险值风险最小的决策????则就是最小风险贝叶斯决策。
,即进行比较,找出使其条件三、实验内容假定某个局部区域细胞识别中正常和非正常两类先验概率分别为正常状态:P (w1)=0.9;异常状态:P(w2)=0.1。
现有一系列待观察的细胞,其观察值为x:-3.9847-3.5549-1.2401-0.9780 -0.7932 -2.8531-2.7605-3.7287-3.5414-2.2692 -3.4549 -3.0752-3.9934 2.8792-0.97800.7932 1.1882 3.0682-1.5799-1.4885-0.7431-0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。
四、实验要求1)用matlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。
2)根据例子画出后验概率的分布曲线以及分类的结果示意图。
3)如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。
《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。
本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。
由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。
我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。
则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。
Bayes分类器算法

⇒ x ∈ωi
2、具体步骤如下 A).算出各类别特征值的均值 B).求出特征值的协方差矩阵 C).将第二步所得矩阵代入判别函数 g1(x)、g2(x) D).将待测试样本集数据依次代入 g1(x)- g2(x),若 g1(x)- g2(x)>0,则判断其为第一类,反
之为第二类。 3、流程图
确定特征及先验概率
体重: clear all; load FEMALE.txt; load MALE.txt; fid=fopen('test2.txt','r'); test1=fscanf(fid,'%f %f %c',[3,inf]); test=test1';
fclose(fid); Fmean = mean(FEMALE); Mmean = mean(MALE); Fvar = std(FEMALE); Mvar = std(MALE); preM = 0.9; preF = 0.1; error=0; Nerror=0; figure; for i=1:300
Nerror = Nerror +1; end; else plot(test(i,1),test(i,2),'k*'); if (test(i,3)=='F')
Nerror = Nerror +1; end end hold on; end; title('身高体重不相关最小风险的 Bayes 决策'); ylabel('身高(cm)'),zlabel('体重(kg)'); error = Nerror/300*100; sprintf('%s %d %s %0.2f%s','分类错误个数:',Nerror,'分类错误率为:',error,'%')
模式识别实验报告贝叶斯分类器

模式识别理论与方法
课程作业实验报告
实验名称:Generating Pattern Classes
实验编号:Proj02-01
规定提交日期:2012年3月30日
实际提交日期:2012年3月24日
摘要:
在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。
对于类数的先验概率已知、且无须考虑代价函数的情况,贝叶斯分类器相当简单:“跟谁亲近些,就归属哪一类”。
技术论述:
1,贝叶斯分类器基本原理:多数占优,错误率最小,风险最低
在两类中,当先验概率相等时,贝叶斯分类器可以简化如下:
2,增加有效分类特征分量,可以有助于改善分类效果
实验结果讨论:
从实验的过程和结果来看,进一步熟悉了贝叶斯分类器的原理和使用,基本达到了预期目的。
实验结果:
图1 原始数据
图2 按第1 个特征分量分类结果
图3 按第2 个特征分量分类结果
图4 综合两个特征分量分类结果附录:(程序清单,参见压缩包)
%在Matlab 版本2009a 下运行通过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 Bayes 分类器设计【实验目的】对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
【实验原理】最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j ii i i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==c j j j ii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即()()1,min k i i aR a x R a x ==L 则k a 就是最小风险贝叶斯决策。
【实验内容】假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为正常状态:P (1ω)=0.9;异常状态:P (2ω)=0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532已知类条件概率是的曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为N (-2,0.25)、N (2,4)试对观察的结果进行分类。
【实验要求】1) 用matlab 完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。
2)根据例子画出后验概率的分布曲线以及分类的结果示意图。
3) 如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。
【实验程序】◆最小错误率贝叶斯决策✧分类器设计x=[-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287-3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.97800.79321.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 ]pw1=0.9 ; pw2=0.1e1=-2; a1=0.5e2=2;a2=2m=numel(x) %得到待测细胞个数pw1_x=zeros(1,m) %存放对w1的后验概率矩阵pw2_x=zeros(1,m) %存放对w2的后验概率矩阵results=zeros(1,m) %存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e 2,a2))%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e 2,a2))endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0 %正常细胞elseresult(i)=1 %异常细胞endenda=[-5:0.05:5] %取样本点以画图n=numel(a)pw1_plot=zeros(1,n)pw2_plot=zeros(1,n)for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a (j),e2,a2))%计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a (j),e2,a2))endfigure(1)hold onplot(a,pw1_plot,'k-',a,pw2_plot,'r-.')for k=1:mif result(k)==0plot(x(k),-0.1,'b*') %正常细胞用*表示elseplot(x(k),-0.1,'rp') %异常细胞用五角星表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞')xlabel('样本细胞的观察值')ylabel('后验概率')title('后验概率分布曲线')grid onreturn ;✧实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 ,-3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ]disp(x)pw1=0.9pw2=0.1[result]=bayes(x,pw1,pw2)◆最小风险贝叶斯决策✧分类器设计function [R1_x,R2_x,result]=danger(x,pw1,pw2)m=numel(x) %得到待测细胞个数R1_x=zeros(1,m) %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m) %存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m) %存放比较结果e1=-2a1=0.5a2=2%类条件概率分布px_w1:(-2,0.25)px_w2(2,4)r11=0r12=2r21=4r22=0%风险决策表for i=1:m %计算两类风险值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i), e2,a2))endfor i=1:mif R2_x(i)>R1_x(i)%第二类比第一类风险大result(i)=0 %判为正常细胞(损失较小),用0表示result(i)=1 %判为异常细胞,用1表示endenda=[-5:0.05:5] %取样本点以画图n=numel(a)R1_plot=zeros(1,n)R2_plot=zeros(1,n)for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf( a(j),e2,a2))+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf (a(j),e2,a2))R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf( a(j),e2,a2))+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf (a(j),e2,a2))%计算各样本点的风险以画图endfigure(1)plot(a,R1_plot,'b-',a,R2_plot,'g*-')for k=1:mif result(k)==0plot(x(k),-0.1,'b^')%正常细胞用上三角表示elseplot(x(k),-0.1,'go')%异常细胞用圆表示end;end;legend('正常细胞','异常细胞','Location','Best')xlabel('细胞分类结果')ylabel('条件风险')title('风险判决曲线')grid onreturn实验内容仿真x = [-3.9847 , -3.5549 , -1.2401 , -0.9780 , -0.7932 , -2.8531 ,-2.7605 , -3.7287 , -3.5414 , -2.2692 , -3.4549 , -3.0752 , -3.9934 , 2.8792 , -0.9780 , 0.7932 , 1.1882 , 3.0682, -1.5799 , -1.4885 , -0.7431 , -0.4221 , -1.1186 , 4.2532 ]disp(x)pw1=0.9[R1_x,R2_x,result]=danger(x,pw1,pw2)【实验结果和数据】最小错误率贝叶斯决策后验概率曲线与判决结果在一张图上:后验概率曲线如图所示,带*的绿色曲线为判决成异常细胞的后验概率曲线;另一条平滑的蓝色曲线为判为正常细胞的后验概率曲线。
根据最小错误概率准则,判决结果见曲线下方,其中“上三角”代表判决为正常细胞,“圆圈”代表异常细胞。