1421(1)平方差公式课件--人教版八年级数学上册

合集下载

人教版八年级数学上册教学课件:14.2.1平方差公式

人教版八年级数学上册教学课件:14.2.1平方差公式

你能将发现的规律用式子表示出来吗? (a+b)(a-b)=a 2 -b2
探究平方差公式
你能对发现的规律进行推导吗?
(a+b)(a-b) =a2 -ab+ab-b2 =a2 -b2
理解平方差公式
前面探究所得的式子(a+b)(a-b)=a2-b2 为乘法 的平方差公式,你能用文字语言表述平方差公式吗?
14.2 乘法公式 (第1课时)
• 本课是在学生学习了多项式乘法与合并同类项知识 的基础上,对特殊形式的乘法运算概括出了乘法公 式——平方差公式,平方差公式也是因式分解中公 式法的重要基础,在代数中具有广泛的应用式,能运用公式进行计算. 2.在探索平方差公式的过程中,感悟从具体到抽象 地研究问题的方法,在验证平方差公式的过程中, 感知数形结合思想.
• 学习重点:
平方差公式.
探究平方差公式
在14.1节中,我们学习了整式的乘法,知道了多
项式与多项式相乘的法则.根据所学知识,计算下列
多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=
x2 -1 ;
(2)(m+2)(m-2)= m2-4 ;
(3)(2x+1)(2x-1)= 4x2 -1 .
相乘的两个多项式的各项与它们的积中的各项有 什么关系?
探究平方差公式
在14.1节中,我们学习了整式的乘法,知道了多
项式与多项式相乘的法则.根据所学知识,计算下列
多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=
x2 -1 ;
(2)(m+2)(m-2)= m2-4 ;
(3)(2x+1)(2x-1)= 4x2 -1 .

人教版八年级上册14.2.1平方差公式(共16张PPT)

人教版八年级上册14.2.1平方差公式(共16张PPT)

练习2 口答: 下列各题的计算有没有错误?错的如何改正?
⑴( x-6 )·(x+6)= x2-6
( ×)
⑵(x2+5)·(x2-5)= x2-25
( ×)
⑷(3x2-2y3)·(3x2+2y3)=9x4-4y9 (× )
学一学 例题解析
例2利用平方差公式计算: (1)1998×2002 (2)12 34567 ×12 34569-12345682
应用平方差公式 时要注意一些什么?
运用平方差公式时,要紧扣公式的特征, 找出相等的“项”和符号相反的“项”,然后应用公
式对于;不符合平方差公式标准形式者, 要利用加法交换律,或提取两“−”号中的“−”号, 变成公式标准形式后,再用公式。
拓展练习
下列式子可用平方差公式计算吗? 为什么? 如果能够, 怎样计算?
(3) (3m+2n)(3m−2n)=3m2−2n2 第一数与第二数被平方时,
都未添括号。
思考:
在一块边长为45米的正方形广场内,要 造一个边长为15米的正方形喷水池,广场余 下空地用作绿化,求:绿化面积。
4a 5
a2 - b2
1b 5
割补法
(a+b)·(a-b) 4a5--b15
4a5
1b5
452-152
( 45+15 )·(45-15)
即:( 45+15 )·(45-15)= 452-152
如果,把正方形广场边长改为a,把喷水池边长改为b,那么又 该如何表示上式呢?
(a+b()a-b)= a2 - b2
本节课你的收获是什么?
试用语言表述平方差公式 (a+b)(a−b)=a2−b2。
两数和与这两数差的积,等于它们的平方差。

人教版八年级数学上册《14.2.1 平方差公式》课件 (共18张PPT)

人教版八年级数学上册《14.2.1 平方差公式》课件 (共18张PPT)

11.2003×2001-20022
=-1
12.已知:x-y=2,y-z=2,x+z=14,求x2-z2. 解:x2-z2=56.
1,生活不会惯着你,想要不被抛弃,必须自己争气2,所有的嫉妒都只是因为你没出息。3,敬往事一杯酒,自此不再回头4,人只能活一回,梦想却有无数个,唯有放手一搏,才能知道机会属不属于自己。5,只要肯努力,想要的都能自己得到。6,不 努力你要未来干什么。7,因为不能天生丽质,所以只能天生励志。8,没有什么才能比努力更重要。9,现在的你决定将来的你。10,路是走出来的,而不是空想出来的。11,拼搏到无能为力坚持到感动自己。没有野心的女人不漂亮。12,梦像是永远 不可凋零的花。13,你一事无成,还在那里傻乐。4,今天做的一切挣扎都是在为明天积蓄力量,所以别放弃。15,未来可能遥远,但不轻易放弃。16,历史只会记住有野心的人。17,我的青春不要留白,我敢异想就会天开。18,你还年轻,别凑合过。 19,这个世界没有重来二字,所以不如一切趁早20,要么努力向上爬,要么烂在社会最底层的泥淖里。既然选择了远方,便只顾风雨兼程。21,曾经输掉的东西,只要你想,就一定可以再一点一点赢回来22,如果这世界上真有奇迹,那只是努力的另一 个名字。23,时间告诉我们,无理取闹的年龄过了,该懂事了。24,你必须跳下悬崖,在坠落空中生出翅膀。25,坚持了才叫梦想,放弃了就只是妄想26,跌倒不算是失败,爬不起来才算是失败。27,你的人生除了你自己,谁也毁不掉28,你才十七八 岁,你可以成为任何你想成为的人。29,有梦想并为之努力的人都好可爱哦,我也要做可爱的人。30,因为生活就如此,弱小就该死。31,只有蓬勃野心,没有日月风情。32,勤奋是你生命的密码,能译出你一部壮丽的史诗。33,你要记住你不是为别 人而活,你是为自己而活。34,我怕我配不上自己所受的苦难。35,姑娘,好好的活下去,活给那些瞧不起你的人看着。36,成功的速度一定要超过父母老去的速度37,爱就努力,不爱就放弃,一生那么短,你有什么理由不勇敢。38,天赋比你好的人 都在努力。39,没有人会嘲笑竭尽全力的人。40,别人拥有的,你不必羡慕,只要努力,你也会拥有。41,别只顾着羡慕别人忘了给自己掌声。42,只要你不跪着这个世界没人比你高。1.靠谁不如靠自己,做谁都不如做自己,谁好都不如自己好。2.不 要拿我跟任何人比,我不是谁的影子,更不是谁的替代品,我不知道年少轻狂,我只懂得胜者为。3.我的个性取决于我是谁,我的态度要看看你是谁4.一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪5.我不是天生 的王者,但我骨子里流着不服输的血液6.不是我不好,而是你不配7.生活不是等待风暴过去,而是学会在雨中翩翩起舞。8.做真实的自己,不要为了取悦别人或试图成为某个人。做你最原始的自己,比做任何人的复制品都来得好。9.生活总是让我们遍体 鳞伤,但到后来,那些受伤的地方一定会变成我们最强壮的地方。10.你必须去面对你不愿意面对的各种人,你的承受力会越来越好。生活就是你开始接受你不得不做的那些你不喜欢的事。但是,当你发现,所有你不愿意做的事情,都是为了那件你喜欢 的事而做准备,所有的忍耐和痛苦就都会觉得是值得的了。11.人生总是这样,在不经意间伤害到别人,又在不经意间被别人伤害。12.一个能从别人的观念来看事情,能了解别人心灵活动的人,永远不必为自己的前途担心。13.无论你昨晚经历了怎样的 泣不成声,早上醒来这个城市依旧车水马龙。14.好好过你的生活,不要老是忙着告诉别人你在干嘛,也许他们并不想知道。15.世界上最远的距离不是树与树的距离,而是同根生长的树枝,却无法在风中相依。16.做该做的事,按照自己的愿望,踏踏实 实地去学好本领。17.人生修的就是无常,请珍惜每一个当下,珍惜眼前人,失去了就回不来了。18.一个人能坏到什么程度,看他张狂的时候就清楚了;同样,一个人会好到什么程度,看他困厄的时候就知道了。得意的时候看他做什么,落魄的时候看他 不做什么,从放纵和坚守透露出的,往往是最真的品性。19.奋斗的火苗在冒发,碰触心的温度,简单的充实,简单的满足。一个人的道路,也不孤独。20.失败,并不是说明你差,而是提醒你该努力了。一、混就混出个名堂,学就学出个样子,要么出人 头地,要么人头落地。二、我们这么拼,这么努力赚钱,就是为了要用“老子有钱”四个字,去堵住所有人的嘴。三、做自己的决定。然后准备好承担后果。从一开始就提醒自己,世上没有后悔药吃。四、只有不断超越才有不断进步,在人生道路上, 最大的敌人莫过于自己,战胜自己的胆怯就坚强,任何浮躁心态,都会给成功带来巨大的祸害。五、用人情做出来的朋友只是暂时的,用人格吸引来的朋友才是长久的。要知道,丰富自己比取悦他人更有力量。六、尺有所短,寸有所长,永远抱一颗谦 卑的心,才能让自己更加完善。人生没有完美,只有完善;岁月没有十全十美,只有尽量。七、不要做廉价的自己,不要随意去付出,不要一厢情愿去迎合别人,圈子不同,不必强融。八、生活再不如人意,都要学会自我温暖和慰藉,给自己多一点欣 赏和鼓励。九、自己喜欢的东西,就不要问别人好不好看。喜欢胜过所有道理,原则抵不过我乐意。十、世界上最好的保鲜,就是不断进步,努力让自己成为更好的人,这比什么都重要。十一、千万别因为别人宠你包容你呵护你,就以为他们喜欢你的 所有,该改的还是要改,这样才能对得起别人毫无保留的偏袒和纵容十二、能管理好自己的情绪,你就是优雅的;能控制好自己的心态,你就是成功的。十三、当你觉得自己不如人时,不要自卑,记得你只是平凡人。当别人忽略你时,不要伤心,每个 人都有自己的生活,谁都不可能一直陪你。十四、你自以为的极限,只是别人的起点,在约定俗成的世界里,倔强地活成自己喜欢的样子,大胆尝试做不一样的自己。十五、我们都得经历一段努力闭嘴不抱怨的时光,才能熠熠生辉,才能去更酷的地方, 成为更酷的人。十六、不要放弃自己的内心,因为你自己的人生道路,最终只能自己走下去,如果违背了自己的本心,那便无法快乐。十七、年轻,那么短暂,那么迷茫。如果你不能给自己一张耀眼的文凭,一段荡气回肠的爱情,那么,你还可以给自 己一个九成九会遭到嘲笑的梦想。因为,总有一天,它会让你闪闪发光。十八、做你自己,说出你的感受,因为那些对你重要的人不会介意,而那些介意的人对你并不重要。十九、除了靠自己,靠谁都是不靠谱。这世上没有谁会心甘情愿一直被你依靠。 靠自己,才能把事情做到最好;靠自己,才能学到真本事,真正解决问题;靠自己,人生才不会输。二十、做一个特别简单的人,不期待突如其来的好运,经营好自己,珍惜眼前的时光。往事不回头,未来不将就,你若盛开,蝴蝶自来。二十一、不要 为别人委屈自己,改变自己。你是唯一的你,珍贵的你,骄傲的你,美丽的你。一定要好好爱自己。二十二、这个世界上已经有很多人和事让你失望了,而最不应该的,就是自己还令自己失望!二十三、过去的事不要想,因为你无法改变过去;将来的

14.2.1 平方差公式 课件(共20张PPT)人教版数学八年级上册

14.2.1   平方差公式 课件(共20张PPT)人教版数学八年级上册
2.请同学们阅读课本107页思考并讨论.
3.判断下列式子是否正确. (1)(x+2)(x-2)=x2-2( × ); (2)(-3a-2)(3a-2)=9a2-4( × ); (3)(-2x+y)(-2x-y)=4x2-y2( √ ); (4)(a+3)(a-4)=a2-12( × ).
4.请同学们完成课本108页例2.
新知导入
游戏导入
同学们,我们来做一个数字游戏. 请同学们在纸上写出你最喜欢的一个幸运数字(10以内),然后计算100与这 个数的和,接着乘100与这个数的差. (给学生半分钟思考、计算的时间) 同学们都算得很投入,只要告诉我,你计算的结果,我就能马上说出你的幸运 数字是几,信吗? (请两位学生来试验) 等我们学了今天的知识以后,大家也能像老师一样,马上猜出其他同学的幸运 数字.
典例精讲
【题型一】平方差公式
例1:下列式子中,可以用平方差公式计算的是( C )
A.(x+2)(2+x)
B.(x+y)(-x-y)
C.(2x+y)(y-2x)
D.(2x-y)(x+2y)
变式:下列各式中,不能用平方差公式计算的是( D )
A.(-x+y)(-x-y)
Hale Waihona Puke B.(x-y)(-x-y)
C.(x+y)(-x+y)
14.2乘法公式
14.2.1平方差公式
学习目标
1. 经历探索平方差公式的过程,会运用多项式乘法法则推 导平方差公式,进一步发展符号感和推理能力.
2.通过自主探究平方差公式,认识平方差公式及其几何模 型,感受数学公式的意义和作用.
3.通过观察,理解、掌握平方差公式的结构特征,能灵活 熟练地运用平方差公式,培养学生解决问题的能力.

平方差公式(课件)八年级数学上册(人教版)

平方差公式(课件)八年级数学上册(人教版)
2
(1)
=
(x+1)
(x -1) x -1 ;
(2)
= m2 - 4 ;
(m+ 2)
(m- 2)
2
(3)
=
4
x
-1.
(2 x+1)
(2 x -1)
相乘的两个多项式的各项与它们的积中的各项有什么关系?
(a+b)
(a-b)=a 2 -b 2
你能证明(a+b)(a-b)=a 2 -b 2 吗?
1、利用多项式的乘法法则验证:
(1)上述操作能验证的等式是________.
B
A. 2 − 2 + 2 = ( − )2
B. 2 − 2 = ( + )( − )
C. 2 − = ( − )
(2)应用你从(1)中选出的等式,完成下列各题:
①已知x 2 − 4y 2 = 18, − 2 = 3,求 + 2.
2
3
4
1
20212
× 1−
1
20222

(2)解:①∵x2-4y2=18,x-2y=3,
∴x+2y=(x2-4y2)÷(x-2y)=18÷3=6;
1
1
1
②原式=(1 − ) × (1 + ) × (1 − )
2
2
3
1
3
2
4
2021
2023
= × × × × ⋯×
×
2
2
3
3
2022
2022
1 2023
人教版
八年级上册数学
第十四章
14.2.1平方差公式
复习引入

14.2.1 平方差公式 课件-人教版八年级数学上册

14.2.1 平方差公式 课件-人教版八年级数学上册

一 平方差公式——(a+b)(a–b)=a2–b2
练习2:下列各式的计算正确吗?如果不正确,应当怎样改正?
①(x + 2 )(x – 2 ) = x2 – 2
× = x2 – 4
②(-3a – 2)(3a – 2 ) = 9a2 – 4 × = 4 – 9a2
③(4x + 3y)(4x – 3y) = 4x2 – 3y2 × = 16x2 – 9y2
(2) 原式=(-x)2 – (2y)2 =x2 – 4y2;
一 平方差公式——(a+b)(a–b)=a2–b2
例 2: 102×98
练习4: 51×49
解:原式=(100 + 2)(100 – 2) =1002 – 22 =9996;
原式=(50 + 1)(50 – 1) =502 – 12 =2499.
一 规律探究
(x + 1) (x – 1) = x2 – 12 (m + 2) (m – 2) = m2 – 22 (2x + 3) (2x – 3) = 4x2 – 9
一 规律探究
(x + 1) (x – 1) = x2 – 12
(m( a+ +2)b(m) (–a2–) b)== am2 -2 –b222
⑤ (2x + 3) (2x – 3) = 4x2 – 2x + 2x – 9 = 4x2 – 9
一 规律探究
(x + 1) (x – 1) = x2 – 1 (m + 2) (m – 2) = m2 – 4 (2x + 3) (2x – 3) = 4x2 – 9
一 规律探究
(x + 1) (x – 1) = x2 – 1 (m + 2) (m – 2) = m2 – 4 (2x + 3) (2x – 3) = 4x2 – 9

人教版数学八年级上册 14.2.1平方差公式 课件(共20张PPT)

人教版数学八年级上册14.2.1平方差公式课件(共20张PPT)(共20张PPT)14.2.1——平方差公式给我最大快乐的,不是已懂的知识,而是不断的学习.----高斯多项式与多项式是如何相乘的?(a+b)(m+n)=am+an+bm+bn多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

课前准备小明同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,小明就说出应付99.6元,结果与售货员计算出的结果一样。

小明怎么算得这么快他是用了心算还是用了我们不知道的方法呢?问题情境1计算:⑴ (x+1)(x-1)=______⑴ (m+2)(m-2)=_____⑴ (2x+1)(2x-1)=______(4) (x+5y)(x-5y)=___________观察上述算式,你发现了什么规律?2规律:(a + b)(a-b)=——————.a2-b2- 1- 4- 1- 25y2探究中归纳我们把这些具有特殊形式的多项式的乘法算式归纳为乘法公式14.2.1平方差公式乘法公式1.经历探索平方差公式的过程,会推导平方差公式。

2.理解探索平方差公式的几何意义。

3.理解平方差公式的结构特征,灵活应用平方差公式。

(a + b)(a-b)=a2-b2刚才我们通过计算得出了平方差公式,如何来验证这个公式呢?a2b2-baab(a + b) (a - b)baa几何验证平方差公式:(a+b)(a b) =a2 b2两数和与这两数差的积,等于这两个数的平方差总结归纳1.下列各式能不能用平方差公式?(1)(a+3)(a-2) (2) (a-3)(a+3) (3) (-a+3)(-a-3) (4) (-m+n)(m-n) (5) (a-3)(a+3)2.判断下列计算对不对,如果不对,请改正。

(1)(x+2)(x-2)=x2-2 (2)(-3a-2)(3a-2)=9a2-4思考、讨论:观察第1题,你能不能找到更快更好的判断方法左边两个多项式中:两项,两项。

人教版数学八年级上册 14.2.1 平方差公式 课件(共15张PPT)


典例精析 运用平方差公式计算:
(1) (3x+2 )( 3x-2 ) ;
(2) (b+2a)(2a-b); (3) (-x+2y)(-x-2y).
解:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b)
=(3x)2-22 =9x2-4;
=(2a+b)(2a-b) =(2a)2-b2
(3) (-x+2y)(-x-2y)
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
课堂总结
对于平方差中的a和b可以是具体的数,也可以是单项式或 多项式.在探究整除性或倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整除性或倍数关系.
(2) (y+2) (y-2) – (y-1) (y+5) .
解: (1) 102×98 =(100+2)(100-2) = 1002-22 =10000 – 4 =9996 (2)(y+2)(y-2)- (y-1)(y+5) = y2-22-(y2+4y-5) = y2-4-y2-4y+5
= - 4y + 1.
差是__1_0_____.
5. 先化简,再求值: (3–x)(3+x)+(x+1)(x–1),其中x=2.
解:(3–x)(3+x)+2(x+1)(x–1) =9–x2+2(x2–1) =9–x2+2x2–2 =7+x2 当x=2时, 原式=7+22 =7+4=11

《平方差公式》PPT优质课件

= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米

人教版八年级数学上册课件:14.2.1平方差公式 (共21张PPT)

2
2
2
2
2.(1)a 9b (3)2499
2
2
(2)4a 9
2
(4)9 x 16 (6 x 5x 6)
2 2
3x 5x 10
2
完成报纸14.2.1 1.D
2.(1)4 x 9 y
2 2
(4)a 81
4
(2) y 4x
2
2
2
(3)5x 2 y
4.A
2
(5 xy)(5 xy)
2 2
(5) ( xy ) 2 2 25 x y
二.是平方差,怎样用?
(2)(3a 2b)(2b 3a) 2 (3)(a 2)(a 2)(a 4)
1 (5 1)(5 1)(5 1)(5 1)(5 1) 4
2、在混合运算中,用平方差公式直接计 算所得的结果可以写在一个括号里,以免 发生符号错误.
2 4 8
(4)(5 1)(5 1)(5 1)(5 1)
2 4 8
(5) (m n)(m n) 3n
解:原式
2
(m n ) 3n
2 2
2
m n 3n 2 2 m 4n
2 2
2
(6)1007 993
解:原式
(1000 7)(1000 7)
(1).(m n)(m n) (2).(2 x 3)(3 x 2) (3).(5a 2)(5a 2) 2 2 3 3 2 2 3 3 (4)( m n )( m n ) 3 4 3 4
二.是平方差,怎样用?
Байду номын сангаас
(1)( xy 5)( xy 5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a+b)(a-b)
= 9x2 -4;
a2 -b2
施秉县第三中学2019—2020学年度第一学期集体备课
理解平方差公式
例1 运用平方差公式计算:
(1)(3x+2)(3x-2); (2)(-x+2 y)(-x-2 y).
解:(2) (-x+2 y)(-x-2 y) (a+b) (a-b)
=(-x)2 -(2 y)2 =x2 -4 y2. a2 - b2
(3)(2x+1)(2x-1)= 4x2-1 .
上述问题中相乘的两个多项式有什么共同点?
施秉县第三中学2019—2020学年度第一学期集体备课
探究平方差公式
在14.1节中,我们学习了整式的乘法,知道了多
项式与多项式相乘的法则.根据所学知识,计算下列
多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=
你能根据图中图形的面积说明平方差公式吗?

a
FG
a M B
a-b
D bbE H
C
施秉县第三中学2019—2020学年度第一学期集体备课
理解平方差公式
例1 运用平方差公式计算:
(1)(3x+2)(3x-2); (2)(-x+2 y)(-x-2 y).
解:(1) (3x+2)(3x-2)=(3x)2 -22
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(4)公式中的字母a ,b 可以是具体的数、单项式、多 项式等;
(5)不能忘记写公式中的“平方”.
施秉县第三中学2019—2020学年度第一学期集体备课
巩固平方差公式
例2 计算:
(1)(-y+2)(-y-2)-(y-1)(y+5);
x2 -1 ;
ห้องสมุดไป่ตู้
(2)(m+2)(m-2)= m2-4 ;
(3)(2x+1)(2x-1)= 4x2-1 .
你能将发现的规律用式子表示出来吗? (a+b)(a-b)=a2 -b2
施秉县第三中学2019—2020学年度第一学期集体备课
探究平方差公式
你能对发现的规律进行推导吗?
(a+b)(a-b) =a2 -ab+ab-b2 =a2 -b2
施秉县第三中学2019—2020学年度第一学期集体备课
巩固平方差公式
练习1 下面各式的计算对不对?如果不对,应当 怎样改正?
(1)(2x+3a)(2x-3a)=(2x)2 -(3a)2 ;
对.
(2)(x+2)(x-2)=x2 -2 .
不对,改正:(x+2)(x-2)=x2-4.
施秉县第三中学2019—2020学年度第一学期集体备课
施秉县第三中学2019—2020学年度第一学期集体备课
理解平方差公式
前面探究所得的式子(a+b)(a-b)=a2-b2 为乘法 的平方差公式,你能用文字语言表述平方差公式吗?
两个数的和与这两个数的差的积,等于这两个数的 平方差.
施秉县第三中学2019—2020学年度第一学期集体备课
理解平方差公式
• 学习重点:
平方差公式.
施秉县第三中学2019—2020学年度第一学期集体备课
探究平方差公式
在14.1节中,我们学习了整式的乘法,知道了多
项式与多项式相乘的法则.根据所学知识,计算下列
多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=
x2 -1 ;
(2)(m+2)(m-2)= m2-4 ;
(2)(3+2a)(-3+2a); 22a-9
(3) 51×49; 2499
(4)(3 x+ 4)(3 x- 4)-(2 x+3)(2 x-3). 5x2-7
施秉县第三中学2019—2020学年度第一学期集体备课
课堂小结
(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么?
(2)102×98.
解:(1)原式=y2-4-(y2+4y-5)=-4y+1. (2)102×98=(100+2)(100-2)=10000-4=9996.
施秉县第三中学2019—2020学年度第一学期集体备课
巩固平方差公式
练习2 运用平方差公式计算:
(1)(a+3b)(a-3b); a2-9b2
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(1)在运用平方差公式之前,一定要看是否具备公式 的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;
(3)总结规律:一般地,“第一个数”a 的符号相同, “第二个数”b 的符号相反;
施秉县第三中学2019—2020学年度第一学期集体备课
施秉县第三中学2019—2020学年度第一学期集体备课
14.2.1 平方差公式
施秉县第三中学2019—2020学年度第一学期集体备课
• 学习目标: 1.理解平方差公式,能运用公式进行计算. 2.在探索平方差公式的过程中,感悟从具体到抽象 地研究问题的方法,在验证平方差公式的过程中, 感知数形结合思想.
相关文档
最新文档