焊接机器人焊接缺陷及常见故障分析与处理
abb焊接机器人工作站故障的分析和维修

ABB焊接机器人工作站故障的分析和维修介绍ABB焊接机器人工作站的硬件构成与软件环境,针对导致停机故障有影响的环节——控制单元,电气驱动单元,机械传动部件进行分析。
同时介绍修复交流伺服电机的具体实例。
1、引言春兰摩托车有限公司自1996年引进ABB公司的工业焊接机器人工作站,该工作站设计精良,维护率低,但由于在焊接高温,烟尘,电磁干扰等恶劣工况下,不免有故障出现,特别是电气元件的故障。
2、工作站的概况本工作站型号为IRB1400,是ABB公司工业弧焊机器人系列较小的一种。
2.1该工作站软件系统名为基装机器人焊接系统(S4M94A–IRBP–BASED WELDING SYST EMS)该操作系统可使用英文.日文等数种语言,较易掌握,使用时类似windows窗口菜单,用户界面明了友善,并有简单人机对话功能,和实时诊断错误信息系统。
2.2该工作站硬件系统分为四个部分,如图1所示。
3、故障类型的分析3.1软件造成的停机故障该工作站控制系统下的主处理器采用Motorola68040芯片,内存容量为4Mb,主处理器要负责机器人的运动参数,反馈数据的采样分析,焊接参数等运算(控制系统的关系如图2)。
在焊接运行过程中,由于主处理器工作繁忙,可能造成系统停机死机的现象,如有信息提示,可根据系统自我诊断信息进行处理;如无信息提示,可重新启动,通过操作系统的重装解决。
3.2硬件造成的停机驱动单元和电气元件,机械传动部件的关系,如图3所示。
在此模块中电气元件的故障率较高,在中小型电机中轴承故障与绝缘故障占故障的97%以上,而该工作站使用的交流伺服电机多了驱动控制线路和反馈电路(见图3),因此需对可靠性薄弱环节如轴承.绕组绝缘.驱动线路.反馈电路等进行检测。
4、具体故障实例分析和修复生产线第八号工作站(出厂编号为1996–1582)于2001年8月出现的停机故障较有代表性,该工作站在工作启动后出现停机,显示屏无信息提示,重新启动操作系统,无法解决。
机器人焊接工作站常见故障与处理

机器人焊接工作站常见故障与处理机器人焊接工作站常见故障与处理处理方案第1.01 项:焊接不起弧处理方式:○1检查焊机是否打开。
○2检查水箱是否打开。
○3检查送丝是否顺畅,有无堵丝。
○4检查机器人“正常焊接”是否打开。
○5检查控制方式是否为JOB号远控。
○6检查起弧点是否导电良好。
处理方案第1.02 项:焊机不送丝处理方式:○1检查焊机是否打开。
○2检查有无堵丝。
处理方案第1.03 项:自动流程不执行处理方式:○1检查机器人是否为顺控流程。
○2检查水箱是否打开。
○3检查主操作台是否为“自动”方式。
处理方案第1.04 项:更换导电嘴处理方式:○1将机器人暂停。
○2更换导电嘴。
地址:四川成都(610300)青白江区向阳路139号○3将机器人启动。
处理方案第1.05 项:堵丝处理方式:○1将机器人暂停。
○2将堵丝的位置清除。
○3将机器人启动。
○4如遇送丝不畅,请更换送丝管、导丝管等,并检查送丝机的送丝轮,压力过小会影响送丝,压力过大会伤害焊丝表面,影响引弧稳定。
处理方案第1.06 项:暂停后启动处理方式:○1机器人运行中,按下红色“暂停”按钮后机器人暂停。
○2机器人运行中暂停后,按下绿色“启动”按钮后机器人启动。
处理方案第1.07 项:设备开机前异常检查处理方式:○1机器人在原位置,否则为异常,必须查明原因。
○2变位机在原位置,否则为异常,必须查明原因。
○3有保证本次焊接操作所需的焊丝、保护气体、冷却水,否则为异常,必须查明原因。
地址:四川成都(610300)青白江区向阳路139号○4其他事项正常,否则为异常,必须查明原因。
处理方案第1.08 项:设备开机后异常检查处理方式:○1将机器人钥匙开关置于“AUTO”档位,复位掉开机报警后,操作盒上无任何异常文字显示。
○2焊机无错误显示。
○3主控操作系统界面无异常报警显示。
○4报警蜂鸣器报警声音正常。
处理方案第1.09 项:如何正确清理焊枪焊渣处理方式:○1每次手工清理焊枪焊渣时请使用钢刷,而不能使用钳子或者螺丝刀,以免损坏分离器。
【工业机器人】常见焊接缺陷类型产生原因与防止措施

【工业机器人】常见焊接缺陷类型产生原因与防止措施1)焊缝尺寸不符合要求角焊缝的K值不等—一般发生在角平焊,也称偏下。
偏下或焊缝没有圆滑过渡会引起应力集中,容易产生焊接裂纹。
焊条角度问题,应该考虑铁水瘦重力影响问题。
许多教授在编写教材注重理论性而忽略实用性。
焊条角度适当上抬,48/42度合适。
另外,在K值要求较大时,尽量采用斜圆圈型运条方法。
焊缝宽窄不一致:一是运条速度不均匀,忽快忽慢所致;二是坡口宽度不均匀,焊接时没有进行调整。
三是在熔池边缘停留时间不均匀。
所以焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时间合适。
焊缝高低不一致:与焊接速度不均匀有关外,与弧长变化有关。
所以采用均匀的焊接速度、保持一定的弧长,是防止焊缝高低不一致的有效措施。
弧坑:息弧时过快。
与焊接电流过大、收弧方法不当有关。
平焊缝可以采用多种收弧方法,例如回焊法、画圈法、反复息弧法。
立对接、立角焊采用反复息弧法,减小焊接电流法。
焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;所以在焊接前尽量预防,在焊接中尽量防止,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求。
2)夹渣夹渣是非金属化合物在焊接熔池冷却没有及时上浮而被封闭在焊缝内,所以与清渣不够、打底层、填充层的成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规的运条方法,没有分清铁水与熔渣,保持熔池的净化氛围。
平对接采用合适推渣动作,分清铁水与熔池,焊条角度特别重要。
最容易产生夹渣的部位是:平对接各层、填充层与打底层结合部的两个死角,横对接打底层、填充层的最上部的夹角,仰对接的坡口边缘。
实际就是焊缝成型没有实现略凹、或平,而特别容易形成过凸的成型所致。
夹渣降低焊缝有效截面使用性能,容易产生裂纹等其他缺陷,影响焊缝的致密性。
3)未焊透与未熔合未焊透一般产生在坡口根部,与埋弧焊偏丝、焊接电流过小、焊接速度快、坡口角度过小、反面清根不彻底。
大河工业:超实用,自动焊锡机器人在焊接过程中出现的不良原因及解决对策

超实用,自动焊锡机器人在焊接过程中出现的不良原因及解决对策自动焊锡机器人在使用过程中,有时候会遇到一些焊接不良的问题,这些问题主要表现有吃锡不良、冷焊或点不光滑、焊点裂痕等,针对这些焊接不良问题。
除了调试本身外还有一些外在的因素,那么这些问题该如何解决呢?下面让深圳自动焊锡机器人厂家小编带我们来详细了解一下一,吃锡不良其现象为线路的表面有部份未沾到锡,原因为:1.表面附有油脂、杂质等,可以溶剂洗净。
2.基板制造过程时打磨粒子遗留在线路表面,此为印刷电路板制造厂家的问题。
3.硅油,一般脱模剂及润滑油中含有此种油类,很不容易被完全清洗干净。
所以在电子零件的制造过程中,应尽量避免化学品含有硅油者。
焊锡炉中所用的氧化防止油也须留意不是此类的油。
4.由于贮存时间、环境或制程不当,基板或零件的锡面氧化及铜面晦暗情形严重。
换用助焊剂通常无法解决此问题,重焊一次将有助于吃锡效果。
5.助焊剂使用条件调整不当,如发泡所需的空气压力及高度等。
比重亦是很重要的因素之一,因为线路表面助焊剂分布数量的多寡受比重所影响。
检查比重亦可排除因卷标贴错,贮存条件不良等原因而致误用不当助焊剂的可能性。
6.自动焊锡机器人焊锡时间或温度不够。
一般焊锡的操作温度较其溶点温度高55~80℃7.不适合之零件端子材料。
检查零件,使得端子清洁,浸沾良好。
8.预热温度不够。
可调整预热温度,使基板零件侧表面温度达到要求之温度约90℃~110℃。
9.焊锡中杂质成份太多,不符合要求。
可按时测量焊锡中之杂质,若不合规定超过标准,则更换合于标准之焊锡。
退锡多发生于镀锡铅基板,与吃锡不良的情形相似;但在欲焊接的锡路表面与锡波脱离时,大部份已沾在其上的焊锡又被拉回到锡炉中,所以情况较吃锡不良严重,重焊一次不一定能改善。
原因是基板制造工厂在渡锡铅前未将表面清洗干净。
此时可将不良之基板送回工厂重新处理。
二,冷焊或点不光滑此情况可被列为焊点不均匀的一种,发生于基板脱离锡波正在凝固时,零件受外力影响移动而形成的焊点。
IGM焊接机器人在实际生产中厚板焊接出现的缺陷及解决措施

IGM焊接机器人在实际生产中厚板焊接出现的缺陷及解决措施发布时间:2022-09-22T02:41:58.681Z 来源:《中国科技信息》2022年5月第10期作者:王太忠、张晓峰、郭立明、谢元立、李万君[导读] 随着“中国制造2025”的提出,新一代信息技术与制造业的深度融合。
焊接机器人作为信息、制造、智能化等技术相结合的产物,王太忠、张晓峰、郭立明、谢元立、李万君中车长春轨道客车股份有限公司(吉林长春 130061)概述:随着“中国制造2025”的提出,新一代信息技术与制造业的深度融合。
焊接机器人作为信息、制造、智能化等技术相结合的产物,是“中国制造2025”的重要组成部分。
IGM焊接机器人系统由机器人本体、控制系统、变位机、示教器、示教器、远程控制盒,跟踪系统、焊接系统和应用软件等组成。
作为人机交换界面的示教器和远程控制盒用来进行机器人控制,跟踪系统采用接触式喷嘴传感器、电弧传感器、等跟踪方式,可实现对V型、单V型、角焊缝等多种形式焊缝的跟踪。
它可以稳定和提高焊接质量,提高生产率,可二十四小时连续生产。
焊接自动化在生产中发挥重要的作用,实际生产中厚板焊接缺陷及解决措施一、V型坡口对接焊缝缺陷及解决措施 V型对接焊缝常采用多层多道焊接,若操作不当经常会出现,未焊透、焊穿、打底层未熔合、盖面层成型不良、收弧铁水下趟、未焊到引弧板出提前收弧等缺陷产生。
在实际生产中,转向架焊接,较多位置采用V型坡口对接焊缝,A型车侧梁一步外缝焊接,B型车侧梁三部托板焊接部分焊缝都采用V 型坡口对接焊缝,庞巴迪构架自动焊工序全部采用V型坡口对接焊缝。
1.缺陷产生原因:(1)打底焊缝的焊接参数不合理(2)起弧和收弧示教点位置设定偏差(3)料件装配偏差(4)收弧参数不合理(5)气体流量控制。
2.解决措施:(1)在进行打底焊时,焊前进行来料检查,坡口钝边大小厚度是否均匀合格,预留缝隙是否与工艺文件一致,工件组对是否错口,组对焊点是否符合工艺要求,确认合格后方可进行焊接,必须选择合适的焊接参数,保证背面焊透。
机器人焊接缺陷产生的原因及其防止措施,一定要收藏

机器人焊接缺陷产生的原因及其防止措施,一定要收藏机器人焊接缺陷的分类一、机器人弧焊焊接缺陷的分类1.焊缝外观缺陷(1)咬边咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口,如图1所示。
图1(2)焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤称为焊瘤,如图2所示。
图2(3)烧穿烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺陷,如图3所示。
焊接电流过大,焊接速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷;工件间隙太大,钝边太小时也容易出现烧穿现象。
图3(4)表面未熔合未熔合是指焊缝金属与母材金属,或焊缝金属之间未完全熔化后结合在一起的缺陷,发生在焊缝表面的肉眼可见的未熔合缺陷称为表面未熔合,如图4所示。
图4(5)满溢满溢是指熔化的金属太多流淌而出敷盖在焊道单侧或两侧的母材上,如图5所示。
图5(6)焊偏焊偏在焊缝横截面上显示为焊道偏斜或扭曲,如图6所示。
图6(7)弧坑电弧焊时,在焊缝末端收弧处或接头连接引弧处低于焊道基体表面的凹坑称为弧坑,如图6-7所示。
在这种凹坑中很容易产生气孔和微裂纹。
图7(8)表面气孔表面气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴,如图8所示。
这里的气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。
焊缝表面分布的气孔称为表面气孔。
表面气孔多是由于焊接过程保护不良导致的。
图8(9)表面裂纹表面裂纹是焊接过程中或焊接完成后,在焊接区域中出现的金属局部破裂的现象,如图9所示。
图92.焊缝内部缺陷焊接时产生的气孔、裂纹、未熔合等缺陷,主要是出现在焊缝内部。
(1) 气孔气孔是主要的焊接缺陷之一,常常发生在焊缝内部,如图10所示。
焊件内部气孔多以氢气孔为主。
焊前清理不当,焊材受潮,焊接参数不当等均有可能导致内部气孔产生。
焊接机器人的常见故障解决措施及编程技巧

焊接机器人的常见故障解决措施及编程技巧1、焊接机器人概念焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它主要包括机器人和焊接设备两部分。
其中,机器人由机器人本体和控制柜(硬件及软件)组成;而焊接装备,以弧焊及点焊为例,则由焊接电源(包括其控制系统)、送丝机(弧焊)、焊枪(钳)等部分组成。
对于智能机器人,还应配有传感系统,如激光或摄像传感器及其控制装置等。
2点焊机器人的特点由于采用了一体化焊钳,焊接变压器装在焊钳后面,所以点焊机器人的变压器必须尽量小型化。
对于容量较小的变压器可以用50Hz工频交流,而对于容量较大的变压器,工业上已经开始采用逆变技术把50Hz工频交流变为600~700Hz交流,使变压器的体积减少、减轻。
变压后可以直接用600~700Hz交流电焊接,也可以再进行二次整流,用直流电焊接,焊接参数由定时器调节。
目前,新型定时器已经微机化,因此机器人控制柜可以直接控制定时器,无需另配接口。
点焊机器人的焊钳,用电伺服点焊钳,焊钳的张开和闭合由伺服电机驱动,码盘反馈,使焊钳的张开度可以根据实际需要任意选定并预置,而且电极间的压紧力也可以无级调节。
3电伺服点焊钳的特点每个焊点的焊接周期可大幅度降低,因为焊钳的张开程度是由机器人精确控制的,机器人在点与点之间的移动过程,焊钳就可以开始闭合;而焊完一点后,焊钳一边张开,机器人就可以一边位移,不必等机器人到位后,焊钳才闭合或焊钳完全张开后机器人再移动。
焊钳张开度可以根据工件的情况任意调整,只要不发生碰撞或干涉,可尽可能减少张开度,以节省焊钳开度,节省焊钳开合所占的时间。
焊钳闭合加压时,不仅压力大小可以调节,而且在闭合时两电极是轻轻闭合,可减少撞击变形和噪声。
4弧焊机器人的特点弧焊机器人多采用气体保护焊方法(MAG、MIG、TIG),通常的晶闸管式、逆变式、波形控制式、脉冲或非脉冲式等的焊接电源都可以装到机器人上作电弧焊。
由于机器人控制柜采用数字控制,而焊接电源多为模拟控制,所以需要在焊接电源与控制柜之间加一个接口。
机器人焊接出现的缺陷及应对措施

机器人焊接出现的缺陷及应对措施随着现代制造业的发展,机器人焊接在工业生产中得到广泛应用。
然而,机器人焊接仍然存在一些缺陷,这些缺陷可能会影响焊接质量和生产效率。
在以下内容中,我将讨论机器人焊接出现的缺陷,并提出相应的应对措施。
1.焊缝质量不稳定:在焊接过程中,机器人焊接可能导致焊缝质量不稳定的问题。
这可能是由于焊枪的晃动、焊接参数的不准确或焊接头部的不一致等原因造成的。
应对措施:首先,可以通过改进焊接工艺,优化焊接参数,提高焊接质量的一致性。
其次,可以加强对焊枪的控制,减少晃动,提高焊接的稳定性。
此外,还可以使用自适应控制技术,实时调整焊接参数,以适应焊接过程中的变化,从而提高焊缝质量的稳定性。
2.焊接变形:焊接过程中,由于焊接热量的作用,工件可能会发生变形,导致焊接质量下降。
机器人焊接的速度较快,焊接热量较高,可能会增加焊接变形的风险。
应对措施:首先,可以通过优化焊接工艺,控制焊接温度和焊接速度,减少焊接变形。
其次,可以在焊接前进行预变形补偿,通过通过对设计加入一定量的变形来抵消焊接后所引起的变形,以达到保持工件形状稳定的目的。
此外,还可以使用焊接夹具来固定工件,减少焊接变形。
3.焊接质量不达标:机器人焊接在一些情况下,可能会产生焊接质量不达标的问题,如焊缝的气孔、咬边、裂纹等。
应对措施:首先,可以通过优化焊接工艺,调整焊接参数,控制焊接过程中的气氛,减少气孔的产生。
其次,可以增加焊接监控系统,实时监测焊接过程中的质量变量,及时发现问题并进行调整。
此外,还可以增加自动化检测设备,对焊缝进行在线检测,提高焊接质量的可靠性。
4.可编程性差:机器人焊接系统的可编程性可能较差,导致难以实现对不同焊接任务的灵活调整和切换。
应对措施:首先,可以采用可编程控制器和灵活的编程语言,提高机器人焊接系统的可编程性。
其次,可以增加离线编程功能,通过在离线环境中对焊接任务进行预先编程,以减少对生产线的影响,并提高焊接系统的适应性和灵活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长期的工作中也可能会出现各种故障,本文重点分析处 理焊接缺陷和常见故障。机器人焊接采用的是富氩混合 气体保护焊,焊接过程中出现的焊接缺陷
一般有焊偏、咬边、气孔等几种,具体分析如下:(1)出 现焊偏可能为焊接的位置不正确或焊枪寻找时出现问题。 这时,要考虑TCP(焊枪中心点
位置)是否准确,并加以调整。如果频繁出现这种情况就 要检查一下机器人各轴的零位置,重新校零予以修正。(2) 出现咬边可能为焊接参数选择不
以内,焊缝出现气孔和咬边等焊接缺陷机率可大幅度降 低。(2)采用精度较高的装配工装以提高焊件的装配精度。 (3)焊缝应清洗干净,无油污、
铁锈、焊渣、割渣等杂物,允许有可焊性底漆。否则, 将影响引弧成功率。定位焊由焊条焊改为气体保护焊, 同时对点焊部位进行打磨,避免因定位焊
残留的渣壳或气孔,从而避免电弧的不稳甚至飞溅的产 生。焊接机器人对焊丝的要求机器人根据需要可选用桶 装或盘装焊丝。为了减少更换焊丝的频率
随着电子技术、计算机技术、数控及机器人技术的发展, 自动弧焊机器人工作站,从60年代开始用于生产以来, 其技术已日益成熟,具有稳定和提高
ቤተ መጻሕፍቲ ባይዱ
焊接质量、提高劳动生产率、改善工人劳动强度,可在 有害环境下工作、降低了对工人操作技术的要求、缩短 了产品改型换代的准备周期,减少相应的
设备投资等优点,因此,在各行各业已得到了广泛的应 用。尽管如此,机器人在焊接过程中,也难免出现焊偏、 咬边、气孔等焊接缺陷,焊接机器人在
编程时在工作步中添加埋弧坑功能,可以将其填满。常 见故障及解决方法(1)发生撞枪。可能是由于工件组装发 生偏差或焊枪的TCP不准确,可检
查装配情况或修正焊枪TCP。(2)出现电弧故障,不能引唬 可能是由于焊丝没有接触到工件或工艺参数太小,可手 动送丝,调整焊枪与焊缝的距离
,或者适当调节工艺参数。(3)保护气监控报警。冷却水 或保护气供给存有故障,检查冷却水或保护气管路。如 何保障工件质量作为示教一再现式机
转载请注明文章出处,谢谢。
超声波焊接机 ty72htvv
器人,要求工件的装配质量和精度必须有较好的一致性。 应用焊接机器人应严格控制零件的制备质量,提高焊件 装配精度。零件表面质量、坡口尺寸和
装配精度将影响焊缝跟踪效果。可以从以下几方面来提 高零件制备质量和焊件装配精度。(1)编制焊接机器人专 用的焊接工艺,对零件尺寸、焊缝坡
口、装配尺寸进行严格的工艺规定。一般零件和坡口尺 寸公差控制在±0.8mm,装配尺寸误差控制在 ±1.5mm
,焊枪相对接头的位置通过编程者的双眼观察,难度较 大。这就要求编程者善于总结积累经验。(5)及时插入清 枪程序。编写一定长度的焊接程序后
,应及时插入清枪程序,可以防止焊接飞溅堵塞焊接喷 嘴和导电嘴,保证焊枪的清洁,提高喷嘴的寿命,确保 可靠引虎减少焊接飞溅。(6)编制程序
一般不能一步到位,要在机器人焊接过程中不断检验和 修改程序,调整焊接参数及焊枪姿态等,才会形成一个 好程序。运行成本及管理分析进口机器人
配件价格较高,应努力从各方面降低运用成本。润滑油 可以在国内寻找性能、效用相同的低价替代品。焊接过 程加强维护,提高易耗件如喷嘴、导电嘴
等的使用寿命。另外,对机器人系统进行预防性的维护, 可以有效提高元器件的使用寿命。高素质的管理人员、 技术人员和操作人员是机器人充分发挥
效率的必要条件。一个企业焊接机器人使用的好坏,很 大程度在于人,因此要保证有一支稳定的工作队伍。
当、焊枪角度或焊枪位置不对,可适当调整功率的大小 来改变焊接参数,调整焊枪的姿态以及焊枪与工件的相 对位置。(3)出现气孔可能为气体保护
差、工件的底漆太厚或者保护气不够干燥,进行相应的 调整就可以处理。(4)飞溅过多可能为焊接参数选择不当、 气体组分原因或焊丝外伸长度太长
,可适当调整功率的大小来改变焊接参数,调节气体配 比仪来调整混合气体比例,调整焊枪与工件的相对位置。 (5)焊缝结尾处冷却后形成一弧坑,
,机器人应选用桶装焊丝,但由于采用桶装焊丝,送丝 软管很长,阻力大,对焊丝的挺度等质量要求较高。当 采用镀铜质量稍差的焊丝时,焊丝表面的
镀铜因摩擦脱落会造成导管内容积减小,高速送丝时阻 力加大,焊丝不能平滑送出,产生抖动,使电弧不稳, 影响焊缝质量。严重时,出现卡死现象,
使机器人停机,故要及时清理焊丝导管。编程技巧总结(1) 选择合理的焊接顺序。以减小焊接变形、焊枪行走路径 长度来制定焊接顺序。(2)焊枪
空间过渡要求移动轨迹较短、平滑、安全。(3)优化焊接 参数。为了获得最佳的焊接参数,制作工作试件进行焊 接试验和工艺评定。(4)合理的变
位机位置、焊枪姿态、焊枪相对接头的位置。工件在变 位机上固定之后,若焊缝不是理想的位置与角度,就要 求编程时不断调整变位机,使得焊接的焊
缝按照焊接顺序逐次达到水平位置,同时,要不断调整 机器人各轴位置,合理地确定焊枪相对接头的位置、角 度与焊丝伸出长度。工件的位置确定之后