2008年中考数学试题分类汇编 一次函数类

合集下载

专题08 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题08 平面直角坐标系与一次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

专题08 平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,43.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( ) A .()0,1- B .1,05⎛⎫- ⎪⎝⎭ C .1,05⎛⎫ ⎪⎝⎭ D .()0,17.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .95x y =⎧⎨=-⎩8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( )A .向左平移2个单位B .向左平移1个单位C .向右平移2个单位D .向右平移1个单位 9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.10.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A .甲B .乙C .丙D .丁13.(2022·江西)甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m h 随飞行时间()s t 的变化情况,则这只蝴蝶飞行的最高高度约为( )A .5mB .7mC .10mD .13m15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .119.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( ) A . B .C . D . 20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .二、填空题 22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.29.(2022·浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 30.(2022·甘肃武威)若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.32.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?38.(2022·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市y与停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km x之间的对应关系.离开学生公寓的时间min请根据相关信息,解答下列问题:(1)填表:(2)填空:①阅览室到超市的距离为________km ;②小琪从超市返回学生公寓的速度为________km /min ; ③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.39.(2022·浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .40.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.。

(2003年-2008年)海南省中考数学函数试题集锦

(2003年-2008年)海南省中考数学函数试题集锦

中考聚焦(2003年-2008年)中考数学函数试题集锦一:选择题1、(2003年 海南)函数2-=x y 中,自变量x 的取值范围是( ). (A ) x ≥2 (B )x >2 (C )x <2 (D )x ≠22、(2003年 海南)今年又是海南水果的丰收年,某芒果园的果树上挂满了成熟的芒果,一阵微风吹过,一个熟透的芒果从树上掉了下来.下面四个图象中,能表示芒果下落过程中速度与时间变化关系的图象只可能是( ).(A ) (B ) (C ) (D ) 3、(2004年 海南)如果双曲线y=xk经过点(2,-3),那么此双曲线也经过点 ( ) A .(-3,-2) B .(-3,2) C .(2,3) D .(-2,-3)4、(2004年 海南)如果点A(m ,n)在第三象限,那么点B(0,m+n)在. ( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上5、(2004年 海南)某天早晨,小明从家里出发,以v 1千米/时的速度前往学校,途中停留在一饮食店吃早餐,之后,又以v 2千米/时的速度向学校行进.已知V 1<V 2;那么能大致表示小明从家里到学校的时间t(小时)与路程s(千米)之间关系的图象是 ( )6、(2004年 海口)函数3-=x y 中,自变量x 的取值范围是A .x >3B .x ≥3C .x >-3D .x ≥-37、(2004年 海口)在匀速运动中,路程s(千米)一定时,速度v(千米/时)关于时间t(小时)的函数关系的大致图象是7、 (2005年 海南)一次函数12+=x y 的图像经过A. 第二、三、四象限B. 第一、三、四象限C. 第一、二、四象限D. 第一、二、三象限 9、(2006年 海南)函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 10、(2006年 海南)下列各点中,在函数xy 2=图象上的点是A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-) 11、(2006年 海南)一位篮球运动员站在罚球线后投篮,球入篮得分. 下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度h (米)与时间t (秒)之间变化关系的是12、(2006年 海南)一次函数2-=x y 的大致图象是13、(2007年 海南)一次函数2+=x y 的图象不经过...h )A .h )B .h )C .h) D .A.D.A.第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题1、(2003年 海南)用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 关于n 的函数关系式是 (n 为正整数).2、(2004年 海南)如图,如果所在位置的坐标为在位置的坐标为(2,-2), 所在位置的坐 标为 .3、(2005年 海南)已知反比例函数xy 6-= 的图像经过点 P(2,a )则a = .4、(2005年 海南)在我省环岛高速公路上,一辆轿车和一辆货车沿相同的路线从A 地到B地,所经过的路程y(千米)与时间x(小时)的函数关系图像如图8所示,试根据图像,回答下列问题:(1) 货车比轿车早出发 小时,轿车追上货车时行驶了 千米,A 地到B 地的距离为 千米. (2) 轿车追上货车需多少时间? (3) 轿车比货车早到多少时间?5、(2005年 海南)已知反比例函数()0≠=k xk y 的图象经过点P(-2,-1),则该反比例函数的解析式为 .6、(2005年 海南)据《中国国土资源报》2005年4月22日报道:目前我国水土流失面积(第题图)已达367万平方公里,且以平均每年1万平方公里的速度增加. 设我国水土流失总面积为y (万平方公里),年数为x ,则y 与x 之间的函数关系式为 ;如不采取措施,水土流失的面积按此速度增加,那么到2005年底,我国水土流失的总面积将达到 万平方公里.7、(2007年 海南)反比例函数xky =的图象经过点()2,1-,则这个反比例函数的关系式为 .8、(2007年 海南)函数31-=x y 的自变量x 的取值范围是 . 9、(2008年 海南)反比例函数ky x=的图象经过点(-2,1),则k 的值为 .三:解答题1、(2003年 海南)如图,已知反比例函数xy 12=的图象与一次函数y =kx +4的图象相交于P 、Q 两点,并且P 点的纵坐标是6. (1)求这个一次函数的解析式; (2)求△POQ 的面积.2、(2003年 海南)已知抛物线c bx ax y ++=2开口向下,并且经过A (0,1)和M (2,-3)两点。

2008-2013北京中考及东城一二模数学分类汇编(5)一次函数反比例函数及一元二次方程

2008-2013北京中考及东城一二模数学分类汇编(5)一次函数反比例函数及一元二次方程

2008-2013北京中考及东城一二模数学分类汇编(5)一次函数反比例函数及一元二次方程D3. 如图,一次函数1y x =--的图象与x 轴交于点A , 与y 轴交于点B ,与反比例函数k y x=图象的一个 交点为M (﹣2,m ). (1)求反比例函数的解析式;(2)若点P 是反比例函数k y x=图象上一点, 且2BOPAOBSS =△△,求点P 的坐标.4.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x轴上一点, 且满足PAB △的面积是4,直接写出点P的坐标.5. 定义[]=+的特征数.p q,为一次函数y px q(1)若特征数是[],的一次函数为正比例函数,求m的m+21值;(2)已知抛物线()(2)n>,y x n x=+-与x轴交于点A B、,其中0点A在点B的左侧,与y轴交于点C,且OAC△的面积为4,O为原点,求图象过A C、两点的一次函数的特征数.Oy xA 116. 如图,在平面直角坐标系xOy 中,直线AB 与反比例函数k y x =的图像交于点A(-3,4),AC ⊥x 轴于点C.(1)求此反比例函数的解析式; (2)当直线AB 绕着点A 转动时,与x轴的交点为B(a,0),并与反比例函数k y x =图象的另一支还有一个交点的情形下,求△ABC 的面积S 与a 之间的函数关系式. 并写出自变量a 的取值范围.7.如图,在平面直角坐标系xOy 中,一次函数y =-2x的图象与反比例函数y =kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y =kx 的解析式;(2)若P 是坐标轴上一点,且满足PA =OA ,直接写出点P 的坐标.8.在平面直角坐标系xOy 中,一次函数y=k 1x+b 与反比例函数y =x k 2的图象交于A (1,6),B (a ,3)两点 . (1)求k 1, k 2的值;(2)如图,点D 在x 轴上,在梯形OBCD 中,BC ∥OD ,OB=DC ,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为18时,求PE :PC 的值.9.如图,矩形ABCD 的边AB 在x轴上,AB 的中点与原点O 重合,AB =2,AD =1,点Q 的坐标为(0,2).(1)求直线QC 的解析式;(2)点P (a ,0)在边AB 上运动,若过点P 、Q 的直线将矩形ABCD 的周长分成3∶1两部分,求出此时a 的值.10、如图,直线32+=x y 与x 轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴交于点P ,且使OP =2O A ,求△ABP 的面积.x1A BO y1A BCxyO11.已知:二次函数2y ax bx c =++(0)a ≠中的x y ,满足下表:x … 1- 0 1 2 3 … y … 0 3- 4- 3- m …(1)m 的值为 ;(2)若1()A p y ,,2(1)B p y +,两点都在该函数的图象上,且0p <,试比较1y 与2y 的大小.12.已知如图,Rt ABC ∆A 点的坐标为(1,1),两条直角边AB 、AC 分别平行于x轴、y轴,且AB=3,AC=6. (1)求直线BC 的方程;(2)若反比例函数(0)ky k x=≠的图象与直线BC 有交点,求k的最大正整数.13. 如图,A 、B 两点在函数()0m y x x =>的图象上.(1)求m 的值及直线AB 的解析式; (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

2008年数学中考试题分类汇编8 一次函数

2008年数学中考试题分类汇编8 一次函数

2008年数学中考试题分类汇编8 一次函数一、选择题:1. (2008年郴州市)如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1) 2.(2008年郴州市)一次函数1y x =--不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3、一次函数1y x =--不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4、如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1) 5.(茂名)已知反比例函数y =xa(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...( ) A.第一象限 B.第二象限C.第三象限 D.第四象限 6. (2008年安徽省)函数ky x=的图象经过点(1,-2),则k 的值为( ) A .12 B .12- C .2 D .-2 7.(2008苏州)函数12y x =+中,自变量x 的取值范围是( )A .0x ≠B .1x ≠C .2x ≠-D .1x ≠-8.(2008年广东湛江市)函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x > 9.(2008年上海市)在平面直角坐标系中,直线1y x =+经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限10.(2008年扬州市)函数xk1y -=的图象与直线x y =没有交点,那么k 的取值范围是 A 、1k > B 、1k < C 、1k -> D 、1k -<11.(2008年广州市数学中考试题)一次函数34y x =-的图象不经过( B ) A 第一象限 B 第二象限 C 第三象限 D 第四象限分析:本题主要考查一次函数的图象。

2008年中考数学试题按知识点分类汇编(二次函数和抛物线概念、描点法画二次函数图象、顶点和对称轴)

2008年中考数学试题按知识点分类汇编(二次函数和抛物线概念、描点法画二次函数图象、顶点和对称轴)

知识点7:二次函数和抛物线有关概念,描点法画出二次函数的图象,抛物线顶点和对称轴一、选择题1.(2008年浙江省衢州市)把抛物线向右平移2个单位得到的抛物线是( )A、 B、 C、 D、答案:D2.(08浙江温州)抛物线的对称轴是()A.直线B.直线C.直线D.直线答案:A3.(2008年沈阳市)二次函数的图象的顶点坐标是()A.B.C.D.答案:A4.(2008年陕西省)已知二次函数(其中),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与轴的交点至少有一个在轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.3答案:C5.(2008年吉林省长春市)抛物线的顶点坐标是【】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)答案:A6.(2008 湖北荆门)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x-3x+5,则( )(A) b=3,c=7.(B) b=6,c=3.(C) b=-9,c=-5.(D) b=-9,c=21.答案:A7.(2008 河北)如图,正方形的边长为10,四个全等的小正方形的对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂直.若小正方形的边长为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()答案:D8.(2008江西)函数化成的形式是()A.B.C.D.答案:A9.(2008佳木斯市)对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标答案:A10..(2008贵州贵阳)二次函数的最小值是()A.B.C.D.答案:B11..(2008资阳市)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 2答案:B12.(2008泰州市)二次函数的图像可以由二次函数的图像平移而得到,下列平移正确的是A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位答案:B13.(2008山西省)抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位答案:D14..将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.B.C.D.答案:A15.(2008湖北武汉)函数的自变量的取值范围().A.B.C.D..答案:C16.(2008湖北孝感)把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. B. C. D.答案:D17.(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。

中考数学分类一次函数与二次函数试卷(含答案)

中考数学分类一次函数与二次函数试卷(含答案)

中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。

2020-2021【名校提分专用】中考数学系统复习 第三单元 函数 第10讲 第1课时 一次函数的图象与性质(8年真题

第10讲 一次函数第1课时 一次函数的图象与性质命题点1 一次函数的图象与性质1.(2011·河北T5·2分)一次函数y =6x +1的图象不经过(D)A .第一象限B .第二象限C .第三象限D .第四象限2.(2014·河北T6·2分)如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为(C)A BC D3.(2015·河北T14·2分)如图,直线l: y =-23x -3与直线y =a(a 为常数)的交点在第四象限,则a 可能在(D)A .1<a <2B .-2<a <0C .-3≤a ≤-2D .-10<a <-44.(2016·河北T5·3分)若k ≠0,b <0,则y =kx +b 的图象可能是(B)A B C D命题点2 确定一次函数的解析式5.(2017·河北T24·10分)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB.(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值; (3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.解:(1)把y =0代入y =-38x -398,得x =-13.∴C(-13,0).1分把x =-5代入y =-38x -398,得y =-3.∴E(-5,-3).2分∵点B ,E 关于x 轴对称,∴B(-5,3). 设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =5,-5k +b =3.解得⎩⎪⎨⎪⎧k =25,b =5.∴直线AB 的解析式为y =25x +5.5分(2)∵CD =8,DE =DB =3,OA =OD =5. ∴S △CDE =12×8×3=12,S 四边形ABDO =12×(3+5)×5=20.∴S =32.8分(3)当x =-13时,y =25x +5=-15≠0,∴点C 不在直线AB 上,即A ,B ,C 三点不共线.∴他的想法错在将△CDB 与四边形ABDO 拼接后看成了△AOC.10分6.(2018·河北T24·10分)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.解:(1)把C(m ,4)代入一次函数y =-12x +5,可得4=-12m +5,解得m =2,∴C(2,4).设l 2的解析式为y =ax ,则4=2a ,解得a =2. ∴l 2的解析式为y =2x.(2)过点C 作CD ⊥AO 于点D ,CE ⊥BO 于点E ,则CD =4,CE =2,∵y =-12x +5的图象与x 轴、y 轴交于A ,B 两点,令x =0,则y =5,令y =0,则x =10,∴A(10,0),B(0,5). ∴AO =10,BO =5.∴S △AOC -S △BOC =12×10×4-12×5×2=15.(3)k 的值为32或2或-12.命题点3 一次函数的平移7.(2013·河北T23·10分)见本书P46变式训练3重难点1 一次函数的图象与性质已知,函数y =(1-2m)x +2m +1,试解决下列问题:图1 图2(1)当m ≠12时,该函数是一次函数,当m =-12时,该函数是正比例函数;(2)当m =2时,直线所在的象限是第一、二、四象限; (3)函数的图象如图1所示,则m 的取值范围是-12<m<12;(4)当m<12时,y 随x 的增大而增大;(5)当函数y =(1-2m)x +2m +1向上平移3个单位长度时得到y =(1-2m)x +2,则m 的值为-1; (6)若函数图象与x 轴的交点坐标为A ,与y 轴的交点为B(0,3),则△ABO 的面积为92;(7)函数图象必过点(1,2);(8)若函数图象与直线y =x -1交于点(2,1),则关于x 的不等式x -1>(1-2m)x +2m +1的解集是x>2; (9)当m =0时,y =x +1,将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图2所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 10的坐标是(210-1,29). 【变式训练1】 (2018·湘潭)若b >0,则一次函数y =-x +b 的图象大致是(C)【变式训练2】 (2018·石家庄裕华区一模)一次函数y =(m -1)x +(m -2)的图象上有点M(x 1,y 1)和点N(x 2,y 2),且x 1>x 2,下列叙述正确的是(B)A .若该函数图象交y 轴于正半轴,则y 1<y 2B .该函数图象必过点(-1,-1)C.无论m为何值,该函数图象一定过第四象限D.该函数图象向上平移一个单位长度后,会与x轴正半轴有交点方法指导根据图象经过的象限可确定k,b的符号:易错提示养成画图的习惯,注意数形结合的方法.重难点2 确定一次函数的解析式(2018·唐山乐亭县一模)如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的解析式;(2)直线l1与y轴交于点M,求△AOM的面积;(3)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,直接写出n的取值范围.【变式】(4)将(3)中条件“过动点P(n,0)且垂直于x轴的直线l1,l2的交点分别为C,D”保持不变,“当点C 位于点D上方时”改为“且CD=2”,求点C的坐标.【思路点拨】(1)点B在直线y=2x上,所以m=2,即点B(2,4),利用待定系数法可得直线l1的解析式;(2)直线l1与y轴的交点坐标,利用三角形的面积公式求出三角形的面积;(3)点C位于点D的上方,l1>l2,即当n<2时.(4)当CD=2时,需分点C在点D上方和下方进行讨论.【自主解答】解:(1)∵直线y=2x经过点B,∴4=2m,∴m=2,即B(2,4).设直线l1的解析式为y=kx+b,∵直线l1的经过点A,B,∴⎩⎪⎨⎪⎧0=-6k +b ,4=2k +b ,解得⎩⎪⎨⎪⎧k =12,b =3.∴直线l 1的解析式为y =12x +3.(2)∵当x =0时,y =3,∴M(0,3). ∴S △AOM =12×6×3=9.(3)n<2.(4)①当点C 在点D 上方时,有12x +3-2x =2,解得x =23.此时点C 的坐标为(23,103);②当点C 在点D 下方时,有2x -(12x +3)=2,解得x =103.此时点C 的坐标为(103,143).【变式训练3】 (2018·郴州)如图,在平面直角坐标系中,菱形OABC 的一个顶点在原点O 处,且∠AOC =60°,A 点的坐标是(0,4),则直线AC 的解析式是y =-33x +4. 【变式训练4】 (2013·河北T23·10分)如图,A(0,1),M(3,2),N(4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒. (1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围;(3)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上. 解:(1)∵直线y =-x +b 交y 轴于点P(0,b), ∴由题意,得b >0,t ≥0,b =1+t. 当t =3时,b =4, ∴y =-x +4.(2)当直线y =-x +b 过点M(3,2)时,2=-3+b , 解得b =5.∵5=1+t ,∴t =4.当直线y =-x +b 过点N(4,4)时,4=-4+b , 解得b =8.∵8=1+t ,∴t =7.∴4<t <7.(3)当t =1时,该对称点落在y 轴上; 当t =2时,该对称点落在x 轴上.方法指导用待定系数法求函数解析式是必须掌握的一种方法.要熟练掌握解二元一次方程组的方法.一次函数的图象与坐标轴的交点坐标是直线上的特殊点,常常与其他点构成三角形等图形,也是常见的一种命题形式.易错提示注意“分类讨论”思想的应用. 重难点3 一次函数与方程、不等式的关系(2017·台州改编)如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P(1,b).(1)求b ,m 的值;(2)直接写出关于x 的不等式2x +1<mx +4的解集;(3)垂直于x 轴的直线x =a 与直线l 1,l 2分别交于点C ,D.若线段CD 长为2,求a 的值.【思路点拨】 (1)把点P 的坐标代入l 1求出b ,再将(1,b)代入l 2求出m ;(2)观察图象,由两直线的交点P 的横坐标可得;(3)C ,D 两点横坐标相同时,线段CD 的长等于其纵坐标的差,但要注意有两种情况.【自主解答】解:(1)∵点P(1,b)在直线l 1:y =2x +1上,∴b =2×1+1=3.∵点P(1,3)在直线l 2:y =mx +4上, ∴3=m +4.∴m =-1. (2)x<1.(3)当x =a 时,y C =2a +1,y D =4-a.∵CD =2,∴|2a +1-(4-a)|=2,解得a =13或a =53.∴a 的值为13或53.【变式训练5】(2018·河北模拟)观察函数y 1和y 2的图象,当x =0,两个函数值的大小关系为(A)A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 2 【变式训练6】(2018·呼和浩特)若以二元一次方程x +2y -b =0的解为坐标的点(x ,y)都在直线y =-12x +b -1上,则常数b =(B)A.12B .2C .-1D .1【变式训练7】 (2018·资阳)已知直线y 1=kx +1(k <0)与直线y 2=mx(m >0)的交点坐标为(12,12m),则不等式组mx -2<kx +1<mx 的解集为(B)A .x >12B.12<x <32C .x <32D .0<x <32方法指导1.解决此类题一般是先找出两函数值相等时x 的值,然后过这点作x 轴的垂线,在这个点的左侧和右侧,必然存在不等关系,最后观察图象,上方的函数值大于下方的函数值.2.在坐标系内的线段长,若线段平行于x(y)轴,则线段长等于其横(纵)坐标的差.,易错提示)线段CD 长为2时,有两种情况,在交点P 的左右都有可能.1.(2018·玉林)等腰三角形底角与顶角之间的函数关系是(B)A .正比例函数B .一次函数C .反比例函数D .二次函数2.(2018·沈阳)在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是(C)A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<03.(2017·呼和浩特)一次函数y =kx +b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过(A)A .第一象限B .第二象限C .第三象限D .第四象限4.(2017·怀化)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是(B)A.12B.14C .4D .85.(2018·唐山乐亭县一模)如图的坐标平面上有四直线l 1,l 2,l 3,l 4,其中方程3x -5y +15=0对应的直线为(A)A .l 1B .l 2C .l 3D .l 46.(2018·济宁)在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点.若x 1<x 2,则y 1>y 2.(填“>”“<”或“=”)7.(2017·荆州)将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为4.8.【分类讨论思想】(2018·昆明)如图,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ′,则过点A ′的正比例函数的解析式为y =-43x 或y =-4x .9.(2018·淮安)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A(-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1.(1)求k ,b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.解:(1)当x =1时,y =3x =3, ∴点C 的坐标为(1,3).将A(-2,6),C(1,3)代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =6,k +b =3.解得⎩⎪⎨⎪⎧k =-1,b =4.(2)当y =0时,-x +4=0. 解得x =4.∴点B 的坐标为(4,0).设点D 的坐标为(0,m)(m <0), ∵S △COD =13S △BOC ,即-12m =13×12×4×3.解得m =-4.∴点D 的坐标为(0,-4). 10.【数形结合思想】(2018·廊坊模拟)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l 的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由; (2)当直线l 与AD 边有公共点时,求t 的取值范围.解:(1)此时点A 在直线l 上. ∵BC =AB =2,点O 为BC 中点,∴点B(-1,0),A(-1,2).把点A 的横坐标x =-1代入解析式y =2x +4,得 y =2,等于点A 的纵坐标2, ∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k ≠0),∴⎩⎪⎨⎪⎧-2k +t =0,k +t =2,解得⎩⎪⎨⎪⎧k =23,t =43. 由(1)知,当直线l 经过点A 时,t =4.∴当直线l 与AD 边有公共点时,t 的取值范围是43≤t ≤4.11.(2018·保定竞秀区模拟)如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k ≠0)在第一象限交于点M.若直线l 2与x 轴的交点为A(-2,0),则k 的取值范围是(D)A .-2<k<2B .-2<k<0C .0<k<4D .0<k<2 12.【数形结合思想】(2018·宿迁)在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是(C)A .5B .4C .3D .2 13.(2018·河北模拟)若P(m +1,m -1)在直线y =-x +3的下方,则m 的取值范围是m <32.14.(2018·保定竞秀区二模)在平面直角坐标系xOy 中,已知直线l 的解析式为:y =kx +x -k +1.若将直线l 绕A 点旋转,如图所示,当直线l 旋转到l 1位置时,k =2且l 1与y 轴交于点B ,与x 轴交于点C ;当直线l 旋转到l 2位置时,k =-25且l 2与y 轴交于点D.(1)求点A 的坐标;(2)直接写出B ,C ,D 三点的坐标,连接CD ,求△ADC 的面积;(3)已知坐标平面内一点E ,其坐标满足条件E(a ,a),当点E 与点A 距离最小时,直接写出a 的值.解:(1)当k =2时,y =3x -1, 当k =-25时,y =35x +75.解方程组⎩⎪⎨⎪⎧y =3x -1,y =35x +75,得⎩⎪⎨⎪⎧x =1,y =2. ∴点A 的坐标为(1,2).(2)B(0,-1),C(13,0),D(0,75).∴BD =125,OC =13.∴S △ADC =S △ADB -S △BDC =12×125×1-12×125×13 =45. (3)a =32.。

中考数学专题08平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编

专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题目37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.祝福语祝你考试成功!祝福语祝你考试成功!。

全国181套中考数学试题分类汇编16一次函数(正比例函数)的图像和性质

16:一次函数(正比例函数)的图像和性质一、选择题1.(重庆江津4分)直线1y x =-的图象经过的象限是A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限【答案】D 。

【考点】一次函数的性质。

【分析】由1y x =-可知直线与y 轴交于(0,﹣1)点,且y 随x 的增大而增大,可判断直线经过第一、三、四象限。

故选D 。

2.(黑龙江牡丹江3分)在平面直角坐标系中,点O 为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为 A .1 B .2 C .-2或4 D .4或-4 【答案】D 。

【考点】待定系数法,点的坐标与方程的关系。

【分析】根据题意画出图形,注意要分情况讨论,当B 在y 的正半轴和负半轴上时,分别求出B 点坐标,然后再利用待定系数法求出一次函数解析式,得到k 的值:①当B 在y 的正半轴上时,∵△AOB 的面积为8,∴12·OA·OB=8。

∵A(-2,0),∴OA=2,∴OB=8。

∴B(0,8)。

∵直线y kx b =+经过点A (-2,0)和点B (0,8). ∴208k b b -+=⎧⎨=⎩,解得48k b =⎧⎨=⎩。

②当B 在y 的负半轴上时,同①可得4k =-。

故选D 。

3.(广西桂林3分)直线1y kx =-一定经过点A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,﹣1)【答案】D 。

【考点】直线上点的坐标与方程的关系。

【分析】根据点在直线上,点的坐标 满足方程的关系,由一次函数y kx b =+与y 轴的交点为(0,b )进行解答即可:∵直线y kx b =+中b =-1,∴此直线一定与y 轴相较于(0,-1)点, ∴此直线一定过点(0,-1)。

故选D 。

4.(广西百色3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是 A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x【答案】B 。

2008年中考数学试题分类汇编(阅读、规律、代数式)

以下是河北省柳超的分类(2008年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2008年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2008年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2008年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2008年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。

18.(2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.10. ( 2008年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P , 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q , 再记直角三角形 ,,22111Q P P Q OP 的面积分别为 ,,21S S ,这样就有,24,21322321nn S n n S -=-=… ; 记21S S W += 1-++n S , 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2008年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的写出你的结论.24.(2008年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售: 方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买; 方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年中考数学试题分类汇编 一次函数类一、选择题9.(08哈尔滨)小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( )D10。

(08山东省)如图38,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图39所示,则△ABC 的面积是( )A A.10 B.16 C.18 D.206.(08乌鲁木齐)一次函数y =kx +b (k ,b 是常数,k ≠0)的图象如图9所示,则不等式kx +b >0的解集是( )AA .x >-2B .x >0C .x <-2D .x <012.(08福建莆田)如图36表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象。

根据图象下列结论错误的是( )D A 。

轮船的速度为20千米/时 B 。

快艇的速度为40千米/时 C 。

轮船比快艇先出发2小时 D 。

快艇不能赶上轮船5.(08湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是图中( )A)图38BAC 。

D 。

510152520510152520 A 。

B 。

5101525202025151057。

(08湖北仙桃潜江江汉油田)如图29,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(s )随时间(t )变化的图象大致是( )B10。

(08浙江金华)三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图44是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )D A.1 B.2 C.3 D.49。

(08海南省)如图25,直线l 1和l 2的交点坐标为( )A A.(4,-2) B.(2,-4) C.(-4,2) D.(3,-1)5.(08福建厦门)下列函数中,自变量x 的取值范围是x >2的函数是( )B A .yB .yC .yD .y5.(08广东梅州)一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )BABCD图29F(h )11.(08湖北鄂州,如图32,直线y =-2x +4与x 轴,y 轴分别相交于A 、B 两点,C 为OB 上一点,且∠1=∠2,则S △ABC =( )C A .1 B .2 C .3 D .417。

(08广西桂林)2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S (千米)与行进时间t (小时)的函数大致图象,你认为正确的是( )C二、填空题18。

(08烟台)如图37是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.50422。

(据08浙江台州改编)如图8,点D 的纵坐标等于______;点A 的横坐标是方程______的解;大于点B 的横坐标是不等式______的解集;点C 的坐标是方程组______的解;小于点C 的横坐标是不等式______的解集。

b ;k 1x +b 1=0;kx +b <0;11,y k x b y kx b =+⎧⎨=+⎩;kx +b >k 1x +b 113.(08绍兴)如图43,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b >ax +3的解集为______.x >1A 。

B 。

C 。

D 。

时间o o 时间o时间时间o图43y =ax +3b 1图3716.(08福建泉州)已知正比例函数y =kx (k ≠0)的图象经过原点、第二象限与第四象限,请写出符合上述条件的k 的一个值...:______.k 为负数即可 13.(08甘肃兰州)函数yx 的取值范围为______.x ≥-1且x ≠1 7。

(08广西桂林)函数y的自变量x 的取值范围是______。

x ≥-214.(08广东深圳)要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图21所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是______.108.(08河南省)图象经过(1,2)的正比例函数的表达式为______.y =2x 2.(08黑龙江黑河)函数yx 的取值范围是______.x ≤3且x ≠1 14.(08湖北黄石)已知y 是x 的一次函数,右表列出了部分对应值,则m =______.114.(08湖北武汉)如图30,直线y =kx +b 经过A (-2,-1)和B (-3,0)两点,则不等式组12x <kx +b <0的解集为______.[-3<x <-2] 12.(08湖北咸宁)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图28所示,则关于x 的不等式k 2x >k 1x +b 的解集为______.x <-1三、解答题18.(08四川泸州)如图40,在平面直角坐标系中,点P (x ,y )是第一象限直线y =-x +6上的点,点A (5,0),O 是坐标原点,△P AO 的面积为s。

(1)求s 与x 的函数关系式;y(2)当x =10时,求tan ∠POA 的值。

解:(1)∵s =12·OA ·|y |,而点P 在第一象限,且在直线y =-x +6上, ∴s =12×5×(-x +6).即s =52 x +15;(2)2522.(08绍兴)定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[2,k -2]的一次函数为正比例函数,求k 的值;(2)设点A 、B 分别为抛物线y =(x +m )(x -2)与x \y 轴的交点,其中m >0,且△OAB 的面积为4,O 为原点,求图象过A \B 两点的一次函数的特征数. 解: (1)2;(2)[-2,-4]或[2,-4]21.(08河北省)如图90,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A \B ,直线l 1,l 2交于点C . (1)求点D 的坐标; (2)求直线l 2的解析表达式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 答案:(1)(1,0);(2)y =32x -6;(3)92;(4)(6,3) 17.(08广东汕头)已知直线l 1:y =-4x +5和直线l 2:y =12x -4,求两条直线l 1和l 2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上. 答案:交点坐标为(2,-3),交点在第四象限2。

(08江苏盐城)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元)。

现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元(总费用=广告赞助费+门票费);方案二:购买门票方式如图35所示。

解答下列问题:(1)方案一中,y 与x 的函数关系式为______;方案二中,当0≤x ≤100时,y 与x 的函数关系式为______,当x >100时,y 与x 的函数关系式为______;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元。

求甲、乙两单位各购买门票多少张。

解:(1)y =60x +10000;当0≤x ≤100时,y =100x ;当x >100时,y =80x+2000;(2)100<x <400时,选方案二进行购买,x =400时,两种方案都可以x >400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a 张、b 张; ∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票, ∴乙公司购买本次足球赛门票有两种情况:b ≤100或b >100.①当b ≤100时,乙公司购买本次足球赛门票费为100b ,700,601000010058000,a b a b +=++=⎧⎨⎩ 解得550,150,a b =⎧⎨=⎩不符合题意,舍去; ②当b >100时,乙公司购买本次足球赛门票费为80b +2000,700,601000080200058000,a b a b +=⎧⎨+++=⎩解得500,200,a b =⎧⎨=⎩符合题意。

故甲、乙单位购买本次足球赛门票分别为500张、200张18.(08乌鲁木齐)某公司在A 、B 两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A 地运一台到甲、乙两地的费用分别是500元和400元;从B 地运一台到甲、乙两地的费用分别是300元和600元.设从A 地运往甲地x 台挖掘机,运这批挖掘机的总费用为y 元. (1)请填写下表,并写出y 与x 之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?)解: (1)A地运往乙地(16-x)台,B地运往甲、乙两地分别是(15-x)台\(x-3)台;y=500x+400(16-x)+300(15-x)+600(x-3)=400x+9100。

(2)∵x-3≥0且15-x≥0即3≤x≤15,又y随x增大而增大,∴当x=3时,能使运这批调运挖掘机的总费用最省,运送方案是A地的挖掘机运往甲地3台,运往乙地13台;B地的挖掘机运往甲地12台,运往乙地0台16。

相关文档
最新文档