一元二次方程中考考点
2023学年中考数学高频考点专项突破——一元二次方程

2023学年中考数学高频考点专项突破——一元二次方程一、解答题1.将一元二次方程x 2-6x -5=0配方,化成(x +a)2=b 的形式.2.解方程:x 2﹣5=2(x+1)3.将一段铁丝围成面积为 的矩形,且它的长比宽多 ,求矩形的长. 4.把小圆形场地的半径增加5m 得到大圆形场地,大圆形场地面积是小圆形场地的4倍,求小圆形场地的半径.5.已知关于的x 方程 ()24x k 2x k 1-++= 有两个相等的实数根,求k 的值及这时方程的根.6.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物— “福娃”平均每天可售出20套,每件盈利40元。
为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。
要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?7.已知关于x 的一元二次方程x 2+x+m 2﹣2m=0有一个实数根为﹣1,求m 的值及方程的另一实根.8.已知方程5x 2﹣kx ﹣6=0的一个根是﹣2,求它的另一个根及k 的值.9.某商场销售一批名牌衬衫,平均每天售出20件,每件可盈利40元.为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施.调查发现,每件少盈利1元,商场平均每天可多售出2件衬衫.那么每件衬衫少盈利多少元时,商场平均每天盈利是1250元?10.随着青奥会的临近,青奥特许商品销售逐渐火爆.甲.乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二.三月份销售额的月平均增长率是乙店二.三月份月平均增长率的2倍.(1)若设乙店二.三月份销售额的月平均增长率为x ,则甲店三月份的销售额为多少万元?乙店三月份的销售额为多少万元?(用含x 的代数式表示)(2)甲店.乙店这两个月销售额的月平均增长率各是多少?11.奈曼旗某中学要组织一次篮球赛,赛制为双循环形式(每两队之间赛两场),计划安排12场比赛,应邀请多少支球队参加比赛?12.已知:关于x 的方程220x kx +-=⑴求证:方程有两个不相等的实数根;⑴若方程的一个根是-1,求另一个根及k值.13.某奶茶店每杯奶茶的成本价为5元,市场调查表明,若每杯定价a元,则一天可卖出(800﹣100a)杯,但物价局规定每件商品的利润率不得超过20%,商品计划一天要盈利200元,问每杯应定价多少元?一天可以卖出多少杯?14.某人把500圆存入银行,定期一年,到期他取出300元,将剩余部分(包括利息)继续存入银行,定期仍为一年,利率不变,到期后全部取出,正好是275元,求这种存款的年利率(不计利息税)15.阅读下面的例题:解方程x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去);当x<0时,原方程化为x2+x﹣2=0,解得:x1=1,(不合题意,舍去)x2=﹣2;∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣1|﹣1=0.答案解析部分1.【答案】解:原方程可化为x2-6x=5,配方得x2-6x+9=5+9,∴(x-3)2=14.2.【答案】解:方程整理得:x2﹣2x﹣7=0,这里a=1,b=﹣2,c=﹣7,∵⑴=4+28=32>0,∴2322,∴x12,x2=1﹣2.3.【答案】解:设矩形的长为cm,则解得:(不合题意,舍去),答:矩形的长为15cm.4.【答案】解:设小圆形场地的半径为r,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m.5.【答案】解:()24x k 2x k 10-++-=∆ = ()()2k 244k 1-+-⨯⨯-⎡⎤⎣⎦= 2k 12k 20-+方程有两个相等的实数根0∴∆=, 即 2k 12k 200-+=12k 2k 10==,当 1k 2= , 24x 4x 1-+ =0121x x 2==当 1k 10= , 24x 12x 9-+ =0123x x 2== .6.【答案】解:设每套降价x 元,由题意得:(40-x )(20+2x )=1200即2x 2-60x+400=0,∴x 2-30x+200=0,∴(x-10)(x-20)=0,解之得:x=10或x=20为了减少库存,所以x=20.因此,每套应降价20元7.【答案】【解答】解:设方程的另一根为x 2,则﹣1+x 2=﹣1,解得x 2=0.把x=﹣1代入x 2+x+m 2﹣2m=0,得(﹣1)2+(﹣1)+m 2﹣2m=0,即m (m ﹣2)=0, 解得m 1=0,m 2=2.综上所述,m 的值是0或2,方程的另一实根是0. 8.【答案】解:∵关于x 的一元二次方程5x 2﹣kx ﹣6=0的一个根是x 1=﹣2, ∴5×(﹣2)2+2k ﹣6=0,解得k=﹣7.又∵x 1•x 2=﹣6,即﹣2x 2=﹣6,∴x 2=3.综上所述,k 的值是﹣7,方程的另一个根是3.9.【答案】解:设每件衬衫少盈利x 元,商场平均每天盈利1250元, 则()()402021250x x -+=所以1215x x ==,即每件衬衫少盈利15元时,商场平均每天盈利是1250元. 答:每件衬衫少盈利15元时,商场平均每天盈利是1250元. 10.【答案】解:(1)设乙店二.三月份销售额的月平均增长率为x , 则甲店三月份的销售额为10(1+2x )2万元,乙店三月份的销售额为15(1+x )2万元;(2)10(1+2x )2﹣15(1+x )2=10,解得 x 1=60%,x 2=﹣1(舍去),2x=120%,答:甲.乙两店这两个月的月平均增长率分别是120%.60%.11.【答案】解:设要邀请x 支球队参加比赛,由题意,得:x (x−1)=12,解得:x 1=4,x 2=−3(舍去).答:应邀请4支球队参加比赛.12.【答案】解:(1)∵a=1,b=k ,c=﹣2,∴⑴=b 2﹣4ac=k 2﹣4×1×(﹣2)=k 2+8>0,∴方程有两个不相等的实数根;(2)当x=﹣1时,(﹣1)2﹣k ﹣2=0,解得:k=﹣1,则原方程为:x 2﹣x ﹣2=0,即(x ﹣2)(x+1)=0,解得:x 1=2,x 2=﹣1,∴另一个根为2.13.【答案】解:依题意得:(a ﹣5)(800﹣100a )=200 解得a=6或a=7.因为a ﹣5≤5×20%,即a≤6.故a=6符合题意.所以800﹣100a=800﹣100×6=200(杯).答:每杯应定价6元,一天可以卖出200杯14.【答案】解:设定期一年的利率是x,根据题意得:一年时:500+500x=500(1+x),取出300后剩:500(1+x)-300,同理两年后是[500(1+x)-300](1+x),即方程为[500(1+x)-300]•(1+x)=275,解得:x1=10%,x2=- 32(不符合题意,故舍去).答:定期一年的利率是10%15.【答案】解:当x﹣1≥0即x≥1时,原方程化为x2﹣(x﹣1)﹣1=0,即x2﹣x=0,解得x1=0,x2=1,∵x≥1,∴x=1;当x﹣1<0即x<1时,原方程化为x2+(x﹣1)﹣1=0,即x2+x﹣2=0,解得x1=﹣2,x2=1 ∵x<1,∴x=﹣2,∴原方程的根为x1=1,x2=﹣2。
《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训

知识回顾微专题专题11一元二次方程考点一:一元二次方程之相关概念1.一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程。
2.一元二次方程的一般形式:一元二次方程的一般形式为:()002≠=++a c bx ax 。
其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 为常数项。
3.一元二次方程的解:使一元二次方程左右两边成立的未知数的值叫做一元二次方程的解,又叫做一元二次方程的根。
1.(2022•广东)若x =1是方程x 2﹣2x +a =0的根,则a =.2.(2022•连云港)若关于x 的一元二次方程mx 2+nx ﹣1=0(m ≠0)的一个根是x =1,则m +n 的值是.3.(2022•资阳)若a 是一元二次方程x 2+2x ﹣3=0的一个根,则2a 2+4a 的值是.4.(2022•遂宁)已知m 为方程x 2+3x ﹣2022=0的根,那么m 3+2m 2﹣2025m +2022的值为()A .﹣2022B .0C .2022D .40445.(2022•衢州)将一个容积为360cm 3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm )满足的一元二次方程:(不必化简).知识回顾考点二:一元二次方程之解一元二次方程1.直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x -==21,。
②()p a x =+2时,方程的解为:a p x a p x --=-=21,。
③()p b ax =+2时,方程的解为:ab p x a b p x --=-=21,。
2.配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。
具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。
一元二次方程中考学常考点

一元二次方程是初中数学的重点内容,是中考中代数部分的重点和热点。
但在解一元二次方程有关问题时。
许多学生常常由于忽视一些概念,原理以及题目自身的隐含条件,从而导致错解。
现就几种常见的错误例题分类加以剖析,以便借鉴,供大家参考。
1 在运用一元二次方程概念时常见的错误 1、 忽视二次项系数a ≠0例1、(2011山东威海)关于x 的一元二次方程(m ²-1)x ²+(m-2)x+2=0有一根为x =2,则m 的值是( ).A .-23 B .1 C .-23 或1 D .±1 错解:因为方程有一根为x=2,利用根的定义,代入原方程,整理得,2m ²+m -3=0,解这个关于m 的方程得,m 1=-23,m 2=1, 故选答案C.错因分析:所求的m 的值必须保证原方程为一元二次方程。
由于当m =1时,m ²-1=0,原方程二次项系数为零,可化为-x+2=0,为一元一次方程,与条件(m ²-1)x ²+(m-2)x+2=0为关于x 的一元二次方程矛盾,故可知选C 错误。
正解:因为方程有一根为x=2,利用根的定义,代入原方程,整理得,2m ²+m -3=0,解这个关于m 的方程得,m 1=-23,m 2=1,又因为(m ²-1)x ²+(m-2)x+2=0为关于x 的一元二次方程,所以m ²-1≠0,即a ≠±1,所以m=-23,故正确答案应为A.2、忽视未知数的最高指数为2例2、若关于x 的方程x 122--a a-(9-a ²)x-17=0 的两根互为相反数,则a 的值为( )A 、2 B 、3 C 、-3 D 、±3错解:∵方程的两根互为相反数,∴x 1+x 2=9-a ²=0,即a ±3,故应选答案D 。
错因分析:由于条件提出方程有两根,所以关于x 的方程x 122--a a-(9-a ²)x-17=0是一元二次方程,故根据两根互为相反数,计算出的a 的值,必须保证方程为一元二次方程。
专题08 一元二次方程(4大考点)2022-2024年中考数学真题分类汇编

专题08 一元二次方程(4大考点)【考点归纳】一、考点01 解一元二次方程-------------------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式------------------------------------------------------------------------------------------------------2三、考点03 根与系数的关系-------------------------------------------------------------------------------------------------------------------3四、考点04 一元二次方程的实际应用------------------------------------------------------------------------------------------------------4考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .123.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .136.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .9.(2023·广东广州·中考真题)解方程:2650x x -+=.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.考点02 一元二次方程根的判别式二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .116.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .318.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .1620.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .23.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为 .24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.考点03 根与系数的关系三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .134.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.39.(2023·内蒙古通辽·中考真题)阅读材料:材料1:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a+=-,12c x x a =.材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值.解:∵m ,n 是一元二次方程210x x --=的两个实数根,∴1,1m n mn +==-.则()22111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x +-=的两个实数根为12x x ,,则12x x +=___________,12x x =___________;(2)类比:已知一元二次方程22310x x +-=的两个实数根为m ,n ,求22m n +的值;(3)提升:已知实数s ,t 满足2223102310s s t t +-=+-=,且s t ≠,求11s t-的值.考点04 一元二次方程的实际应用四、考点04 一元二次方程的实际应用40.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=41.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=42.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( )A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=43.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( )A .20%B .22%C .25%D .28%44.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为215m ,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为( )A .5m 或6mB .2.5m 或3mC .5mD .3m45.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x 人,则可得到方程( )A .()136x x ++=B .()2136x +=C .()1136x x x +++=D .2136x x ++=46.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是( )A .22(12)864x x ++=B .22(12)864x x ++=C .(12)864x x -=D .(12)864x x +=47.(2023·黑龙江哈尔滨·中考真题)为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x 米,根据题意,所列方程正确的是( )A .()6720x x -=B .()6720x x +=C .()6360x x -=D .()6360x x +=48.(2023·黑龙江·中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m,则小路的宽是()A.5m B.70m C.5m或70m D.10m49.(2022·黑龙江·中考真题)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.950.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.51.(2023·黑龙江牡丹江·中考真题)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.52.(2022·上海·中考真题)某公司5月份的营业额为25万,7月份的营业额为36万,已知6、7月的增长率相同,则增长率为.53.(2022·四川成都·中考真题)若一个直角三角形两条直角边的长分别是一元二次方程2640x x-+=的两个实数根,则这个直角三角形斜边的长是.54.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2S.cm(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.55.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?56.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m ?如果能,请求出AB 的长;如果不能,请说明理由.57.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为cm cm cm cm a b c d 、、、.若纸张大小为16cm 10cm ⨯,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?58.(2023·湖北黄冈·中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当x =___________2m 时,35y =元/2m ;(2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下a,当a为何值时,2025降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%年的总种植成本为28920元?59.(2022·山东德州·中考真题)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为2800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.60.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.专题08 一元二次方程(4大考点)(解析版)【考点归纳】一、考点01 解一元二次方程----------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式----------------------------------------------------------------------------------------------5三、考点03 根与系数的关系--------------------------------------------------------------------------------------------------------16四、考点04 一元二次方程的实际应用--------------------------------------------------------------------------------------------22考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++-=可得240a -=,即可求答案.【详解】解:()22240a x x a +++-=是关于x 的一元二次方程,20a ∴+≠,即2a ≠-①由一个根0x =,代入()22240a x x a +++-=,可得240a -=,解之得2a =±;②由①②得2a =;故选A3.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-【答案】B【分析】本题考查了一元二次方程的解,熟练掌握“能使一元二次方程左右两边相等的未知数的值是一元二次方程的解”是解题的关键.把1x =代入一元二次方程得到130++=m ,求解即可得出m 的值.【详解】解:把1x =代入方程230x mx +=+得:130++=m ,解得:4m =-.故选:B .4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .6.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A8.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将2y x =代入22330x y x -+-=,转化为解一元二次方程,20y x =≥,要进行舍解.【详解】解:∵20y x -=,∴2y x =,将2y x =代入22330x y x -+-=得,2330x x x -+-=,即:2230x x --=,()()310x x -+=,∴3x =或=1x -,∵20y x =≥,∴=1x -舍,∴3x =,故答案为:3.9.(2023·广东广州·中考真题)解方程:2650x x -+=.【答案】11x =,25x =【分析】直接利用因式分解法解一元二次方程即可.【详解】解:2650x x -+=,()()150x x --=,10x -=或50x -=,11x =,25x =.【点睛】本题考查因式分解法解一元二次方程,正确计算是解题的关键.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠【答案】D 【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠.故选:D .12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠【答案】D【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-【答案】B【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .16.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +-+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,∴()()22410m ∆=--+>,解得:0m <,10m +≠ ,1m ∴≠-,m ∴的取值范围是:0m <且1m ≠-.故选:A .17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .3【答案】A 【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程2210x x k ++-=无实数根,∴()Δ4410k =--<,解得:0k <,则函数y kx =的图象过二,四象限,18.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=有两个相等的实数根,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .2690x x -+=20.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=->;有两个相等的实数根,则240b ac ∆=-=;没有实数根,则24<0b ac ∆=-.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=-=--⨯⨯=,解得:2k =故答案为:223.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是.【答案】1k <【分析】本题考查了一元二次方程根的判别式.根据根的判别式的意义得到()2240k -->,然后解不等式即可.【详解】解:根据题意得()2240k ∆=-->,解得1k <.故答案为:1k <.27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)11m =或22m =-.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=-x x m ,进行变形后代入即可求解.【详解】(1)证明:()()22Δ24118m m m ⎡⎤=-+-⨯⨯-=+⎣⎦,∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m -++-=的两个实数根,∴122x x m +=+,121⋅=-x x m ,∴()()()22221212121232319x x x x x x x x m m +-=+-=+--=,解得:11m =或22m =-.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.【答案】(1)证明见解析(2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .1【答案】A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵1x ,2x 是方程220220x x --=的两个实数根,∴2112022x x -=,122022x x =-,121x x =+321122022-+x x x ()()()2222211212121220222122022x x x x x x x x x =-+=+=+-=-⨯-4045=故选A【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,掌握一元二次方程根与系数的关系是解题的关键.34.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k -+-+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.。
人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )
全国中考真题分类汇编 一元二次方程及其应用
精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。
一元二次方程中考考点
一元二次方程中考考点
一、基本形式和定义
一元二次方程的基本形式是ax²+bx+c=0(a,b,c 是常数,且a≠0)。
一元二次方程的定义是指只有一个未知数,且未知数的最高次数为2 的整式方程。
二、解法
直接开平方法:对于形如ax²=b(a,b 是常数,a≠0)的方程,可以使用直接开平方法求解。
方程两边同时开平方,即可得到x 的值。
因式分解法:将方程右边化为0,左边分解因式,然后利用两数相乘积为0,则两因式中至少有一个为0 的规律,再进一步求解。
公式法:利用求根公式x=(-b±√(b²-4ac)/2a)求解。
求根公式是解决一元二次方程问题的核心,要熟练掌握。
三、根的判别式
根的判别式Δ=b²-4ac,它可以帮助我们判断方程的根的情况。
当Δ>0 时,方程有两个不相等的实数根;当Δ=0 时,方程有两个相等的实数根;当Δ
<0 时,方程没有实数根。
四、应用
一元二次方程在中考中多以实际问题的形式出现,如距离、面积、商品定价等问题。
解决这类问题时,需要将实际问题转化为数学问题,再利用数学方法进行求解。
在解题过程中,要充分理解题意,找出等量关系,列出方程并求解。
中考数学总复习考点知识讲解课件30---一元二次方程及其应用
C.x2-x+1=0
D.x2=1
百变四:已知方程系数关系,判断方程根的情况 4.(2016·河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2 +bx+c=0的根的情况( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0
【解析】 ∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.∴在方程ax2+bx+ c=0中,b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数 根.故选B.
【自主解答】 解:(1)四 x= (2)x2-2x-24=0, 移项,得x2-2x=24, 配方,得x2-2x+1=24+1, 即(x-1)2=25, 两边开平方,得x-1=±5, ∴x1=6,x2=-4.
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般形式,再确定 a,b,c的值,否则易出现符号错误; (2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为 0,否则易出现错误; (3)如果一元二次方程的常数项为0,不能在方程两边同时除以含有未知数 的相同因式; (4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增 根.
知识点二 一元二次方程的解法
x=b b2 4ac 2a
知识点三 一元二次方程根的判别式
b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.判别式 的符号决定了方程根的情况,即
(1)b2-4ac>0⇔方程有两个 _不__相__等__的实数根;
(2)b2-4ac_=__0⇔方程有两个相等的实数根; (3)b2-4ac<0⇔方程__没__有___实数根.
【分析】由每个月的平均增长率相同,可分别表示二月份和三月份的工业 产值,再结合第一季度总产值为175亿元列方程即可. 【自主解答】由平均每月增长的百分率为x,则二月的工业产值为50(1+x) 亿元,三月的工业产值为50(1+x)2 亿元,则根据题意可得方程:50+ 50(1+x)+50(1+x)2=175,故选D.
一元二次方程-中考数学一轮复习考点专题复习大全(全国通用)
考向12 一元二次方程【考点梳理】1、一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.2、 一元二次方程的一般形式:ax 2+bx+c=0(a 、b 、c 是常数,且a ≠0)3、运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.4、配方法解一元二次方程就是将方程变形为q p x =+2)(的形式,如果q ≥0,方程的根是q p x ±-=;如果q <0,方程无实根.5、一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,求根公式.利用求根公式解一元二次方程的方法叫公式法.6、一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-,则有下列性质:①0∆>⇔方程有两个不相等的实数根:1,2x =.②0∆=⇔方程有两个相等的实数根:122bx x a==-. ③0∆<⇔方程没有实数根.7、一元二次方程根与系数的关系(又叫韦达定理):如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有a b x x -=+21,ac x x =•21(注意:运用根与系数的关系的前提是b 2-4ac ≥0) 【题型探究】题型一:一元二次方程的基础概念1.(2022秋·江苏盐城·九年级校联考期中)下列方程中,不是一元二次方程的是( )A .x 2﹣1=0B .x 2 +1x+3=0C .x 2 + 2x +1=0D .3x 2 x +1=02.(2022·河南洛阳·统考二模)若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为( ) A .3B .4C .5D .63.(2022·四川宜宾·统考中考真题)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( ) A .0B .-10C .3D .10题型二:一元二次方程的解(开平方和配方法)4.(2022秋·广东佛山·九年级校考期中)方程(9x ﹣1)2=1的解是( )A .1213x x ==B .1229x x ==C .1220,9x x ==D .1220,9x x ==-5.(2022·山东聊城·统考中考真题)用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( ) A .103 B .73C .2D .436.(2022·四川雅安·统考中考真题)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( ) A .﹣3B .0C .3D .9题型三:一元二次方程的解(公式法)7.(2022秋·全国·九年级专题练习)已知关于x 的一元二次方程2(2)20x m x m +++=有两个不相等的实数根1x ,2x ,且有212x x <<,那么实数m 的取值范围是( ) A .2m <B .m>2C .2m <-D .2m >-8.(2021·上海·九年级专题练习)如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.若关于x 的方程210,(ax bx a b ++=是常数,0)a >是“邻根方程”,令28t a b =-,则t 的最大值为( )A .2B .C .4D .2-9.(2022秋·北京·九年级北京师大附中校考期末)定义新运算:对于两个不相等的实数a ,b ,我们规定符号{}max ,a b 表示a ,b 中的较大值,如:{}max 2,44=.因此,{}max 2,42--=-;按照这个规定,若{}232max ,2x x x x ---=,则x 的值是( )A .-1B .-1CD .1 题型四:一元二次方程的解(因式分解)10.(2022·内蒙古包头·中考真题)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或611.(2023·全国·九年级专题练习)已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<12.(2022秋·九年级课时练习)已知实数a ,b 同时满足2222190,2470a b a b +-=--=,则b 的值是( )A .2或6-B .2C .2-或6D .6-题型五:一元二次方程的判别式问题13.(2022·山东威海·模拟预测)若关于x 的方程230x x k -+=有两个不相等的实数根,则k 的值不能是( )A .2B .0C .94D 14.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( ) A .18a >-B .18a ≥-C .1,18a a >-≠D .118,a a ≥-≠15.(2022·湖南长沙·长沙市南雅中学校联考一模)若关于x 的一元二次方程()21210a x x --+=有实数根,则a 的取值范围为( ) A .2a ≤B .2a ≥C .2a ≤且1a ≠D .2a <且1a ≠题型六:一元二次方程根与系数的问题16.(2022·山东济宁·三模)若m n ,是方程22470x x --=的两个根,则223m m n -+的值为( ) A .9B .8C .7D .517.(2022·贵州黔东南·统考中考真题)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-18.(2022秋·广东广州·九年级铁一中学校考阶段练习)若α和β是关于x 的方程210x bx +-=的两根,且2211αβαβ--=-,则b 的值是( )A .-3B .3C .-5D .5题型七:一元二次方程的实际问题19.(2022·辽宁盘锦·校考一模)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系,部分数据如表:(1)求出y 与x 之间的函数表达式;(不需要求自变量x 的取值范围)(2)该批发市场每月想从这种衬衫销售中获利6000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w (元),求w 与x 之间的函数关系式,x 为多少时,w 有最大值,最大利润是多少?20.(2022·重庆大渡口·重庆市第三十七中学校校考二模)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元. (1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a 元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的6a,而第三周草莓的销售总额为(6200100)a +元,求a 的值.21.(2022秋·九年级单元测试)某新建公园需要绿化的面积为224000m ,施工队在绿化了212000m 后将每天的工作量增加为原来的1.2倍,结果提前5天完成了该项目的绿化工程(1)求该公园绿化工程原计划每天完成多少平方米?(2)如图所示,该公园内有一块长30米,宽20米的矩形空地,准备将其修建成一个矩形花坛,要求在花坛中修建三条等宽的矩形小道(图中阴影部分),剩余地方种植花草,要使得种植花草的面积为2468m ,那么小道的宽应为多少米?题型八:一元二次方程的综合问题22.(2022·湖北十堰·统考中考真题)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.23.(2022·四川南充·中考真题)已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 24.(2022·四川凉山·统考中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=ba -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值. 解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= . (2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值. (3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【必刷基础】一、单选题25.(2022·甘肃武威·统考中考真题)用配方法解方程x 2-2x =2时,配方后正确的是( ) A .()213x +=B .()216x +=C .()213x -=D .()216x -=26.(2022·湖北武汉·统考中考真题)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .627.(2022·内蒙古呼和浩特·统考中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .128.(2021·山东泰安·统考中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠29.(2022·山东泰安·统考中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -= B .()316210x -= C .()316210x x -=D .36210x =30.(2023·安徽合肥·合肥一六八中学校考一模)已知关于x 的一元二次方程()2430x k x k -+++=.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于0,求k 的取值范围.31.(2022·江苏泰州·模拟预测)用总长为60m 的篱笆围成矩形场地. (1)根据题意,填写下表:(2)设矩形一边长为m x ,矩形面积为2m S ,当x 是多少时,矩形场地的面积S 最大?并求出矩形场地的最大面积; (3)当矩形的长为______m ,宽为______m 时,矩形场地的面积为2216m .【必刷培优】一、单选题32.(2022秋·湖北武汉·九年级华中科技大学附属中学校联考阶段练习)若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( )A .14B .1C ..4D .333.(2021·广西河池·统考中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .实数根的个数由m 的值确定34.(2018·河北秦皇岛·统考中考模拟)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( ) A .50(1+x )²=182 B .50+50(1+x )+50(1+x )²=182 C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=18235.(2022·四川达州·模拟预测)如图的六边形是有甲、乙两个等腰直角三角形和丙、丁两个矩形组成,其中甲、乙的面积和等于丙、丁的面积和,若甲的直角边长为4,且甲的面积大于乙的面积,则乙的直角边长为( )A .1B .65C .423-D .843-36.(2022·云南楚雄·云南省楚雄第一中学校考模拟预测)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,下列说法: ①方程2280x x --=是倍根方程;②若()()20x mx n -+=是倍根方程,则m n =-或14m n =-;③若方程20ax bx c ++=是倍根方程,且相异两点()2,M t s +,()4,N t s -都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为2.其中,正确说法的个数是( ) A .0B .1C .2D .337.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,正方形ABCD 的对角线AC 与BD 相交于点O ,ACB ∠的角平分线分别交AB 、BD 于M 、N 两点.若22BM =,则线段AC 的长为( )A .424+B .422+C .426+D .4238.(2022·四川绵阳·校考二模)已知实数,m n 满足22220,220m am n an -+=-+=.若m n ≠,且4m n +≥,则()()2211m n -+-的最小值是( )A .6B .3-C .3D .0二、填空题39.(2022·山东菏泽·菏泽一中校考模拟预测)若关于x 的二次方程()21320m x x +-+=有两个相等的实数根,则m =___________.40.(2023秋·天津南开·九年级南开中学校考期末)已知一元二次方程220x mx m -+-=的两个实数根为1x 、2x ,且1212()3x x x x +=,则m 的值是______.41.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根1x ,2x ,若121212(2)(2)23x x x x x x -+--+=-,则k =_____.42.(2022·四川眉山·模拟预测)若实数m ,n 满足2231,31,m nm m n n n m=+=++的值为______.43.(2022·吉林长春·校考模拟预测)某水果批发商经销一种高档水果,如果每千克盈利10元,平均每天可售出500千克,经市场调查发现,若每千克每涨价一元,平均日销量将减少20千克,要使商场每天获利最多,那么每千克应涨价______ 元.44.(2022·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考模拟预测)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x 的长方形,剩余的部分面积为64,则根据题意可列出形式为一般式的方程为______,x 的值是______.45.(2022·四川成都·统考二模)关于x 的一元二次方程240x kx -+=的两个实数根分别是1x 、2x ,且满足2212122270x x x x +---=,则k 的值为______.46.(2022·山东济南·济南育英中学校考模拟预测)从3,1,0,1,2--这五个数中任意取出一个数记作b ,则既能使函数()24y b x =-的图象经过第二、第四象限,又能使关于x 的一元二次方程210x bx b -++=的根的判别式小于零的概率为 _____.三、解答题47.(2023·安徽合肥·合肥一六八中学校考一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?48.(2022·四川南充·南充市实验中学校考模拟预测)关于x 的一元二次方程()2220x k x k -++=.(1)求证:方程总有两个实数根;(2)若方程两根12x x 、与且221220x x +=,求k 的值.49.(2022·江苏盐城·校考三模)2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,用480元购买冰墩墩和用320元购买雪容融的数量相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商将雪容融按每个100元的价格售出140个,将冰墩墩按每个150元的价格售出120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m 元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m 个,而冰墩墩的销量比第一周增加了0.2m 个,最终商家获利5160元,求m .50.(2022·山东济南·模拟预测)已知M 、N 为双曲线()40y x x=>上两点,且其横坐标分别为a ,2a +,分别过M 、N 作y 轴、x 轴的垂线,垂足分别为C 、A ,交点为B .(1)若矩形OABC 的面积为12,求a 的值;(2)随着a 的取值的不同,M N 、两点不断运动,判断M 能否为BC 边的中点,同时N 为AB 中点?请说明理由; (3)矩形OABC 能否成为正方形?若能,求出此时a 的值及正方形的边长,若不能,说明理由.51.(2022·宁夏银川·校考三模)已知:如图,在Rt ABC ∆中,90C ∠=︒,3AC cm =,4BC cm =,点P 从点B 出发,沿BC 向点C 匀速运动,速度为1cm/s ,过点P 作PD AB ∥,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为2cm/s .当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(0 2.5t <<),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)设四边形ADPQ 的面积为y (2cm ),试确定y 与t 的函数关系式.(3)在运动过程中,是否存在某一时刻t ,使:13:2PQB ADPQ S S =四边形△?若不存在,请说明理由;若存在,求出t 值,并求出此时PQ 的距离.参考答案:1.B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】解:A 、C 、D 选项含有一个未知数,未知数的次数是2,是一元二次方程,故选项A 、C 、D 不符合题意; B 选项分母中含有未知数,是分式方程,故本选项符合题意,故选:B .【点睛】本题考查了一元二次方程的定义,解题关键是掌握:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,运用定义判断.2.A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m -+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x -+=的两个根,∴2410m m -+=,m +n =4,∴241m m -=-,∴2234143m m n m m m n -+=-++=-+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a+=-,12c x x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 3.A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=0,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.4.C【分析】利用直接开平方法求解即可.【详解】解:2(91)1x -=,911x ∴-=或911x -=-,解得10x =,229x =,故选:C .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.B【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,继而得出答案.【详解】解:∵23610x x +-=,∴2361x x +=,2123x x +=, 则212113x x ++=+,即()2413x +=, ∴1a =,43b =, ∴73a b +=. 故选:B .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键.6.C【分析】先移项把方程化为26,x x c 再配方可得239,x c 结合已知条件构建关于c 的一元一次方程,从而可得答案.【详解】解:x 2+6x +c =0,移项得:26,x x c 配方得:239,x c 而(x +3)2=2c ,92,c c 解得:3,c =故选C【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键.7.C 【分析】根据求根公式求得(2)(2)2m x m -+±-=,结合条件212x x <<,可知22x =-,1x m ,进而可得m 的范围,即可求解.【详解】解:2(2)20x m x m +++=,(2)(2)2m m x -+±-∴, 212x x <<,22x ∴=-,1x m ,2m ∴->, 2m ∴<-,故选:C .【点睛】本题考查了解一元二次方程,掌握公式法解一元二次方程是解题的关键.8.C【分析】根据“邻根方程”的定义求出224b a a -=,代入28t a b =-进行配方求出最大值即可.【详解】解:设1x 、2x 是方程210,(ax bx a b ++=是常数,0)a >的两根,解得,1x =2x = ∵原方程是“邻根方程”1=1= 224b a a ∴-=224b a a ∴=+()22228844(2)4t a b a a a a a a ∴=-=-+=-+=--+ ∴当a=2时,t 有最大值,最大值为4.故选C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.9.B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有2322x x x --=,解得1x =2x =(舍去), x<0时,有2322x x x --=-,解得,x 1=−1,x 2=2(舍去). 故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.10.A【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案.【详解】解:∵2230x x --=, ∴12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=,当21x =-时,2121222··33x x x x x x ⋅==-=, 故选:A .【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.11.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.12.B【分析】由实数a ,b 同时满足2222190,2470a b a b +-=--=,先消去a ,求解b ,再检验即可. 【详解】解: 实数a ,b 同时满足2222190,2470a b a b +-=--=,24120,b b620,b b解得:122,6,b b当6b =-时,22219193617a b 不合题意,故舍去,所以 2.b =故选:B 【点睛】本题考查的是一元二次方程的解法,非负数的性质,掌握加减消元法是解决本题的关键.13.C【分析】根据一元二次方程有两个不相等的实数根得到2340k ,求出解集判断即可. 【详解】解:∵方程230x x k -+=有两个不相等的实数根,∴2340k , 解得94k <, 故选:C .【点睛】此题考查了利用一元二次方程的根的情况求参数,正确掌握一元二次方程的根的三种情况是解题的关键.14.D【分析】根据一元二次方程的定义和判别式的意义得到1a ≠且()()2Δ=3-41?20a --≥,然后求出两个不等式的公共部分即可.【详解】根据题意得1a ≠且()2=3-41(2)0a ∆--≥, 解得18a ≥-且1a ≠. 故选:D .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24=b ac ∆-有如下关系:当0∆>时,方程有两个不相等的实数根;当=0∆时,方程有两个相等的实数根;当Δ0<时,方程无实数根.15.C【分析】根据一元二次方程的定义和结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x 的一元二次方程()21210a x x --+=有实数根,则△≥0.∴()210=(2)410a a -≠---≥⎧⎨⎩, 解得:a ≤2且a ≠1.故选:C .【点睛】本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.16.A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:m n ,是方程22470x x --=的两个根,则22704m m --=,2m n +=,∴2247m m =+,22373794m m n m m n m n +=+-=++-+=,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.17.B【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即.【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x ,∴1x +2x =2,∵11x =-,∴2x =3,∴1x ·2x =-a =-3, ∴a =3,∴22123917a x x --=--=-. 故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.18.C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ-=-,代入2211αβαβ--=-得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +-=的两根,∴+=,1b αβαβ-=-,∴222()1211b αβαβαβαβ--=-+=-+=-∴=5b -故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为c a是解题的关键. 19.(1)201800y x =-+(2)这种衬衫定价为60元.(3)售价定为70元时,可获得最大利润,最大利润是8000元.【分析】(1)设y 与x 之间的函数关系式为y kx b =+,待定系数法求解析式即可;(2)由题意知,()()502018006000x x --+=,计算求出满足要求的解即可;(3)由题意可得,2(50)(20180020(70)8000)x x x w =--+=--+,由()50505050x x ≥⎧⎨-÷≤⎩%,求出x 的取值范围,然后根据二次函数的图象与性质求w 的最值即可.【详解】(1)解:设y 与x 之间的函数关系式为y kx b =+,则5570060600k b k b +=⎧⎨+=⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式是201800y x =-+.(2)解:由题意知,()()502018006000x x --+=,解得126800x x ==,,∵尽量给客户优惠,∴这种衬衫定价为60元.(3)解:由题意可得,(50)(201800)w x x =--+220(70)8000x =--+,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴()50505050x x ≥⎧⎨-÷≤⎩%, 解得5075x ≤≤,∵200a =-<,抛物线开口向下,∴当70x =时,w 取得最大值,此时8000w =元,∴售价定为70元时,可获得最大利润,最大利润是8000元.【点睛】本题考查了一次函数的应用,一元二次方程的应用,二次函数的应用,二次函数的图象与性质,二次函数的最值,解不等式组等知识.解题的关键在于根据题意正确的列等式与不等式.20.(1)60;(2)5.【分析】(1)设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元,然后根据题意,列出关于,x y 的二元一次方程组,求解即可;(2)根据第三周草莓的销售总额为(6200100)a +元,列出关于a 的一元二次方程,然后求解即可.【详解】(1)解:设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元, 根据题意,得10451801801160099x y x y -=⎧⎪⎨⨯⨯+⨯⨯=⎪⎩, 解得7060x y =⎧⎨=⎩, 答:第二周草莓销售单价是每千克60元;(2)解:根据题意,3月份第三周的销售单价是60元/千克,3月份第三周的销售量为5180(120%)1209⨯⨯+=千克, 其中会员购买的销量为:120206a a ⨯=千克,非会员购买的销量为:(12020)a -千克; 第三周草莓的销售总额为(6200100)a +元,∴20(60)(12020)606200100a a a a ⨯-+-⨯=+,整理,得25500a a +-=,5a ∴=或10a =-(不符合题意,舍去), ∴a 的值为5.【点睛】此题考查了二元一次方程组的应用、一元二次方程的应用,解答此题的关键是根据题意准确列出二元一次方程组和一元二次方程.21.(1)2400m(2)2米【分析】(1)设原计划每天完成2m x ,根据题意列出分式方程,解方程即可求解;(2)设小路宽为m a ,根据题意列出一元二次方程,解方程即可求解.【详解】(1)设原计划每天完成2m x , 由题意得:240001200024000120005 1.2x x x--=+, 解得:400x =,经检验:400x =是原方程的根,且符合题意,答:原计划每天完成2400m ;(2)设小路宽为m a ,有题意得:()()30220468a a --=,解得:133a =(超出矩形的长,不合题意,舍去),22a =,即2m a =,答:小路宽2米.【点睛】本题考查了分式方程和一元二次方程的应用,明确题意,列出相应的方程是解答本题的关键.22.(1)见解析(2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【详解】(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; (2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系. 23.(1)k 174≤; (2)k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【详解】(1)解:∵一元二次方程2320x x k ++-=有实数根.∴∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.24.(1)32;12- (2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可; (3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t -进行变形求解即可. 【详解】(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- (3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴t s -=t s -=,当t s -=11212t s s t st --===-当t s -=11212t s s t st --===-综上分析可知,11s t-或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -或t s -= 25.C【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果. 【详解】解:x 2-2x =2, x 2-2x +1=2+1,即(x -1)2=3. 故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 26.A【分析】根据一元二次方程有实数根先确定m 的取值范围,再根据一元二次方程根与系数的关系得出212122,41x x m x x m m +==--,把()()121222217x x x x ++-=变形为12122()130x x x x +--=,再代入得方程28120m m -+=,求出m 的值即可.【详解】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∴22=(2)4(41)0m m m ∆----≥, ∴14m ,≥-∵12x x ,是方程222410x mx m m -+--=的两个实数根, ∵212122,41x x m x x m m +==--, 又()()121222217x x x x ++-= ∴12122()130x x x x +--=把212122,41x x m x x m m +==--代入整理得,28120m m -+=解得,122,6m m == 故选A【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合12122()130x x x x +--=,找出关于m 的一元二次方程. 27.A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程中考考点快乐点击一元二次方程中考考点武汉市翠微中学陈浩 430050考点一、一元二次方程的概念【例1】(2007,武汉)如果2是一元二次方程x2=c的一个根,那么常数c是().(A)2 (B)-2 (C)4 (D)-4解析:将2代入方程x2=c中,得c=22=4,故选C.【例2】(2005,甘肃)关于x的一元二次方程(k+4)x2+3x+k2+3k-4=0有一个根为0,求k的值.解析:将x=0代入上述方程中有k2+3k-4=0,解得k1=1,k2=-4,∵k+4≠0,∴k=1.点评:当一元二次方程的二次项含有参数时,切记二次项的系数不能为0.【中考真题演练】1.(2007,盐城)已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是().(A)1 (B)0 (C)0或1 (D)0或-12007,2.(2007,乐山)已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.3.(2007,株洲)已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b --的值.4.(2007,大连)已知关于x 的方程x 2+kx-2=0的一个解与方程311=-+x x 解相同. 求k 的值;(2)求方程x 2+kx -2=0的另一个解.【参考答案】1.A ;2.a =1或a =-2;3.20;4.k =-1,x 1=2,x 2=-1.考点二、一元二次方程的解法(一)配方法例 2x 2+1=3x解析:移项,得2x 2-3x =-1,二次项系数化为1,得21232-=-x x .配方,得222)43(21)43(23+-=+-x x ,161)43(2=-x ,由此得4143±=-x ,x 1=1,x 2=21. 点评:配方法是解一元二次方程中常见方法,在今后的学习中将凸显它的重要地位,值得关注,在配方解一元二次方程的过程可以简记为:移、除、加,解四步曲,(1)移,将含有未知数的项移到方程的左边,将常数项移到方程的右边,(2)除,方程两边同时除以二次项的系数,将方程的二次项系数化为1,(3)加,方程的两边同时加上一次项系数一半的平方,(4)解,直接开方得解.【中考真题演练】1.(2007,武汉)解方程:x 2+2x -4=02.(2007,重庆)方程()412=-x 的解为 .3.(2007,内江)用配方法解方程2420xx -+=,下列配方正确的是( ).(A )2(2)2x -= (B )2(2)2x += (C )2(2)2x -=- (D )2(2)6x -= 4.(2006,贵阳)一元二次方程2230xx --=的两个根分别为( ).(A )x l =1,x 2=3 (B )x l =1,x 2=-3(C )x 1=-1,x 2=3 (D )x I =-1,x 2=-3【参考答案】1.x 1=-1+5,x 2=-1-5;2.x =3或-1;3.B ;4.C .(二)公式法【例1】(2007,武汉)解方程:210xx +-=. 解析:a =1,b =1,c =-1,b 2-4ac =1-4×(-1)=5>0,x =251242±-=-±-a ac b b ,解得,x 1=251+-,x 2=251--. 点评:利用公式法时,注意两点(1)将一元二次方程化为一般式,确定a ,b ,c 的值;(2)牢记使用公式时b 2-4ac ≥0.【中考真题演练】(2006,武汉)解一元二次方程:x 2-x -1=0.【参考答案】x 1=251+,x 2=251-(三)因式分解法例1 (2006,安徽)方程x(x+3)=x+3的解是().(A)x=1 (B)x l=0,x2=-3(C)x1=1,x2=3 (D)x I=1,x2=-3解析:移项,x(x+3)-x+3=0,提取公因式,得(x-1)(x+3)=0,解得,x I=1,x2=-3,故选D.点评:本例应避免方程两边同时除以(x+3),否则方程会失根.【中考真题演练】1.(2007,宁波)方程x2+2x=0的解为.2.(2007,湖州)方程x2-25=0的解是().(A)x1=x2=5 (B)x1=x2=25(C)x1=5,x2=-5 (D)x1=25,x2=-253.(2006,河北)一元二次方程230x x-=的根是().(A )3x = (B )120,3x x ==-(C )120,3x x == (D )120,3x x ==4.(2007,扬州)方程42=-x x 的解为 . 5.(2007,内江)方程(x -2)(x -3)=6的解为 .【参考答案】1.x 1=0,x 2=-2;2.C ,3.D ;4.x 1=0,x 2=4,5.x 1=0,x 2=5. (四)换元法【例1】(2007,南通)用换元法解方程4112=-+-x x x x ,若设y x x =-1, 则可得关于的整式方程_______________________.解析:观察得知1-x x 与xx 1-互为倒数,则有2y -y1=4,方程两边同时乘以y 得,2y 2-1=4y ,化为一般式为2y 2-4y -1=0.【中考真题演练】1.(2006,北京)用换元法解方程:x x x x -=+-2261.2.(2006,福州)解方程:22(2)3(2)20x x x x ++-+=.【参考答案】1.设x 2-x =y ,则y +1=y6,两边同时乘以y ,得y 2+y =6,解得y 1=2,y 2=-3,当y =2时,即x 2-x =2,解得,x 1=2,x 2=-1,当y =-3时,x 2-x =-3,此方程无解,经检验x =2是原方程的根;2.设y x x =+2,则y 2-3y +2=0,解得y 1=1,y 2=2;当y =1时,12=+x x ,此方程无解,当y =2时,22=+xx ,x =2,经检验x =2是原方程的根.友情提示:在利用换元法解分式方程时,应注意将方程的根进行检验.考点三、b 2-4ac 的应用当b 2-4ac >0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,当b 2-4ac =0时,一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,当b 2-4ac <0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.【例1】(2007,怀化)已知方程230-+=有x x k两个相等的实数根,则k=.解析:方程230-+=有两个相等的实数根,x x k9.则有(-3)2-4k=0,求得k=4【中考真题演练】1.(2006,广安)关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是().(A)k>-1 (B)k>1 (C)k≠0(D)k>-1且k≠02.(2007,巴中)一元二次方程2210x x--=的根的情况为().(A)有两个相等的实数根(B)有两个不相等的实数根(C)只有一个实数根(D)没有实数根3.(2007,眉山)一元二次方程x2+x+2=0的根的情况是().(A)有两个不相等的正根(B)有两个不相等的负根(C )没有实数根 (D )有两个相等的实数根4.(2007,泸州)若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值是( ).(A )1m < (B )1m >- (C )1m >(D )1m <-【参考答案】1.A ,2.B ,3.C ,4.C . 考点四、根与系数的关系当b 2-4ac >0时,一元二次方程ax 2+bx+c =0(a ≠0)有两个不相等的实数根,x 1=a acb b 242-+-,x 2=a acb b 242---,故x 1+x 2=a ac b b 242-+-+a acb b 242---=a b a b -=-22,x 1x 2=a acb b 242-+-×a ac b b 242---=22224)4()(a ac b b ---=a c a ac =244. 【例1】(2007,徐州)已知x 1,x 2是方程2560x x --=的两个根,则代数式2212x x +的值是( ).(A )37 (B )26 (C )13(D ) 10解析:因为b 2-4ac =25+24>0,由根与系数的关系得,x 1+x 2=5,x 1x 2=-6,2212xx +=(x 1+x 2)2-2x 1x 2=25+12=37,故选A .【例2】(2007,广州)关于x 的方程20xpx q ++=的两根同为负数,则( ).(A )0p >且q >0 (B )0p >且q <0(C )0p <且q >0 (D )0p <且q <0 解析:关于x 的方程20x px q ++=的两根同为负数,则x 1+x 2<0,x 1x 2>0,则x 1+x 2=-p <0,p >0,x 1x 2=q >0,故选A .【中考真题演练】1.(2006,上海)方程x 2+3x -4=0的两个实数根为x 1、x 2,则x 1x 2=__________.2.(2006,江西)已知关于x 的一元二次方程012=-+kx x .(1)求证:方程有两个不相等的实数根;(2)设方程的两根分别为21x x ,,且满足2121x x x x ⋅=+,求k 的值.3.(2006,南通)已知关于x 的一元二次方程x 2-(m -1)x +m +2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2-9m+2,求6+m的值.4.(2007,天门)已知关于x的一元二次方程x2+4x+m-1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.【参考答案】1.-4;2.(1)略,(2)k =1;3.(1)m1=7,m2=-1,(2)若方程的两实数根之积等于m2-9m+2=m+2,求得m1=0,m2=10,当m=0时,原方程没有实数根,故m=10,6+m=4.4.(1)m=5,(2)4.考点五、开放创新题【例1】(2006,常德)已知一元二次方程有一个根是2,那么这个方程可以是(填上你认为正确的一个方程即可).点评:试题先给出开放的条件,则符合条件的方程众多,结论不唯一.我们只需逆向思考,从最简单的情形出发,认真推敲,细心检验,可以很快从中找到一个符合条件的方程.答案:x=2,则x2=4,这个方程可以是x2-4=0.【中考真题演练】1.(2005,江西)若方程x2-m=0有整数根,则m的值可以是.(填写一个正确的答案即可).2.(2006,海安)请给出一元二次方程x2-8x+=0的一个常数,使这个方程有两个不相等的实数根.【参考答案】1.移项,得x2=m,要保证原方程有整数根,就必须保证m是一个整数的平方数,将x=1,x=2,x=3……代入,得,m=1,4,9等;2.由题意知b2-4ac>0,设常数项为x,则有4x<64,的x<16,所以只有常数项小于16的任意一个数即可.。