第七章溶胶凝胶法制备薄膜及涂层材料演示文稿
溶胶-凝胶法制备ZnO薄膜

(AZO)thin films are emerging as an altemative potential candidate for ITO (Sn.doped In203)flims recently not only because of their comparable optical and electrical properties to ITO films,but also because of their higher thermal and chemical stability under the exposure to hydrogen plasma than ITO.
电子科技大学硕士学位论文
Abstract
Zinc oxide(ZnO)as a wide band-gap(3.3eV)compound semiconductor with
wurtzite crystal structure.is gaining importance for the possible application aS a semiconductor laser,due to its high exciton binding energy of 60 meV.A1·doped ZnO
溶胶凝胶法制备二氧化硅薄膜资料讲解

SiO2制备方法
采用溶胶凝胶法 以硅醇盐或硅卤化物为原料, 以醇作为共熔
剂, 加入酸或碱溶液作为催化剂, 通过硅醇盐 或硅卤化物的水解、缩聚, 形成SiO2 凝胶.采 用正硅酸乙酯( TEOS) 为原料, 典型的Sol- Gel 法( 一步法) 反应为 Si(OC2H5)4+ 4H2O ——Si(OH)4+4C2H5OH
制造超细颗粒及微球体。溶胶-凝胶法制微粉通常从喷嘴或超声 分离装置中喷出溶胶,而后在一定气氛中对微溶胶液滴进行凝胶化 处理。这一方法可对金属盐和金属醇盐的各种先驱体进行工业化 处理,由于反应对象仅仅是水, 引入杂质的可能性小,故溶胶-凝胶 法制备的超细颗粒有粒度细单分散性好,纯度高及重复性好等特点。
流程
化学过程
溶胶-凝胶法的化学过程首先是将原料分 散在溶剂中,然后经过水解反应生成活性 单体,活性单体进行聚合,开始成为溶胶, 进而生成具有一定空间结构的凝胶,经过 干燥和热处理制备出纳米粒子和所需要材 料。
特点
溶胶-凝胶法与其它方法相比具有许多独 特的优点:
1)由于溶胶-凝胶法中所用的原料首先被分 散到溶剂中而形成低粘度的溶液, 因此, 就可 以在很短的时间内获得分子水平的均匀性, 在形成凝胶时, 反应物之间很可能是在分子 水平上被均匀地混合;
制备陶瓷涂层薄膜,如Al2O3涂层 制备陶瓷 ,如纤维SiO2纤维: 其基本原料是Na2 SiO3 制得的聚硅酸,
但是由于聚硅酸的多官能团性,水解缩合时易成为体型结构,为了 得到线型缩合物,必须将其部分酯化后再进行缩合。其方法是将 Na2 SiO3 溶液加入HCl再用T HF萃取分离得到硅酸的THF溶液,然后 加入醇类进行酯化。酯化度( DE )约为50%的聚硅酸酯有利于制得 线型缩合物。当浓度和分子量达到一定范围时,溶胶显示可纺性。 目前,由聚硅酸乙酯( DE= 50% )通过溶胶-凝胶法得到的先驱体溶胶 纺丝再进行热处理到900℃ ,制得连续SiO2 纤维已经工业化生产, 强度约6GPa ,模量约70 GPa ,最高使用温度为1100℃。
溶胶凝胶法制备二氧化硅薄膜ppt课件

2
精选ppt
溶胶凝胶法介绍
什么是溶胶凝胶法? 化学过程 应用领域
3
精选ppt
溶胶凝胶法介绍
溶胶是指微小的固体颗粒悬浮分散在液相中,并 且不停的进行布朗运动的体系。根据粒子与溶剂 相互作用的强弱,通常将溶胶分为亲液型和憎液型 两类。由于界面原子的Gibbs自由能比内部原子高, 溶胶是热力学不稳定体系。若无其它条件限制,胶 粒倾向于自发凝聚。达到低比表面状态。若上述 过程为可逆,则称为絮凝; 若不可逆,则称为凝胶化。
其他应用例举
制造超细颗粒及微球体。溶胶-凝胶法制微粉通常从喷嘴或超声 分离装置中喷出溶胶,而后在一定气氛中对微溶胶液滴进行凝胶化 处理。这一方法可对金属盐和金属醇盐的各种先驱体进行工业化
处理,由于反应对象仅仅是水, 引入杂质的可能性小,故溶胶-凝胶 法制备的超细颗粒有粒度细单分散性好,纯度高及重复性好等特点。
制备步骤
将46. 5 g 正硅酸乙酯( T EOS ) , 90 ml 无水乙 醇及10 ml 0. 1 M 盐酸及一定数量的硅烷偶 联剂均匀混合后, 在55℃下恒温水解6 h 得 均匀透明的溶胶, 然后加热蒸发得凝胶, 凝胶 在80℃恒温下烘干17 h 得白色粉体, 破碎、 筛分, 全部通过- 400 目后密封保存。
流程
5
精选ppt
化学过程
溶胶-凝胶法的化学过程首先是将原料分 散在溶剂中,然后经过水解反应生成活性 单体,活性单体进行聚合,开始成为溶胶, 进而生成具有一定空间结构的凝胶,经过 干燥和热处理制备出纳米粒子和所需要材 料。
6
精选ppt
特点
溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。
ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。
溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。
本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。
接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。
我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。
通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。
本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。
二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。
该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。
随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。
在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。
锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。
水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。
这些胶体颗粒在溶液中均匀分散,形成溶胶。
随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。
凝胶网络中的空隙被溶剂填充,形成湿凝胶。
湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。
第七章溶胶凝胶法制备薄膜及涂层材料演示文稿

7.1.2 醇盐法制备薄膜的溶胶-凝胶工艺特征
▪ 7.1.2.1 反应体系的确定 ▪ 反应体系包括:金属醇盐、溶剂、水、催化剂、
水解速度控制剂及成膜控制剂。
▪ 表7-2 给出了几种典型醇盐法制备薄膜的溶胶-凝 胶反应体系的组成
表7-2 几种典型醇盐法制备薄膜的溶胶-凝胶反应体系的组成
ZrOCl2 、Mg(NO3)2、 Y(NO3)3
沉淀剂
成膜促进剂
NH4OH H2C2O4
聚乙烯醇(PVA)
NH4OH
聚乙烯醇(PVA)、 阴离子表面活性
(NH4)2CO3
剂
MgAl2O4 MgFe2O4 Mg (Fe,Al)O4
Mg (NO3)2 、Al (NO3)3、 Fe(NO3)3
(NH4)2CO3
7.1.2.2影响成膜性和膜结构的主要因素
▪ 采用醇盐法制备薄膜时,影响成膜性和膜 结构的主要因素仍然是溶胶的配比、溶胶 的稳定性、干燥制度、烧结制度和基体的 选择等,具体情况与7.1.1.3节讨论的相同。 此处需要强调的是溶胶的稳定性是可以工 业化最关键的前提条件。
7.1.3 溶胶-凝胶法制备膜工艺优点
-2.51 50
7.2×104 0.21
(90~100)×10-7 0.837 1012.5 106.3 105.3 1.515
(5)玻璃基板中的气体及表面吸附气体
玻璃中气体的种类及含量依玻璃成分及生产方 法的不同而不同。表7-9列出了经加热后自玻璃释 放出的气体种类及含量。
表7-9经加热后自玻璃基板释放的气体
7.2溶胶-凝胶法制备薄膜的工艺方法
▪ 溶胶-凝胶法制备薄膜方法有:浸渍法(Dipping),旋覆法 (Spinning),喷涂法(Spraying)和简单刷涂法(Painting) 及 电沉积法等等。常用的是浸渍法和旋覆法。
溶胶凝胶法 PPT

n [Al(OH)3(H2O) 3]0 + xHNO3 = { [Al(OH)3(H2O) 3]nHx}x+ + xNO3-
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离子。
溶胶-凝胶法的缺陷
原料成本较高 存在残留小孔洞 存在残留的碳 较长的反应时间 有机溶剂对人体有一定的危害性
溶胶-凝胶法的未来
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感器。 3. 法国的J.Livage制备的生物寄生检测器。
溶胶凝胶法
目录
基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
溶胶-凝胶法的基本概念
胶体(colloid)是一种分散相粒径很小的分散 体系,分散相粒子的重力可以忽略,粒子之间 的相互作用主要是短程作用力。
溶胶(Sol)是具有液体特征的胶体体系,分 散的粒子是固体或者大分子,分散的粒子大小 在1~1000nm之间。
溶胶-凝胶法的应用
-功能材料中制备纤维
Si(OCH3)4 C2H5OH
H2O,HCl
C2H5OH NdCl3.6H2O
搅拌(室温)
混合溶液
放置、脱水(室温~8 0%)
粘性溶胶
拉纤维(室温)
凝胶纤维
加热(10℃/h) 500℃ 1h,冷却至室温
铷玻璃纤维
溶胶-凝胶法的应用
纳米涂层材料的制备及其防腐性能研究

纳米涂层材料的制备及其防腐性能研究随着科学技术的不断发展,纳米材料已经广泛应用于各个领域。
其中,纳米涂层材料作为一种新型涂层技术,对于提高材料的防腐性能具有巨大潜力。
本文将探讨纳米涂层材料的制备方法以及其在防腐蚀领域的应用。
1.纳米涂层材料的制备方法1.1 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米涂层制备方法,它主要通过溶胶和凝胶两个步骤完成。
首先,通过溶胶的形式将所需纳米颗粒分散到液体中,然后通过凝胶过程将纳米颗粒固定在基底表面上。
该方法制备的纳米涂层具有良好的附着力和优异的抗腐蚀性能。
1.2 磁控溅射法磁控溅射法是一种利用电场控制离子和高能量电子束溅射基底表面的方法。
通过在真空环境下,利用外加磁场对金属靶材进行溅射,将金属原子沉积在基底表面上,形成纳米结构。
这种制备方法可以获得具有均匀分布和较小晶粒尺寸的纳米涂层。
1.3 化学气相沉积法化学气相沉积法是一种利用气相反应在基底表面上形成纳米涂层的方法。
通过将金属有机化合物和氧化物等前体材料注入反应室,加热至适当温度,使前体材料分解生成气体,然后在基底表面发生反应并沉积出纳米涂层。
2.纳米涂层材料在防腐领域的应用2.1 金属防腐金属材料在湿润环境中容易生锈,导致性能降低甚至失效。
而纳米涂层材料具有较高的硬度和耐腐蚀性能,可以有效提高金属材料的耐久性。
通过将纳米涂层应用于金属表面,可以防止金属材料暴露在潮湿环境中,从而减少腐蚀的发生,延长金属材料的使用寿命。
2.2 混凝土防腐纳米涂层材料不仅可以应用于金属材料的防腐领域,还可以用于混凝土结构的防腐。
混凝土材料容易受到化学物质和水分的侵蚀,导致混凝土结构的破坏。
通过在混凝土表面施加纳米涂层,可以形成一层保护薄膜,有效隔离化学物质和水分,减少混凝土结构的腐蚀。
2.3 木材防腐纳米涂层材料还可以应用于木材的防腐领域。
木材容易受到真菌和昆虫的侵蚀,导致木材的腐朽和破坏。
而纳米涂层具有抗真菌和抗昆虫的特性,可以有效保护木材不受侵蚀,延长木材的使用寿命。
溶胶凝胶法制膜

上海大学大学生科技创新实践(二)文献综述学院材料科学与工程学院专业无机非金属专业学号09120154姓名张小桃指导教师谢建军日期二○一二年三月三日溶胶-凝胶法制备LuAG薄膜张小桃 09120154(上海大学材料学院无机非金属专业)摘要:溶胶-凝胶法是在不同衬底(单晶硅片、石英等)上制备LuAG薄膜,利用乙醇作为分散剂,添加柠檬酸作胶凝胶,涂膜采用旋涂法,薄膜通过二次涂膜而形成。
溶胶-凝胶工艺过程简单,无需任何真空条件和复杂设备。
薄膜制备期间,可以添加一些稀土元素,如Lu,Yb, Tb, Eu–Y等,而制成能有效吸收高能射线(X、γ射线)或高能粒子并发出紫外或可见光的功能闪烁材料。
它在高能物理、医学诊断(X-CT 和PET等)以及工业无损探测等方面有着重要的应用。
本文综述了用凝胶溶胶法制备LuAG薄膜的具体方法,从原料的准备出发,介绍了制备的工艺流程,并对Lu掺杂的LuAG薄膜闪烁材料的性能作了相关介绍。
最后,对这个工艺过程总结了自己的一些认识和理解。
关键词:LuAG薄膜,溶胶凝胶法,闪烁材料,高分辨,X射线成像Abstract: Sol - gel method is a method that LuAG film prepared on different substrates (monocrystalline silicon, quartz, etc.). The using of ethanol as a dispersing agent, citric acid, gum gel coating using spin-coating film through the second coatingmembrane and formation. Sol - gel process is simple, without any vacuum conditions and complex equipment. During the film preparation, you can add some of the rare earth elements, such as Lu, Yb and Tb, of Eu-Y, and made able to effectively absorb high-energy rays (X of γ-rays) or high-energy particles and issued a UV or visible function of scintillation materials. It has important applications in high energy physics, medical diagnostics (X-CT and PET, etc.) and industrial nondestructive detection. This article reviews the LuAG film prepared with gel sol method, starting from raw material preparation, the preparation process, the performance of scintillation materials and Lu-doped LuAG film made related presentations. Finally, I summarize up knowledge and understanding for this process.Key words:LuAG films, sol-gel method, scintillation materials, high-resolutionX-ray imaging1.引言Lu3Al5O12(LuAG)具有立方晶体结构(立方晶系,空间群Ia3d),密度高(6.73 g/cm3),是目前PET上所用材料Bi4Ge3O12(BGO)的94%,熔点高(2010℃),机械性能好,可在长期辐射条件下保持稳定的光学和物化性能,是一种优良的闪烁基质材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Li2B4O7 Al2O3-SiO2 (如莫来石等)
甲醇锂(LiOCH3)、三丁醇硼〔B(OC4H9)3〕、H2O、HCl、 CH3COOH、DMF
Si(OC2H5)4、Al(OC3H7)3、C2H5OH、H2O、HCl、CH3COOH、 DMF
CeO2-TiO2
Ti(OC4H9)4、H2O、Ce(OC2H5)3、HCl、NH4OH、CH3OH
镀膜
干燥
热处理
图 7-3溶胶-凝胶法制备薄膜的工艺流程图
7.2.1 基板性质及清洗方法
▪ 7.2.1.1基板性质 ▪ 常用的基板有玻璃、Si(100)、Si(111)、蓝宝石(Al2O3)、
瓷片以及树脂基板等。 ▪ 为了降低成本和获得工业用途,大多数薄膜制备在玻
璃基板上。 ▪ 表7-3 给出了几种玻璃基板的化学组成
阴离子表面活性剂 聚乙二醇、甘油
Ca10(OH)2(PO4) Ca (NO3)2、(NH4)2HPO4、
(Ca,Mg)Zr4(PO4)6
ZrCl4、Mg(NO3)2
HNO3
聚丙烯酰胺
主要反应体系介绍: (1) 氧化铝系列
以Al2O3为主要成分,用于超过虑、气体分离和膜催化。
(2)氧化锆系列
MgO-ZrO2、Y2O3-ZrO2材料可用于膜催化,氧离子传感器 和低湿度湿敏材料,一般要求制成微孔结构。
7.2溶胶-凝胶法制备薄膜的工艺方法
▪ 溶胶-凝胶法制备薄膜方法有:浸渍法(Dipping),旋覆法 (Spinning),喷涂法(Spraying)和简单刷涂法(Painting) 及 电沉积法等等。常用的是浸渍法和旋覆法。
▪ 溶胶-凝胶法制备薄膜的工艺流程如图7-3所示。
基板清洗
溶胶的配制
溶胶的陈化
▪ (1)工艺设备简单,无需真空条件或真空昂贵设备; ▪ (2)工艺过程温度低,这对于制备含有易挥发组分
或在高温下易发生相分离的多元系来说尤其重要; ▪ (3)可以大面积在各种不同形状、不同材料的基底
上制备薄膜,甚至可以在粉末材料的颗粒表面制 备一层包覆膜; ▪ (4)易制得均匀多组分氧化物膜,易于定量掺杂, 可以有效地控制薄膜成分及微观结构。
表7-3几种玻璃基板的化学组成/%
玻璃种类
透明石英玻璃 96%SiO2玻璃 硼硅酸玻璃 铝硅酸玻璃 铝硼硅酸玻璃
第七章溶胶凝胶法制备薄 膜及涂层材料演示文稿
优选第七章溶胶凝胶法制 备薄膜及涂层材料
材料
Al2O3 La2O3-Al2O3 ZrO2(Y2O3)-Al2O3
MgO-ZrO2 Y2O3-ZrO2
表7-1 反应体系的组成
主盐
Al(NO3)3、La(NO3)3、 Al(NO3)3
、ZrOCl2、Y(NO3)3
7.1.2.2影响成膜性和膜结构的主要因素
▪ 采用醇盐法制备薄膜时,影响成膜性和膜 结构的主要因素仍然是溶胶的配比、溶胶 的稳定性、干燥制度、烧结制度和基体的 选择等,具体情况与7.1.1.3节讨论的相同。 此处需要强调的是溶胶的稳定性是可以工 业化最关键的前提条件。
7.1.3 溶胶-凝胶法制备膜工艺优点
▪ (1)起到高分子的位阻作用。 ▪ (2)延缓溶剂挥发作用。 ▪ (3)带不同长度支链和极性基团的高分子对最终材
料的微结构有控制作用。 在成膜促进剂的参与下,无机前驱体Sol-Gel
膜的成膜机制如图7-1所示。
稳定的均匀溶胶
胶粒 H2O NH4+或者NO3成膜促进剂
H2O CO2
NO3- H2O NH3 干燥初期
第四,各组分在后期干燥和热处理早期 (<350℃)能够逐渐并完全分解。
7.1.1.3 影响成膜性和膜结构的主要因素
▪ (1) 溶胶稳定性
▪
沉淀剂的种类,沉淀反应的速度和温度;pH;溶胶
剂种类,溶胶温度和时间;成膜促进剂加入后的分散方式
与时间。
▪ (2)干燥制度
▪
特别细致的升温并在有关分解温度充分保温有利于获
(3)镁尖晶石系列
用于制备全量程湿敏材料,具有湿阻线性好、响应快、无 需加热清洗等特点,但其薄膜化问题很难解决。
(4)磷酸盐系列
Ca10(OH)2(PO4)6、 (Ca,Mg)Zr4(PO4 )6
7.1.1.2 成膜促进剂的作用和组成原则
▪ 在薄膜与涂成的制备过程中,成膜促进剂主要起 到以下作用:
态和热膨胀系数方面与Sol-Gel膜相匹配。
7.1.2 醇盐法制备薄膜的溶胶-凝胶工艺特征
▪ 7.1.2.1 反应体系的确定 ▪ 反应体系包括:金属醇盐、溶剂、水、催化剂、
水解速度控制剂及成膜控制剂。
▪ 表7-2 给出了几种典型醇盐法制备薄膜的溶胶-凝 胶反应体系的组成
表7-2 几种典型醇盐法制备薄膜的溶胶-凝胶反应体系的组成
薄膜组成
溶胶-凝胶反应体系的组成
Y2O3 V2O5-TiO2 (如FTO膜等)
SrTiO3
Y(OC4H9)3、H2O、乙酰丙酮(acac)、CH3COOH、CH3OH
C3H7OH、VO(OC2H5)3、Ti(OC4H9)4、H2O、乙酰丙酮、 CH3COOH
Sr(OC2H5)2、Ti(OC4H9)4、H2O、CH3COOH、 HCl、乙酰丙酮(acac)
得结构致密的陶瓷膜,反之有利于得到多孔膜。
▪ 图7-2 为ZrO2(Y2O3)-Al2O3膜的早期干燥曲线
(3)烧结制度
按一般烧结理论,随着烧结温度的提高, 晶粒长大造成组织均匀性下降,对多孔膜来说 则伴随孔径长大和孔隙率降低。但在制备的许 多陶瓷薄膜或涂层时,这种变化并不明显。
(4)基体 在制备载体膜(或涂层)时,基体必须在表面状
快升温
慢升温
图7-1 无机前驱体Sol-Gel膜的成膜机制示意图
对成膜促进剂成分的的一般要求
第一:根据最终材料的结构要求和溶胶粒子 表面电荷性响各自的功能;
第三:主成分应具有较高的固化点。使固相 粒子在初期干燥阶段(<120℃)充分靠近以形成密 堆积;
ZrOCl2 、Mg(NO3)2、 Y(NO3)3
沉淀剂
成膜促进剂
NH4OH H2C2O4
聚乙烯醇(PVA)
NH4OH
聚乙烯醇(PVA)、 阴离子表面活性
(NH4)2CO3
剂
MgAl2O4 MgFe2O4 Mg (Fe,Al)O4
Mg (NO3)2 、Al (NO3)3、 Fe(NO3)3
(NH4)2CO3