指数与指数函数图像及性质(教师版)
指数函数的图象和性质 PPT课件(高一数学人教A版 必修一册)

y
(
1)x 2
的图
象.
高中数学
问题1 你是如何画出函数 y (1)x的图象.
2
底数互为倒数的两个指数函数的 图象关于 y 轴对称.根据这种对称性, 就可以利用一个函数的图象,画出另 一个函数的图象.
高中数学
将指数函数 y=ax 的图象按底数 a 的取值,分作 a>1 和 0<a<1两 种类型进行研究.
研究函数性质的三步曲
先做出具体函数的图象,然后通过观察、比较不同函数的图象, 最后归纳它们共同的特征.
高中数学
指数函数的图象和性质
研究指数函数 y=2x .
高中数学
指数函数的图象和性质
研究指数函数 y=2x . 定义域是R;
高中数学
指数函数的图象和性质
研究指数函数 y=2x . 定义域是R; 值域是(0,+∞)?
问题3 这几个函数的图象是否能代表一般的指数函数的图象?我们 得到的性质是否推广到一般的指数函数的性质?
高中数学
问题3 这几个函数的图象是否能代表一般的指数函数的图象?我们 得到的性质是否推广到一般的指数函数的性质?
高中数学
指数函数 y=ax ( a>0,且 a ≠ 1)的图象和性质 .
0<a<1
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y
0.35
0.71
1.41
2.83
高中数学
请同学们完成 x,y 的对应值表,并用描点法画出指数函数 y=2x 的图象.观察图象,探究函数的性质.
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y 0.25 0.35 0.5 0.71 1 1.41 2 2.83 4
最新湘教版高中数学《指数函数的图象与性质》教学课件

由
0.80.7 0.70.7
0.8 0.7
0.7
>1得0.70.7<0.80.7.
所以0.70.8<0.70.7<0.80.7.
比较两个数的大小,既 可以作差,也可以用比的方
法.
一 指数函数的图形与性质
例 5 已知指数函数f(x)=ax的图象经过点(2,7),求f(-6)和f(3).
解 因为f(x)=ax的图象经过点(2,7),
x
.
6.在同一直角坐标系内作出下列各函数的图象:
y=4x,y=4- x,y=4 x+1 ,y=4x-1 .
并说明后三个函数图象可由y=4x的图象经过怎样的变换而得到.
二
习题4.2
7.设a,b,c,d都是不等于1的正数,y=ax,y=bx,y=cx,y=dx在同一直角坐标
系中的图象如下图所示,则a,b,c,d的大小关系是
当然,作出来的图象是有限的,从图象得出来的这些结论是看曲线走势发挥 想象力的结果.
一 指数函数的图形与性质
如果底数a∈(0,1),则它的倒数
1 a
>1,函数
f(-x)=
a-x
=
1 a
x
的图象关于y轴对称.例如
y
2 3
f(x)=
x
与y
ax = 3 2
x
1 a
x
的图象和函数
的图象关于y轴对称,
一 指数函数的图形与性质
例 3 作出指数函数y=ax和y=10x的图象. 解 通过列表、描点连线(也可借助信息技术在计算机上作图),得图4.2-3.
x … -2 -1 0 1 2 … y=2x … 0.25 0.5 1 2 4 …
x … -1 -0.5 0 0.5 1 … y=10x … 0.1 0.32 1 3.16 10 …
新教材人教b版必修第二册412指数函数的性质与图像课件1

1
.
10
(x
√
)
y=(sin 30°)x在定义域上是增函数.( ✕ )
提示:sin 30°= 1 ,故函数y=(sin 30°)x在定义域上是减函数.
2
y=2x+1的图像可以由y=2x的图像向右平移1个单位长度得到. ( ✕ )
提示:应该是向左平移1个单位长度.
1 |与指数函数有关的复合函数的定义域、值域
1.(★★☆)解下列方程.
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),∴2x+4=-2(x+2),解得x=-2.
(2)∵22x+2+3×2x-1=0,
∴4×(2x)2+3×2x-1=0.
令t=2x(t>0),则原方程可化为4t2+3t-1=0,解得t= 1 或t=-1(舍去),
破疑典例
(★★☆) (1)设a,b,c,则a,b,c的大小关系是 ( C )
A.a<b<c
B.a<c<b
C.b<a<c D.b<c<a
(2)下列大小关系正确的是 ( B )
3<3<π03<π0<3
3<π00<33
解析 (1)00,又函数yx在(-∞,+∞)上是减函 ,即b<a<c.故选C.
(2)30=1=π0=30<3,故选B.
t <1,∴函数的值域为[0,1).
2|与指数函数有关的复合函数的单调性
指数函数图像和性质名师优质公开课

fx = 0.9x
0.5
1
1.5
2
2.5
3
3.5
4
练习: 1、已知下列不等式,试比较m、n的大小:
( 2)m ( 2)n
mn
33
1.1m 1.1n
mn
2、比较下列各数的大小:
10 , 0.42.5 , 20.2
0.42.5 10 20.2
比较指数型值经常 借助于指数函数的图像
或直接运用函数的单调性
(0,+∞)上是减函数。
(3)在第一象限,图象向上与 y 轴无限靠近,向右与 x 轴无限靠近。
指数函数的定义:
函数
y a x (a 0且a 1)
叫做指数函数,其中x是自变量 函数定义域是R 值域是(0, )
下列函数中,哪些是指数函数?
y 4x y x4
y 4 x1
y 4 x
y 4x y 3x
y 3x y 2x
1
0
1
x
y
y
y 1 x
y2 a x
(a 1)
y 1 x 3
y
y 3x y 2x
y ax
(0 a 1)
1 1
0
x
0
1
1
0x
x
y
y 1 x 2
y 1 x 3
y 3x y 2x
y=1 1
0
1
x
y
y ax
(a 1)
1
0
x
y
y ax
(0 a 1)
或选用适宜的中介值(惯用的特殊值是0和1),再运用单调性比较大小
a>1
0<a<1
图 6
5
数学人教A版必修第一册4.2.2指数函数的图像与性质课件

(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
数学人教A版(2019)必修第一册4.2.2指数函数的图象及性质(共32张ppt)

4
-1.5
0.35
2.83
-1
0.5
2
-0.5
0.71
1.41
0
1
1
0.5
1.41
0.71
1
2
0.5
2
4
0.25
2 ,
=
1
( ) 的图象.
2
新知1:指数函数图像与性质
问题2:将函数 = 的图象与函数 = ( ) 的图象进行比较,它们有什么联系?
1
2
= 2 的图象与函数 = ( ) 的图象关于轴对称.
,则下列结论中,一定成立的是(
A. < 0, < 0, < 0
C. < 0, = − , > 0
)
B. < 0, ≥ 0, > 0
D.3 + 3 > 2
【答案】D
【解析】由图示可知 < 0 , 的符号不确定, > 0 ,
故A、B错;
( ) = |3 − 1|, ( ) = |3 − 1|,
∴ = 1时, = 0,
当 > 1时,函数 = 2 − 2为 1, +∞ 上的单调递增
函数,且 > 0,
当 < 1时,函数 = 2 − 2 为 −∞, 1 上的单调递减
函数,且 > 0,
故选:B
D.
)
典型例题
题型二:指数函数的图象问题
【对点训练2】(2023·全国·高一专题练习)函数 ( ) = − 的图象如图所示,其中 a,b为常数,则下列结
如上图, < < 0 < 满足 > > ,故
第5讲 指数函数及其图像(教师版)

第五讲指数函数及其图像1.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn=na m(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是amn=1na m(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s=a r+s,(a r)s=a rs,(ab)r=a r b r,其中a>0,b>0,r,s∈Q. 2.指数函数的图象与性质y=a x a>10<a<1图象定义域(1)R值域(2)(0,+∞)性质(3)过定点(0,1)(4)当x>0时,y>1;当x<0时,0<y<1(5)当x>0时,0<y<1;当x<0时,y>1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)na n=(na)n=a.(×)(2)分数指数幂a mn可以理解为mn个a相乘.(×)(3)(-1)24=(-1)12=-1.(×)(4)函数y=a-x是R上的增函数.(×)(5)函数y=a21+x(a>1)的值域是(0,+∞).(×) (6)函数y=2x-1是指数函数.(×)1.若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是( )A .1 B.14 C.22 D.23答案 D解析 ∵a =(2+3)-1=2-3,b =(2-3)-1=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2 =112-63+112+63=23.2.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案 D解析 函数f (x )的图象恒过(-1,0)点,只有图象D 适合.3.(教材改编)已知0.2m <0.2n ,到m ________n (填“>”或“<”). 答案 >解析 设f (x )=0.2x ,f (x )为减函数, 由已知f (m )<f (n ),∴m >n .4.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.5.函数y =8-23-x (x ≥0)的值域是________. 答案 [0,8)解析 ∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴0<23-x ≤23=8,∴0≤8-23-x <8, ∴函数y =8-23-x 的值域为[0,8).题型一 指数幂的运算例1 化简:(1)a 3b 23ab 2(a 14b 12)4a13-b13(a >0,b >0);(2)()21103227()0.00210(52)(23).8----+--+-解 (1)原式=(a 3b 2a 13b 23)12ab 2a13-b 13=a 3111263+-+b 111233+--=ab -1. (2)原式=1223271()850052--⎛⎫ ⎪⎝⎭-+-1- =122381()527500⎛⎫ ⎪⎝⎭-+-10(+2)+1 =49+105-105-20+1=-1679. 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)[(0.06415)-2.5]23-3338-π0=_______________________________. (2) (14)12-·(4ab -1)3(0.1)-1·(a 3·b -3)12=________.答案 (1)0 (2)85解析 (1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫641 0001552-23-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫4103152()523⨯-⨯-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0.(2)原式=2×432×a 32b32-10a 32b32-=85. 题型二 指数函数的图象及应用例2 (1)函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .0<a <1,b >0 D .0<a <1,b <0(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 答案 (1)D (2)[-1,1]解析 (1)由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0,故选D. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E.某指数函数y=a x (a>0,且a≠1)经过点E,B,则a等于()A. 2B.3C.2 D.3(2)已知函数f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是() A.a<0,b<0,c<0 B.a<0,b≥0,c>0C.2-a<2c D.2a+2c<2答案(1)A(2)D解析(1)设点E(t,a t),则点B坐标为(2t,2a t).因为2a t=a2t,所以a t=2.因为平行四边形OABC的面积=OC×AC=a t×2t=4t,又平行四边形OABC的面积为8,所以4t=8,t=2,所以a2=2,a= 2.故选A.(2)作出函数f(x)=|2x-1|的图象,如图,∵a<b<c,且f(a)>f(c)>f(b),结合图象知0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2,故选D.题型三 指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是( ) A .1.72.5>1.73 B .0.6-1>0.62 C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(2)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. 答案 (1)B (2)a >c >b解析 (1)A 中, ∵函数y =1.7x 在R 上是增函数, 2.5<3,∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; D 中,∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. (2)∵y =⎝⎛⎭⎫25x为减函数, ∴⎝⎛⎭⎫2535<⎝⎛⎭⎫2525 即b <c ,又a c =⎝⎛⎭⎫35 25⎝⎛⎭⎫25 25=⎝⎛⎭⎫3225>⎝⎛⎭⎫320=1, ∴a >c ,故a >c >b .命题点2 解简单的指数方程或不等式例4 设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)答案 C解析 当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.命题点3 和指数函数有关的复合函数的性质例5 设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.解 因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,即k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a >0,又a >0且a ≠1,所以a >1.因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数,原不等式可化为f (x 2+2x )>f (4-x ), 所以x 2+2x >4-x ,即x 2+3x -4>0, 所以x >1或x <-4.所以不等式的解集为{x |x >1或x <-4}. (2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x +2-2x -4(2x -2-x ) =(2x -2-x )2-4(2x -2-x )+2.令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=32,所以原函数为ω(t )=t 2-4t +2=(t -2)2-2,所以当t =2时,ω(t )min =-2,此时x =log 2(1+2).即g (x )在x =log 2(1+2)时取得最小值-2. 思维升华 指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.(2)如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 答案 (1)(-∞,4] (2)D解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4]. (2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a ,a ],又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增, 所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a ],又函数y =(t +1)2-2在[a ,1a ]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上知a =3或a =13.4.换元法在和指数函数有关的复合函数中的应用典例 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x+1在区间[-3,2]上的值域是________.(2)函数f (x )=⎝⎛⎭⎫12221-++x x 的单调减区间为________________________________. 思维点拨 (1)求函数值域,可利用换元法,设t =⎝⎛⎭⎫12x ,将原函数的值域转化为关于t 的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =⎝⎛⎭⎫12x ,则t ∈⎣⎡⎦⎤14,8, 故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数值域为⎣⎡⎦⎤34,57. (2)设u =-x 2+2x +1, ∵y =⎝⎛⎭⎫12u在R 上为减函数,∴函数f (x )=⎝⎛⎭⎫12221-++x x 的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 答案 (1)⎣⎡⎦⎤34,57 (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x=1得到底数的值,再进行比较.2.指数函数y=a x (a>0,a≠1)的性质和a的取值有关,一定要分清a>1与0<a<1.3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.[失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来.2.复合函数的问题,一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A组专项基础训练(时间:35分钟)1.函数f (x )=2|x -1|的图象是( )答案 B解析 ∵|x -1|≥0,∴f (x )≥1,排除C 、D. 又x =1时,|f (x )|min =1,排除A.故选项B 正确. 2.函数f (x )=a x -2+1(a >0且a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,0) D .(2,2)答案 D解析 ∵a 0=1,∴f (2)=2,故f (x )的图象必过点(2,2).3.已知a =22.5,b =2.50,c =(12)2.5,则a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .b >a >cD .a >b >c 答案 D解析 a >20=1,b =1,c <(12)0=1,∴a >b >c .4.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2] 答案 B解析 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.故选B.5.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞) D.⎝⎛⎭⎫0,12 答案 D解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点. ①当0<a <1时,如图(1),∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12.6.计算:12104334372()()82()263-⨯--+=________.答案 2解析 原式=⎝⎛⎭⎫23×1+234×214-⎝⎛⎭⎫2313=2. 7.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________. 答案 m >n解析 ∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=3x 在R 上递增,由f (m )>f (n ),得m >n .8.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 0解析 当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.9.已知函数f (x )=⎝⎛⎭⎫13243-+ax x . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=⎝⎛⎭⎫13243--+x x , 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎨⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.10.已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由. 解 (1)∵f (x )=e x -⎝⎛⎭⎫1e x, ∴f ′(x )=e x +⎝⎛⎭⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.∴f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ), ∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数, 则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝⎛⎭⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝⎛⎭⎫t +122≤0, 又⎝⎛⎭⎫t +122≥0,∴⎝⎛⎭⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.B 组 专项能力提升 (时间:20分钟)11.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( ) A .f (-4)>f (1) B .f (-4)=f (1) C .f (-4)<f (1) D .不能确定答案 A解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1).12.已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个 答案 B解析 函数y 1=⎝⎛⎭⎫12x 与y 2=⎝⎛⎭⎫13x 的图象如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b得a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立.13.关于x 的方程⎝⎛⎭⎫32x =2+3a5-a 有负数根,则实数a 的取值范围为__________. 答案 ⎝⎛⎭⎫-23,34 解析 由题意,得x <0,所以0<⎝⎛⎭⎫32x<1, 从而0<2+3a 5-a<1,解得-23<a <34.14.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________. 答案 (-1,2)解析 原不等式变形为m 2-m <⎝⎛⎭⎫12x, 因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数, 所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x恒成立等价于m 2-m <2,解得-1<m <2.15.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x 4x +1.(1)求函数f (x )在(-1,1)上的解析式; (2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解? 解 (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0. 设x ∈(-1,0),则-x ∈(0,1), f (-x )=2-x4-x +1=2x4x +1=-f (x ),∴f (x )=-2x 4x+1,∴f (x )=⎩⎪⎨⎪⎧-2x4x +1,x ∈(-1,0),0,x =0,2x 4x+1,x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=121212(22)(12),(41)(41)x x x x x x +--=++1212211222(22)(22)(41)(41)x x x x x x x x ++-+-++高三·数学(理)∵0<x 1<x 2<1,∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数. (3)∵f (x )在(0,1)上为减函数, ∴2141+1<f (x )<2040+1,即f (x )∈⎝⎛⎭⎫25,12. 同理,f (x )在(-1,0)上时,f (x )∈⎝⎛⎭⎫-12,-25. 又f (0)=0,当λ∈⎝⎛⎭⎫-12,-25∪⎝⎛⎭⎫25,12, 或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.1212022221+,=,x x x x ∴<>。
指数函数的性质与图像公开课优质课件一等奖

2024/1/27
16
人口增长模型
人口增长模型
假设人口增长率保持不变,则人口数量与时间之间的关系可以用指数函数来描 述。即N(t) = N0e^(rt),其中N(t)表示t时刻的人口数量,N0表示初始人口数 量,r表示人口增长率。
指数函数在人口增长模型中的应用
通过指数函数模型,可以预测未来人口数量的变化趋势,为城市规划、资源分 配等提供决策依据。
指数函数的性质与图像公 开课优质课件一等奖
2024/1/27
1
目录
2024/1/27
• 指数函数基本概念 • 指数函数性质分析 • 指数函数图像特征 • 指数函数在生活中的应用举例 • 求解指数方程和不等式方法探讨 • 总结回顾与拓展延伸
2
01
指数函数基本概念
2024/1/27
3
指数函数定义
指数函数是形如 f(x) = a^x (a > 0, a ≠ 1) 的函数,其中 a 是底数,x 是指 数。
当a=1时,指数函数f(x)=1是偶函数,因为 f(-x)=f(x)对于所有的x都成立。
当a=-1时,指数函数f(x)=(-1)^x是奇函数, 因为f(-x)=-f(x)对于所有的x都成立。
2024/1/27
10
03
指数函数图像特征
2024/1/27
ห้องสมุดไป่ตู้
11
图像形状及位置
指数函数图像是一条从左下方 向右上方延伸的曲线,形状类 似于指数增长的曲线。
指数函数的单调性可以通过其导数进行证明。对于底数a>1的指数函数,其导数恒大于0,因此函数单调增加; 对于0<a<1的指数函数,其导数恒小于0,因此函数单调减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。
(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。
(3)()()*∈>==N n n a a nnn ,1,00。
(4),||,a n a n ⎧=⎨⎩为奇数为偶数 其中1>n ,且*∈N n 。
2. 分数指数幂(1)正分数指数幂的定义: n m n ma a =()1,,,0>∈>*n N n m a(2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。
(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。
4.指数函数的概念:一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。
5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,规定:1a a=;2.(1,)n a n n N+=>∈,,||,a na n⎧=⎨⎩为奇数为偶数;3.1(0,,,)nmnmna a m n Nma-+=>∈且为既约分数,=a aαβαβ().【例1】计算下列各式的值.(1(2;(3;(4)a b>.正确解析:(18 =-;(2|10|10 =-=;(3|3|3ππ=-=-;(4||() a b a b a b =-=->.温馨提醒:(1) n中实数a的取值由n的奇偶性确定,只要n有意义,其值恒等于a,即n a=;n的奇偶性限制,a R∈n的奇偶性影响.【变式1】求下列各式的值:(1(*1,n n N>∈且);(2.【例2】计算)213013410.027256317--⎛⎫--+-+⎪⎝⎭【答案】)213013411479 0.027256310.3496417330 --⎛⎫--+-+=-+-+=⎪⎝⎭【变式2】化简34]的结果为()A .5B .C .﹣D .﹣5【答案】B【解析】3234[(5)]-===,故选B【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148422323⎛⎫- ⎪⎝⎭________.【答案】2【解析】原式=1323⎛⎫ ⎪⎝⎭×1+342×142-13223⎛⎫= ⎪⎝⎭.题型二 根式、指数幂的条件求值1. 0a >时,0;ba > 2. 0a ≠时, 01a =;3. 若,r s a a =则r s =; 4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5.11112222()()(0,0)a b a b a b a b +-=->>.【例3】已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【答案】(1)7;(2)47;(3)6. 【解析】(1)将11223a a-+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=. (3)由(1)(2)可得22114716.171a a a a --+++==+++【变式1】已知,a b是方程2640x x-+=的两根,且0,a b>>求a ba b-+的值.【答案】5【方法规律技巧】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是:(1)审题:从整体上把握已知条件和所求代数式的形式和特点;(2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.【变式2】已知12,9,x y xy+==且x y<,求11221122x yx y-+的值.【答案】3【变式3】已知11223a a-+=,求33221122a aa a----的值.易错分析:本题解答一是难以想到应用“立方差”公式,二是应用“立方差”公式时易出现错误.正确解析:由于3311332222()()a aa a ---=-,所以331111122222211112222()()a a a a a a a a a aa a--------++⋅=--=1118.a a -++=温馨提醒:条件求值问题,化简已知条件、所求代数式是进一步代入计算的基础,熟记公式,准确化简是关键.【变式4】 (1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-; (2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】 化简或计算出下列各式:(1)121316324(12427162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是( )A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是( )A.()()()273336263=-=-=- B.32213421313a a aa a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ( )A.3232-+a a C. 3232--a a D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛- B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33xf x a a a =-+是指数函数,求实数a 的值。
【变式1】若函数()(0xf x a a =>且1)a ≠的图象经过点1(2,)2,则(1)f -=_______.【解析】依题意可知212a =,解得2a =,所以()2x f x =,所以1()2f x -==【变式2】已知函数()1,0,,0.xx x f x a x -≤⎧=⎨>⎩若()()11f f =-,则实数a 的值等于( )A .1B .2C .3D .4 【答案】B 【解析】()()()11,112f f a =-∴=--=,故选B.题型四 指数函数的单调性【例2】比较下列各题中的两个值的大小:(1)与; (2)与 (3)与【变式1】比较0.20.71.5,1.3,-132()3的大小。
【变式2】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【例3】指数函数()(1)xf x a =-在R 上是增函数,则a 的取值范围是( )A .1a >B .2a >C .01a <<D .12a << 【答案】B【解析】对于指数函数xy a =,当1a >时,函数在R 上是增函数,当01a <<时,函数在R 上为减函数.由题意可知:11a ->即,2a >,选B . 【变式3】使不等式23x -1>2成立的x 的取值为( )A .(23,+∞) B.(1,+∞) C.(13,+∞) D.(-13,+∞)【变式4】若(12)2a +1<(12)3-2a,则实数a 的取值范围是( )A .(1,+∞) B.(12,+∞) C.(-∞,1) D .(-∞,12)【例4】函数221y=2x x -++⎛ ⎪⎝⎭的单调递增区间是________.易错分析:本题解答往往忽视函数的定义域,而出现错误.正确解析:令220t x x ≥=-++,得函数定义域为[12]-,, 所以22t x x =-++在1[1,]2-上递增,在1[2]2,递减.根据“同增异减”的原则, 函数221y=2x x -++⎛ ⎪⎝⎭的单调递增区间是1[2]2,.温馨提醒:处理函数问题时,应注意遵循“定义域优先”的原则.题型三 指数型函数的图像【例5】如下图所示是指数函数①x y a =;②x y b =;③x y c =;④x y d =的图象,试判断,,,a b c d 与1的大小关系。
【变式1】当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( )【变式2】已知函数()22xf x =-,则函数|()|y f x =的图象可能是( )【答案】B【解析】|f(x)|=|2x-2|=易知函数y=|f(x)|的图象的分段点是x=1,且过点(1,0),(0,1),又|f(x)|≥0,故选B. 题型四 指数函数的性质应用【例6】求下列函数的定义域、值域。
(1)y =11-x ; (2)y =315-x ; (3)y =2x+1; (4)y =1222+-x x .【变式1】求下列函数的定义域与值域。