双线变换法数字低通滤波器

合集下载

双线性变换法设计一巴特沃什数字低通滤波器

双线性变换法设计一巴特沃什数字低通滤波器
(1)令T=0.001 s,N=100,分别输入50 Hz、120 Hz、150 Hz和200 Hz的正弦信号,观察输出波形,并与输入进行比较,验证滤波器的性能。
(2)将输入信号分别改变成50 Hz与80 Hz、50 Hz与150 Hz、50 Hz与200 Hz两正弦信号的迭加,再观察滤波器的输入输出波形,体会和评价滤波结果。
w3(n)= y2(n)+0.94592w3(n–1)–0.23422w3(n–2)
y(n)=0.08338 w3(n )+0.16676w3(n–1)+0.08338w3(n–2)
初始条件为n < 0时,x(n)=w1(n) =w2(n) =w3(n)=0。
3.计算机实现
在理解和掌握以上设计过程的基础上,根据系统的输入输出方程,编制程序实现滤波器的计算,并验证其滤波性能。滤波器的输入仍采用正弦抽样信号,方法同实验一和实验二。其频率f、取样间隔T、取样点数N仍通过人机对话方式输入,以便调整。
由上述结构,写出系统的输入输出方程:
w1(n)=x(n)+1.31432w1(n–1)–0.71489w1(n–2)
y1(n)=0.08338 w1(n )+0.16676w1(n–1)+0.08338w1(n–2)
w2(n)= y1(n)+1.0541w2(n–1)–0.37534w2(n–2)
y2(n)=0.08338 w2(n )+0.16676w2(n–1)+0.08338w2(n–2)
/*画输入输出波形*/
draw(N,x,y);
getch();
closegraph();
}
void draw(int N,float xx[],float yy[])

DSP课程设计报告 双线性变换法设计IIR数字低通滤波器

DSP课程设计报告  双线性变换法设计IIR数字低通滤波器

电子信息工程学院《DSP技术及应用》课程设计报告题目:双线性变换法设计IIR数字低通滤波器专业班级:通信工程专业二〇一三年六月六日目录一、设计目的 (1)二、设计要求 (1)三、设计原理及方案 (1)四、软件流程 (3)五、调试分析 (4)六、设计总结 (5)七、参考文献 (5)一、设计目的通过对信号分析与处理近两学期的学习,对信号分析与处理的理论知识已有一定的自我理解,本课程设计的完成,将原有的理论知识转化为软件进行仿真与制作,这样既可在实际中验证理论知识,也能在实际中更加准确的把握理论。

设计理念:1、通过实验加深双线性变换法设计IIR 滤波器基本方法的了解。

2、了解MATLAB 有关双线性变换法的子函数。

3、掌握用双线性变换法设计数字低通滤波器的方法。

二、设计要求1、熟练掌握信号分析、处理等方面的相关理论知识;2、学会运用Matlab 软件,分别设计巴特沃斯,切比雪夫I 型,切比雪夫II 型滤波器并把它们集中在GUI 平台上,通过这个平台实现数据交互,采集实时音频信号并对该信号进行高频加噪处理,滤波处理,进行时域频域分析。

3、组员之间相互协助,共同完成系统设计。

5、通过对信号分析与处理系统的设计,提高对信号分析与处理课程中所学知识的实际运用能力,以及对软件的操作能力。

三、设计原理及方案1、原理图图1 滤波器设计原理图DF 指标DFAF 指标AF 巴特沃斯 切比雪夫I 型、II 型Ω=2T tan ω2 S =2T1111--+-ZZ信号采集信号分析滤波器设计IIR数字低通滤波器信号处理GUI平台设计,程序连接整合图2 系统整体设计框图2、原理图说明图1是滤波器的设计原理,具体说明如下:(1)将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标(2)根据转换后的技术指标设计模拟低通滤波器H(s)(3)再按一定规则将H(s)转换为H(z)图2是系统的原理框架结构,各模块的具体说明如下:(1)信号采集:利用Windows下的录音机,录制一段自己的话音,时间在5s内,也可使用现有的音频,然后在Matlab件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。

实验9 双线性法设计巴特沃思低通数字滤波器

实验9 双线性法设计巴特沃思低通数字滤波器

实验九 双线性变换法设计Butterworth 低通数字滤波器一、 实验目的1. 熟悉利用模拟滤波器设计数字滤波器的基本过程;2. 熟悉双线性变换法设计数字滤波器的基本原理;3. 熟悉基于matlab 的实现双线性变换法设计Butterworth 低通数字滤波器。

二、 实验原理1. 利用模拟滤波器设计数字滤波器利用模拟滤波器设计数字滤波器是数字滤波器设计的间接方法。

其基本原理是先设计出模拟滤波器,然后通过频带变换和数字化的方法把模拟低通滤波器变换成数字滤波器。

主要方法有冲激响应不变法,阶跃响应不变法和双线性变换法。

其中双线性变换法由于没有频率响应的混叠失真,可适用于低通、带通、高通和带阻各种滤波器设计,比其它两种方法适用范围更广。

2. 双线性变换法(1)基本思路模拟滤波器数字化成数字滤波器的方法,就是要把s 平面映射到z 平面,使模拟系统函数Ha(s)变换成所需数字滤波器的系统函数H(z)。

双线性变换是使数字滤波器的频率响应与模拟滤波器的频率响应相似的一种变换,它使得Ω和ω之间是单值映射关系可以避免频率响应的混叠失真。

(2)变换关系使用双线性变换法,模拟滤波器的s 域系统函数与数字滤波器的z 域系统函数存在如下变换关系(1) T 为抽样间隔,f s =1/T 。

模拟滤波器的频率响应与数字滤波器的频率响应存在如下变换关系(2)模拟滤波器的频率Ω到数字滤波器的频率ω是非线性频率变换关系(3)双线性变换法主要用于分段常数的频率响应滤波器中,例如低通、高通、带通、带阻等,这是大多数滤波器都具有的幅度特性。

分段常数的模拟滤波器AF ,经变换后仍然为分段常数的数字滤波器DF ,但是各分段的临界频率点由于非线性频率变换而产生变化,这种变化可以用频率“预畸”来加以克服。

频率预畸即若给定数字滤波器的截止频率为ωi ,则根据1211()()z a s T zH z H s --=+=2tan()22()()tan()2j a a T H e H j H j T ωωωΩ=⎡⎤=Ω=⎢⎥⎣⎦2tan()2T ωΩ=上面公式(3)将它预畸为 ,以此Ωi 来设计“样本”AF ,将设计好的“样本”AF 经双线性变换后,就得到所需的DF ,它的截止频率正是原先要求的ωi ,预畸是双线性变换法设计必须要去的一步。

用双线性变换法设计原型低通为切比雪夫I型的数字IIR低通滤波器

用双线性变换法设计原型低通为切比雪夫I型的数字IIR低通滤波器

数字信号处理专业课程设计任务书说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页1 需求分析:滤波器从广义上来说对特定的频点或频点以外的频率进行有效滤波的电路,这种电路保留输入信号中的有用信息,滤除不需要的信息,从而达到信号的检测、提取、识别等不同的目的。

如果处理的信号是时域离散信号,那么相应的处理系统就称为数字滤波器,由于在实际工作中被处理的信号都是幅度量化的数字信号,因此,数字滤波器实际上是用有限精度的算法实现一个线性时不变的时域离散系统。

目前,数字滤波器的应用越来越广泛,它已深入到很多领域,如图象处理、医学生物信息处理、地质信号处理和模式识别处理等。

数字滤波器的种类很多,分类方法也不同,可以从功能上分类,也可以从实现方法上及设计方法上来分类等等。

滤波器在功能上总的可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,从实现方法上,由有限长冲激响应的数字滤波器被称为FIR滤波器,具有无限长冲激响应的数字滤波器称作IIR滤波器。

切比雪夫滤波器的幅度特性具有等纹波特性。

他有两种类型,一种是通带内为等纹波的,在阻带内是单调的成为切比雪夫Ι型滤波器;一种是通带内单调,阻带内等纹波的,称为切比雪夫ΙΙ型。

本实验采用切比雪夫Ι型滤波器。

利用双线性变换法将模拟传输信号Ha(s)变换为数字传输函数G(z),从而是z域的数字传输函数保留s域的模拟传输函数的基本性质。

设计成的IIR数字低通滤波器能够去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰。

我和班长柴彬通力合作,我两合作将一些基本参数搞定后,我负责低通滤波器输入输出信号图形的实现,他负责信号幅频特性以及相频特性图形的实现。

成效显著。

2 概要设计:滤波器的设计流程图如图1所示图1 滤波器设计流程方框图包括在此说明每个部分的算法设计说明(可以是描述算法的流程图);每个程序中使用的存储结构设计说明(如果题目已经指定了数据存储的,按照指定的设计,并且写出该存储结构的定义)。

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器:wp=0.2*2*pi; %通带边界频率ws=0.3*2*pi; %阻带截止频率rp=1; %通带最大衰减rs=25; %阻带最小衰减fs=1; %采样频率ts=1/fs; %采样周期wp2=2*fs*tan(wp/2*ts); %预畸变校正ws2=2*fs*tan(ws/2*ts); %预畸变校正[n,wn]=buttord(wp2,ws2,rp,rs,'s') %带入经预畸变后获得的归一化模拟频率参数[z,p,k]=buttap(n) %创建归一化的BUTTERWORTH模拟低通原型滤波器[bap,aap]=zp2tf(z,p,k) %把滤波器零极点模型转化为传递函数模型[b,a]=lp2lp(bap,aap,wn) %把模拟滤波器原型转换成截止频率为Wn的模拟低通滤波器[bz,az]=bilinear(b,a,fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换[h,w]=freqz(bz,az); %绘制频率响应曲线subplot(2,1,1);plot(w/pi,abs(h));grid onxlabel('频率');ylabel('幅度');subplot(2,1,2);plot(w/pi,20*log10(abs(h)));grid onxlabel('频率');ylabel('幅度');用窗口法设计一个线性相位FIR低通滤波器,采用汉宁窗设计:wp=0.2*pi; %通带边界频率ws=0.3*pi; %阻带截止频率wdelta=ws-wp; %过渡带宽N=ceil(8*pi/wdelta); %求出N值wc=(0.2+0.3)*pi/2; %求出截止频率r=(N-1)/2;n=0:N-1;hdn=sin(wc*(n-r))./[pi*(n-r)]; %理想的单位冲激响应wn=hanning(N); %求出汉宁窗的表达式h=hdn.*wn'; %滤波器加窗H=fft(h,512);w=2*[0:511]/512plot(w,20*log10(abs(H)));用MATLAB实现时间抽选的基2-FFT算法:function y=myditfft(x) %本程序对输入序列x实现时间抽选的基2-FFT,%点数取大于等于x长度的2的幂次m=nextpow2(x);N=2^m; %求x的长度对应的2的最低幂次mif length(x)<Nx=[x,zeros(1,N-length(x))];endnxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; %1:2^m数列的倒位序y=x(nxd); %将x倒位序排列作为y的初始值for mm=1:m %将DFT作m次基2分解,从左到右Nmr=2^mm;u=1; %旋转因子u初始化wN^0=1WN=exp(-i*2*pi/Nmr); %当前次分解的基本DFT因子wN=exp(-i*2*pi/Nmr) for j=1:Nmr/2 %当前次跨越间隔内的各次蝶形运算for k=j:Nmr:N %当前次蝶形运算的跨越间隔为Nmr=2^mm kp=k+Nmr/2; %确定蝶形运算的对应单元下标t=y(kp)*u; %蝶形运算的乘积项y(kp)=y(k)-t; %蝶形运算的减法项y(k)=y(k)+t; %蝶形运算的加法项endu=u*WN; %修改旋转因子,多乘一个基本DFT因子wN endend。

实验用双线性变换法设计IIR数字滤波器

实验用双线性变换法设计IIR数字滤波器

实验三:用双线性变换法设计IIR 数字滤波器(设计性 4学时)一.实验目的:(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

二.实验内容及步骤:(1) 用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器,设计指标参数为:在通带内频率低于0.2pi 时,最大衰减小于1dB;在阻带内[0.3pi , pi] 频率区间上,,最小衰减大于15dB ;(2) 以 0.02pi 为采样间隔,打印出数字滤波器在频率区间[ 0, 0.5pi]上的幅频响应特性曲线;(3) 用所设计的滤波器对实际心电图信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的心电图波形图,观察总结滤波作用与效果。

(4)采用不同阶数的Butterworth 低通滤波器,比较滤波效果。

三.实验步骤:(1)复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内容,按照教材例6.4.2,用双线性变换法设计数字滤波器系统函数H (z )。

方法一:教材例6.4.2种已求出满足本实验要求的数字滤波器系统函数:方法二:根据设计指标,调用MATLAB 信号处理工具箱函数buttord 和butter ,也可得到H (z )。

(2)编写滤波器仿真程序,计算H(z)对心电图信号采样序列x(n)的相应序列y(n)。

(3)在通过计算机上运行仿真滤波程序,并调用通用绘图子程序,完成实验内容(2)和(3)。

本实验要用的MATLAB 绘图函数参阅教材。

四.,思考题:用双线性变换法设计数字滤波器过程中,变换公式: s=11z1z 1T 2--+-中T 的取值,对设计结果有无影响? 为什么? 五.实验报告要求(1)简述实验目的及原理;(2)由所打印的特性曲线及设计过程简述双线性变换法的特点;(3)对比滤波前后的心电图信号波形,说明数字滤波器的滤波过程与滤波作用;(4) 简要回答思考题.六:心电图信号采样序列 x(n):人体心电图信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能作为判断心脏功能的有用信息。

课程设计基于双线性变换法的IIR数字低通滤波器设计

课程设计---基于双线性变换法的IIR数字低通滤波器设计课程设计题目:基于双线性变换法的IIR数字低通滤波器设计姓名:院系:电气信息工程学院专业班级:电子信息工程11-02学号: 541101030206指导教师:成绩:时间: 2014 年 6 月 9 日至 2014 年 6 月 13 日课程设计任务书题目基于双线性变换法的IIR数字低通滤波器设计专业、班级电子信息工程11级2班学号541101030206姓名冯慧琦主要内容、基本要求、主要参考资料等:主要内容:首先依据给定的性能指标,采用双线性变换法设计IIR数字低通滤波器;然后利用MATLAB软件的wavread函数读取.wav格式的语音信号,并利用所设计的滤波器对音频信号进行滤波处理,画出滤波前后信号的时域波形及频谱;最后回放语音信号,分析滤波前后的语音变化。

基本要求:1、滤波器技术指标为:f p=3000Hz; A p=2dB; f s=4000Hz; A s=45dB2、采用双线性变换法设计IIR数字低通滤波器;3、掌握利用wavread函数读取.wav格式语音信号的方法;4、对语音信号进行滤波,并画出滤波前后信号的时域波形及频谱;5、回放语音信号,分析滤波前后的语音变化。

主要参考资料:1、从玉良.数字信号处理原理及其MATLAB实现[M].北京:电子工业出版社.2009.72、胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社.2003,8完成期限:2010.6.24—2010.6.28指导教师签名:课程负责人签名:2013年6月24日摘要根据IIR滤波器的特点,在MATLAB坏境下用双线性变换法设计IIR数字滤波器。

利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。

关键词:双线性变换法,数字滤波器,MATLAB ,IIR目录1.概述 --------------------------------------- 12.系统总体设计方案------------------------------- 22.1设计原理与步骤 ----------------------------- 22.1.1设计原理 ---------------------- 22.2设计方案--------------------------------- 32.3设计步骤--------------------------------- 72.3.1设计步骤 ---------------------- 72.3.2程序流程框图 ------------------ 82.3.3运行结果及分析 ---------------- 8 结论与展望------------------------------------ 11 参考文献------------------------------------- 12 附录---------------------------------------- 131.概述数字滤波器对信号滤波的方法是:用数字计算机对数字信号进行处理,处理就是按照预先编制的程序进行计算。

用双线性变换法设计低通数字滤波器

用双线性变换法设计低通数字滤波器设计目的:利用双线性变换法实现模拟和数字滤波器幅度特性设计内容: 设计低通数字滤波器,要求在通带内频率低于0.2πrad 时,容许幅度误差在1dB 以内;在频率0.3π到π之间的阻带衰减大于15dB 。

指定模拟滤波器采用巴特沃斯低通滤波器。

试分别用双线性变换法设计数字低通滤波器。

设计原理:一、通过模拟滤波器设计IIR 数字滤波器IIR 数字滤波器在Z 域中的传递函数为一有理分式,即()()()1011111,11MMrrr r r N Nkk kk k c z b zH z Aa z d z --==--==-==--∑∑而模拟滤波器在S 域中的传递函数为()()()101101111MMrrr r r N Nkk kk k c s b sH s Aa s d s -==-==-==+-∑∑ 。

可见H(z)与H(s)具有相同的形式,利用线性映照的方法,可以把S 平面上的模拟滤波器映照成Z 平面上的IIR 数字滤波器。

按技术要求设计一个模拟滤波器()s a H ,然后按一定的映照关系将()s a H 中成数字滤波器的要求,必须对由复变量S 到复变量Z 直接的映照提出如下要求: ⑴因果温度的模拟滤波器转换成数字滤波器后仍是因果温度的,因此,映射应使S 平面的左半平面[]Re 0s <映射为Z 平面的单位圆内部,1z <。

⑵数字滤波器的幅频特性应与模拟滤波器的幅频特性一致,故S 平面的虚轴j Ω线性映射到Z 平面的单位圆j e ω上,即频率轴要对应。

下图表明了上述映照关系模拟滤波器到数字滤波器的转换可以在时域实现,也可以在频域实现。

时域转换法是使数字滤波器的时域响应与模拟滤波器的时域采样值相等,具体方法有:冲激不变法、阶跃不变法和匹配Z 变换法。

频域变换法是使数字滤波器在/T ππ-≤Ω<范围内的幅度特性与模拟滤波器在//T T ππ-≤Ω<范围内的幅度特性一致,具体方法有:双线性变换法,微分映照法。

利用双线性变换法设计以下数字滤波器

利用双线性变换法设计以下数字滤波器:① 巴特沃斯类型数字低通滤波器,要求通带πω2.0≤,通带波纹dB 11≤δ;阻带为πωπ≤≤3.0,阻带波纹dB 302≥δ,T 取0.5ms 。

用切比雪夫类型重新设计。

T 取0.1ms ,用两种类型重新设计: 巴特沃斯类型低通滤波器:wp=2*2000*tan(0.2*pi/2); ws=2*2000*tan(0.3*pi/2); rp=1; rs=30; fs=2000;[n,wn]=buttord(wp,ws,rp,rs,'s'); [b,a]=butter(n,wn,'s'); [B,A]=bilinear(b,a,2000); [h,w]=freqz(B,A); subplot(2,1,1)plot(w/pi,20*log10(abs(h))) gridsubplot(2,1,2) plot(w/pi,angle(h)) grid切比雪肤类型低通滤波器:wp=2*10000*tan(0.2*pi/2); ws=2*10000*tan(0.3*pi/2); rp=1; rs=30; fs=10000;[n,wn]=cheb1ord(wp,ws,rp,rs,'s');[b1,a1]=cheby1(n,rp,wn,'s'); [b2,a2]=cheby2(Nn,rp,wNn,'s'); [B1,A1]=bilinear(b1,a1,2000); [B2,A2]=bilinear(b2,a2,2000); [h1,w1]=freqz(B1,A1); [h2,w2]=freqz(B2,A2); subplot(2,2,1)plot(w/pi,20*log10(abs(h1))) title('cheb1') gridsubplot(2,2,2)plot(w/pi,20*log10(abs(h2))) title('cheb2') gridsubplot(2,2,3) plot(w/pi,angle(h1)) gridsubplot(2,2,4) plot(w/pi,angle(h2)) grid② 巴特沃斯类型数字带通滤波器,通带πωπ4.02.0≤≤,通带波纹dB 21≤δ,阻带为πωπω6.0,1.0≥≤,阻带波纹dB 202≥δ。

实验六 用双线性变换法设计IIR数字滤波器

实验六用双线性变换法设计IIR数字滤波器一、实验目的学会运用MATLAB设计数字低通、带通、高通、带阻滤波器的设计方法。

二、实验涉及的matlab子函数bilinear功能:双线性变换——将s域映射到z域。

调用格式:[numd,dend]= bilinear (num,den,Fs),将模拟域系统函数转换为数字域的系统函数,Fs为采样频率。

三、实验原理下面举例说明用双线性变换法设计各种数字滤波器的过程。

例1、采用双线性变换法设计一个巴特沃斯数字低通滤波器,要求:wp=0.25*pi,rp=1db,ws=0.4*pi,as=15db,滤波器采样频率Fs=100hz。

MATLAB源程序为:%数字滤波器指标wpd=0.25*pi; %滤波器的通带截止频率wsd=0.4*pi; %滤波器的阻带截止频率Rp=1;As=15; %输入滤波器的通阻带衰减指标%转换为模拟原型滤波器指标Fs=100;T=1/Fs;wp=(2/T)*tan(wpd/2);ws=(2/T)*tan(wsd/2);%模拟原型滤波器计算[n,wc]=buttord(wp,ws,Rp,As,'s') %计算阶数n和截止频率[z0,p0,k0]=buttap(n); %归一化切比雪夫1型原型设计ba=k0*poly(z0); %求原型滤波器系数baa=poly(p0); %求原型滤波器系数a[ba1,aa1]=lp2lp(ba,aa,wc);%变换为模拟低通滤波器%用双线性变换法计算数字滤波器系数[bd,ad]=bilinear(ba1,aa1,Fs) %双线性变换%求数字系统的频率特性[H,w]=freqz(bd,ad);dbH=20*log10(abs(H)/max(abs(H))); %化为分贝值subplot(2,2,1),plot(w,abs(H));ylabel('|H|');title('幅度响应');axis([0,pi,0,1.1]);grid subplot(2,2,2),plot(w,angle(H));ylabel('\phi');title('相位响应');axis([0,pi,-4,4]);grid subplot(2,2,3),plot(w,dbH);title('幅度响应(dB)'); ylabel('dB');xlabel('频率');axis([0,pi,-40,5]);grid subplot(2,2,4),zplane(bd,ad); axis([-1.1,1.1,-1.1,1.1]);title('零极图');运行结果为: n = 5wc = 103.2016bd = 0.0072 0.0362 0.0725 0.0725 0.0362 0.0072 ad = 1.0000 -1.9434 1.9680 -1.0702 0.3166 -0.0392 则所求滤波器的系统函数为54321-5432-10.0392z 166z 3.01.0702z z 68.911.9434z 1z 072.00z 362.00z 725.00z 725.000.0362z 0.0072H(z)---------+-+-+++++=|H |幅度响应φ相位响应幅度响应(dB)d B频率-1-0.500.51Real PartI m a g i n a r y P a r t零极图例2、采用双线性变换法设计一个椭圆数字高通滤波器,要求通带250hz ,1db ,阻带150hz ,20db ,滤波器采样频率为Fs=1000hz 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双线变换法数字低通滤波器燕山大学课程设计说明书题目:双线性变换法设计数字低通滤波器学院(系):电气工程学院年级专业: 10级检测2班学号: 100103020122学生姓名:刘培露指导教师:王娜教师职称:讲师课程名称:数字信号处理课程设计基层教学单位:仪器科学与工程系指导教师:王娜21说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。

2、学生那份任务书要求装订到课程设计报告前面。

电气工程学院教务科目录21一.课题描述 (2)二.设计原理 (2)2.1 IIR数字滤波器设计原理 (2)2.2巴特沃斯低通滤波器的原理 (3)2.3双线性变换法 (4)2.4用双线法设计巴特沃斯数字低通滤波器的步21骤 (9)三. MATLAB程序 (10)四.程序中命令介绍 (12)五. 图像结果……………………………………………………………………………. ..14六. 结果分析 (16)七.心得体会: (16)21一.课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。

如果系统是一个连续系统,则滤波器称为模拟滤波器。

如果系统是一个离散系统,则滤波器称为数字滤波器。

数字滤波实质上是一种运算过程,实现对信号的运算处理。

输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。

描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。

时域离散系统的频域特性:()()()ωωjωj ejeXY=eH其中()ωj e Y、()ωj e X分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性),()ωj e H是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。

输入序列的频谱()ωj e X经过滤波后()ωj e X()ωj e H,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择()ωj e H,使得滤波后的()ωj e X()ωj e H满足设计的要求,这就是数字滤波器的滤波原理。

二.设计原理212.1 IIR数字滤波器设计原理IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev 函数、bessel函数、椭圆滤波器函数等。

IIR数字滤波器的设计步骤:① 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;② 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;③ 跟据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;④ 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。

在MATLAB中,经典法设计IIR数字滤波器主要采用以下步骤:图2.1 IIR数字滤波器设计步骤21212.2巴特沃斯低通滤波器的原理巴特沃斯滤波器的特点是同频带内的频率响应曲线最为平坦,没有起伏,而在组频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界见频率开始,振幅随着角频率的增加而逐渐减少,趋向于负无穷大。

一阶巴特沃斯滤波器的衰减率为每倍频20分贝,二阶巴特沃斯滤波器的衰减率为每倍频12分贝,三阶的衰减率为每分贝18分贝,如此类推,巴特沃斯滤波器的振幅对角频率单调下降,并且滤波器的结束越高,在组频带振幅衰减速度越快,其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。

N cs s H s H )(11)()(22Ω-+=-上述函数的特点是等距离分布在半径为Ω的圆上。

因此,极点用下式表示为Nk j j c k ee s )12(2+∏Ω=1,2,1,0-=N k)(s H a 的表示式:∏-=-Ω=1)()(N k kn ca ss s H为了使设计公式和图表统一,将频率归一化。

巴特沃斯滤波器采用3dB 截止频率c Ω归一化,归一化后的系统函数为∏-=Ω-Ω=Ω10)(1)(N k ck c ca s s s G令c c s j p ΩΩ=Ω=+=λλη,,λ称为归一化频率,p 称为归一化复变21量,这样巴特沃斯滤波器的归一化低通原型系统函数为∏-=-=10)(1N k ka pp G式中,c k s p Ω=,为归一化极点,用下式表示:)21221(Nk j kep++=π 1,2,1,0-=N k2.3双线性变换法1.双线性变换法的基本原理由于从s 平面到z 平面的映射sTz e =具有多值性,使得设计出来的数字滤波器不可避免的出现频谱混迭现象。

为了克服脉冲响应不变法可能产生的频谱混叠效应的缺点,我们使用一种新的变换——双线性变换。

双线性变换法可认为是基于对微分方程的积分,利用对积分的数值逼近的思想 。

仿真滤波器的传递函数()H s 为1(),Mkk k Nkk k c sH s M N d s===>∑∑将展开为部份分式的形式,并假设无重复几点,则1()Nkk pkA H s s s ==-∑那么,对于上述函数所表达的数字信号处理系统来讲,其仿真输入()x t 和模拟输出()y t 有如下关系()()()p y t s y t Ax t '-=利用差分方程来代替导数,即()(1)()y n y n y t T--'=同时令[]1()()(1)2y t y n y n =+- []1()()(1)2x t x n x n =+-这样,便可将上面的微分方程写为对应的差分方程形式[][][]1()(1)()(1)()(1)22p s Ay n y n y n y n x n x n T ---+-=+- 两边分别取z 变换,可得11()()21()1p Y z AH z zX z s T z --==-⨯-+ 这样,通过上述过程,就可得到双线性变换中的基本关系,如下所示11211z s T z ---=⨯+22sT z s T+=- 所谓的双线性变换,仅是指变换公式中s 与z 的关系无论是分子部份还是分母部份都是线性的。

2. 转换关系分析双线性变换法采用非线性频率压缩方法,将整个频域轴上的频率范围压缩到-π/T~π/T 之间,再用z=e sT 转换到z 平面上。

也就是说,第一步现将整个S 平面压缩映射到S1平面的-π/T~π/T 一条横带里;第二步再通过标准变换关系1e S T 将此横带变换到整个z 平面上去。

这样就使S 平面与Z 平面建立了一一对应的胆汁关系,消除了多只变换性,也就消除了频谱混叠现象,映射关系如图所示。

为了将S 平面的整个虚轴j Ω压缩到1S 平面轴上的-π/T 到π/T 段上,可以通过以上的正切的变换实现Ω=2/Ttan(1ΩT/2)式中,T 仍是采样间隔。

当1Ω由-π/T 经过0变化到π/T 时,Ω由-∞经过0变化到+∞,也即映射了整个j Ω轴。

将上式写成111122222TTj j TT j j e e j T e e ΩΩΩΩ--Ω=•+将此关系解析延拓到整个S 平面和1S 平面,令j Ω=s, 1j Ω=S1,则得S 111221tan()21e s Ts TS T e T T --==•+ 再将S1平面通过以下标准变换关系映射到Z 平面:z=S1T e 从而得到S 平面和Z 平面的单值映射关系为;11211Z S T Z ---=+122122T T S S Z T T S S ++==--以上两式是S 平面与Z 平面之间的单值映射关系,这种变换都是两个线性函数之比,因此成为双线性变换。

依靠双线性变换是建立起来s 平面和z 平面的单值映射关系,由上式我们可以得到模拟频率Ω和数字频率ω之间的关系:2tan()2T ωΩ=从上式可知,当Ω→∞时,ω终止在折叠频率ω=π处,整个jΩ轴是单值地对应于单位元的一周。

因此双线性变换法不同于脉冲响应不变法,它不存在频率混淆问题。

然而,付出的代价是在频率轴上引入了失真。

因此,只有当能容忍或补偿这种失真时,使用双线性变换法设计数字滤波器的方法才是实用的。

仅在零频率附近时Ω与ω之间的频率变换关系接近于线性关系,所产生的数字滤波器的幅频响应相对于原模拟滤波器的幅频响应有畸变。

图2.3 双线性变化法的频率关系由于S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。

因此,稳定的模拟滤波器经双线性变换后所得到的数字滤波器也一定是稳定的。

但是,它的频率变换关系是非线性畸变。

这种非线性即便可以通过预畸变来校正。

用双线性变换设计数字滤波器时,一般总是先将数字滤波器的各临界频率经上式的频率预畸变,求得相应参考模拟滤波器的各临界频率,然后设计参考模拟滤波器的传递函数,最后通过双线性变换公式球的数字滤波器的传递函数。

这样通过双线性变换,正好将这些频率点映射到我们所需要的位置上。

下面我们利用模拟滤波器设计IIR 数字低通滤波器的步骤。

a)确定数字低通滤波器的技术指标:同代截止频率p ω、同代衰减p α、阻带截止频率ω、阻带衰减s α。

b)将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。

采用双线性变换法,便捷频率的转换关系为2tan()2T ωΩ=c)按照模拟低通滤波器的技术指标设计模拟低通滤波器。

d )将模拟滤波器系统函数Ha(S)从s 平面转换到z 平面,得到数字低通滤波器系统反函数Ha(z)。

H(z)=Ha (S )|1111Z S Z ---=+2.4 用双线法设计巴特沃斯数字低通滤波器的步骤MATLAB中设计IIR数字滤波器的具体步骤如下:(1)把给出的模拟滤波器的性能指标转换为数字低通滤波器的性能指标;(2)将数字低通滤波器的性能指标转换模拟滤波器的性能指标;(3)根据转换后的性能指标,通过滤波器结束选择函数,来确定滤波器的最小阶数n和固有频率wn;(4)由最小阶数n得到巴特沃斯模拟低通滤波器原型;(5)模拟低通滤波器到模拟低通滤波器的转换;(6)运用双线性变换法把模拟滤波器转换成数字滤波器。

三、MATLAB程序>> fs=1000;%采样频率fp=100;fst=300;wp=2*pi*fp/fs;%数字通带截止频率ws=2*pi*fst/fs;%数字阻带截止频率Rp=3;%通带最大衰减系数Rs=20;%阻带最大衰减系数Fs=fs/fs;Ts=1/Fs;%采样周期m=256;%采样点数Wp=2/Ts*tan(wp/2);%模拟通带截止频率Ws=2/Ts*tan(ws/2);%模拟阻带截止频率[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s');%选择模拟巴特沃斯低通滤波器的最小阶数[z,p,k]=buttap(N);%创建巴特沃斯模拟低通滤波器[Bp,Ap]=zp2tf(z,p,k);%由零点、极点、增益确定传输函数的分子与分母的系数[b,a]=lp2lp(Bp,Ap,Wn);%模拟低通滤波器到模拟低通滤波器的转换[bz,az]=bilinear(b,a,Fs*Ts/2);%用双线性变换法实现模拟低通滤波器到数字低通滤波器的转换[h,w]=freqz(bz,az,m,Fs/fs);%得到数字滤波器的m点复频响应db=20*log(abs(h)/max(abs(h)));figure(1);plot(w,abs(h),'r');title('数字低通滤波器')grid on;figure(2);subplot(2,1,1);plot(w/pi,db);title('幅频特性');xlabel('w/pi');ylabel('20lg|Hg(w)|');grid on,subplot(2,1,2);plot(w/pi,angle(h));title('相频特性');xlabel('w/pi');ylabel('相位');grid on;wp1=2*pi*fp;ws1=2*pi*fst;[Nc,wc]=buttord(wp1,ws1,Rp,Rs,'s');%计算滤波器的阶数和3db 截止频率[b1,a1]=butter(Nc,wc,'s');%计算滤波器系统函数分子分母多项式[f,h]=freqs(b1,a1);figure(3)plot(h,abs(f));grid on,xlabel('频率(hz)'),ylabel('幅度');title('模拟低通滤波器');四、程序中命令介绍1)确定滤波阶段函数buttord格式: [N,Wn]=buttord(Wp,Ws,Rp,Rs,‘S’)表示选择模拟巴特沃斯低通滤波器的最小阶数其中:N:满足指标的最低滤波器阶数Wn:巴特沃斯自然频率Rp:通带最大衰减Rs:阻带最小衰减Wp、Ws归一化的通带和阻带边缘频率。

相关文档
最新文档