沪教版相似三角形教案及练习
沪教版数学九年级上册24.4《相似三角形的判定》(第1课时)教学设计

沪教版数学九年级上册24.4《相似三角形的判定》(第1课时)教学设计一. 教材分析《相似三角形的判定》是沪教版数学九年级上册第24章第4节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的性质、三角形的判定等知识的基础上进行授课的。
本节课的主要内容是引导学生探究相似三角形的判定方法,让学生通过观察、操作、猜想、证明等过程,体会数学的转化思想,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,学生对相似三角形的判定方法还没有接触过,对于如何证明两个三角形相似还有一定的困难。
因此,在教学过程中,教师需要引导学生观察、操作、猜想、证明,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的判定方法,能够运用相似三角形的性质解决一些简单的问题。
2.过程与方法目标:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生在探究过程中体验数学的转化思想,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点教学重点:相似三角形的判定方法。
教学难点:如何证明两个三角形相似。
五. 教学方法采用问题驱动法、合作学习法、探究学习法、讲授法等教学方法,引导学生观察、操作、猜想、证明,从而掌握相似三角形的判定方法。
六. 教学准备准备一些三角形模型、多媒体教学设备等。
七. 教学过程1.导入(5分钟)教师通过展示一些三角形模型,让学生观察并思考:这些三角形有什么特点?你能找出它们之间的联系吗?从而引导学生进入本节课的主题——相似三角形的判定。
2.呈现(10分钟)教师通过多媒体展示一些相似三角形的图片,让学生观察并回答问题:这些三角形为什么相似?你是如何判断的?引导学生总结出相似三角形的判定方法。
3.操练(10分钟)教师提出一些判断相似三角形的问题,让学生分组进行讨论、操作、证明。
沪科版数学九年级上册第22章《相似三角形》复习教学设计

沪科版数学九年级上册第22章《相似三角形》复习教学设计一. 教材分析《相似三角形》是沪科版数学九年级上册第22章的内容,本章主要让学生掌握相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。
本章内容是学生以前学过三角形知识的进一步拓展,也是为后续学习相似多边形、相似圆等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,如三角形的性质、分类等。
同时,他们具备一定的逻辑思维能力和问题解决能力。
但是,对于相似三角形的性质和判定方法,学生可能存在理解上的困难,因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,深入理解相似三角形的性质和判定方法。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的性质和判定方法,能够运用相似三角形的知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.教学重点:相似三角形的性质和判定方法。
2.教学难点:相似三角形的性质和判定方法在实际问题中的应用。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考等活动,自己发现相似三角形的性质和判定方法。
2.合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力和沟通能力。
3.案例教学法:教师通过列举实际问题,引导学生运用相似三角形的知识解决问题。
六. 教学准备1.教学课件:制作课件,展示相似三角形的性质和判定方法。
2.实际问题:准备一些实际问题,用于引导学生运用相似三角形的知识解决问题。
3.学具:准备一些三角形模型,供学生观察和操作。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本知识,如三角形的性质、分类等。
然后,教师提出本节课的主题——相似三角形,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示相似三角形的性质和判定方法,引导学生观察、思考,自己发现相似三角形的性质和判定方法。
沪教版(上海)九年级上册数学 24.4 相似三角形的判定 教案

24.4 相似三角形的判定教案【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形例题1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定例题2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;举一反三:【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.例题3.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【答案与解析】解:(1)∵AD=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.例题4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【答案与解析】连接,,,是的中垂线,,,,.,.又,∽,,.举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF, 交AB 于E. 求证:DE AC EF BC =.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE△AGF ∽△ABC∵DEDBEF GF =,又∵AF=BD,∴.DE AFEF GF =∵△AGF ∽△ABC∴AF ACGF BC =,即DEACEF BC =.。
沪教版数学(上海)九年级第一24.4相似三角形的判定优秀教学案例(5课时)

1.贴近生活的情境创设:本节课通过引入生活实际的情境,如建筑物的设计、电路板上的元件布局等,让学生感受到相似三角形知识的应用,激发学生的学习兴趣,提高学习的积极性。
2.问题导向的教学策略:通过设计一系列的问题,引导学生进行思考和讨论,激发学生的学习兴趣和求知欲。问题导向的教学策略能够培养学生的逻辑思维能力,提高学生的问题解决能力。
(三)情感态度与价值观
本节课的教学目标是培养学生对数学学科的兴趣和自信心,使学生能够积极主动地参与数学学习,形成积极的数学情感态度。在情感态度方面,我期望学生能够对相似三角形的判定方法产生浓厚的兴趣,感受到数学的乐趣和魅力。在价值观方面,我期望学生能够认识到相似三角形知识在实际生活中的重要性,培养学生的实际应用能力和解决问题的能力。
1.第一课时:通过实际问题引入相似三角形的概念,让学生了解相似三角形的定义和性质。
2.第二课时:引导学生探究相似三角形的判定方法,让学生通过合作交流,发现并证明相似三角形的判定定理。
3.第三课时:通过例题讲解,让学生掌握相似三角形的判定方法,并能运用判定方法解决实际问题。
4.第四课时:引导学生深入理解相似三角形的性质,通过练习题让学生熟练掌握相似三角形的性质。
(二)讲授新知
在导入新课之后,我将进入讲授新知的环节。首先,我会用简洁明了的语言介绍相似三角形的定义和性质。我会通过示例和讲解,让学生理解相似三角形的概念,并掌握AA、SSS、SAS三种相似三角形的判定方法。接着,我会运用多媒体教学手段,展示相似三角形的判定过程,帮助学生直观地理解知识。在讲授过程中,我会注意与学生的互动,提问和引导他们思考,确保他们对知识的理解和掌握。
本节课的教学目标是通过探究相似三角形的判定方法,培养学生的逻辑思维能力和团队合作能力。在过程方面,我期望学生能够在探究过程中,主动思考、提出问题、解决问题,培养学生的独立思考能力和创新意识。在方法方面,我期望学生能够通过观察、实验、讨论等方法,发现并证明相似三角形的判定定理,培养学生的实证能力和论证能力。
沪科版九年级数学上册教案《相似三角形的判定》

沪科版九年级数学上册教案《相似三角形的判定》《相似三角形的判定》教科书分析本节是上海科技版义务教育教科书《数学》九年级上册第二十二章《相似形》的第2节《相似三角形的判定》的教学内容,主要研究相似三角形的判定方法.本节内容是在学生学习了相似形和相关的线段比例性质之后在三角形相似中的判定.首先由生活中的图像讨论引出相似三角形的证明的,在此基础上进一步探究其他证明方法;接着证明直角三角形的相似的判定;最后解答,解决一些生活中的问题.本部分研究了三角形相似性的判定,体现了从特殊到一般的证明思想教学目标【知识和能力目标】理解相似三角形的判断方法【过程和方法】以问题的形式,创设一个有利于学生动手和探究的情境,达到学会本节课所学的相似三角形的判定方法.。
【情感态度与价值观】培养学生积极思考、动手和观察的能力,使学生意识到几何知识在生活中的价值教学重难点[教学要点]会应用相似三角形的两个判定方法。
怎样选择合格的判定方法来判定两个三角形相似。
【教学难点】掌握判断方法的条件,通过对已知条件的分析掌握图形的结构特征。
课前准备多媒体课件、教具等教学过程问题(1)相似形的定义与性质?(2)相似比的定义,如何判断相似性?【设计意图】:回忆相似形的相关概念和性质,为后面学习判定知识做铺垫。
1B1,那么,如果已知ab‖A1B1,这两只风筝的形状相似。
观察和思考:敢于猜测,a 能得到吗△ 基础知识≓? a1b1c1【设计意图】:具体生活中实际图片,为后面做铺垫,引出证明相似思考:已知,de//bc,且d是边ab的中点,de交ac于e,猜想:△ade与△abc有什么关系?并证明。
相似证据:≓德//公元前∠ 1 = ∠ B∠ 2 = ∠ C和∠ a=∠ A.∴△ade与△abc的对应角相等过e作ef//ab交bc于f,又∵de//bc四边形dbfe是平行四边形,∴de=bf,db=ef又∵ad=db,∴ad=ef∵∠a=∠3,∠2=∠c△ade≌△efc∴de=fc=bf,ae=ecae1de1adaede1?,,acbc2ac2bc2ab∴△a de与△abc的对应边成比例∴△ade∽△abc由三角形中线切割的三角形与原始三角形相似【设计意图】:特殊案例,体会从特殊到一般的证明思路,由易到难,当D点位于AB上的任意点时,上述结论仍然有效吗?已知:De//BC,两者之间的关系是什么△ 艾德和△ ABC?猜想:两者之间的关系是什么△ 艾德和△ ABC?aBdec平行于三角形一侧的定理是相似的。
沪科版数学九年级上册22.3《相似三角形的性质》(第1课时)教学设计

沪科版数学九年级上册22.3《相似三角形的性质》(第1课时)教学设计一. 教材分析《相似三角形的性质》是沪科版数学九年级上册第22.3节的内容。
本节主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过实例引入相似三角形的性质,引导学生探究并证明这些性质,最后通过练习巩固所学知识。
二. 学情分析九年级的学生已经学习了三角形的性质、相似三角形的定义和性质等知识,具备了一定的数学基础。
但学生在运用相似三角形的性质解决实际问题时,往往会出现理解不深、运用不灵活的情况。
因此,在教学过程中,教师需要帮助学生深入理解相似三角形的性质,并能够灵活运用。
三. 教学目标1.了解相似三角形的性质,并能够运用这些性质解决实际问题。
2.培养学生的逻辑思维能力和数学素养。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.相似三角形的性质及其运用。
2.学生能够灵活运用相似三角形的性质解决实际问题。
五. 教学方法1.实例引入:通过生活中的实例引入相似三角形的性质,让学生感受数学与生活的联系。
2.探究学习:引导学生通过小组合作、讨论交流的方式,探究相似三角形的性质,培养学生的合作意识和团队精神。
3.练习巩固:通过大量的练习题,让学生巩固所学知识,提高解题能力。
4.启发引导:教师在教学过程中,引导学生思考,激发学生的学习兴趣和求知欲。
六. 教学准备1.准备相关的教学PPT,展示生活中的实例和练习题。
2.准备相关的学习材料和辅导书,为学生提供更多的学习资源。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如相似的图形、建筑物的比例等,引导学生思考相似三角形的性质。
2.呈现(10分钟)教师通过PPT展示相似三角形的性质,让学生初步了解并感知这些性质。
同时,引导学生进行思考和讨论,培养学生的逻辑思维能力。
3.操练(10分钟)教师给出一些练习题,让学生运用相似三角形的性质进行解答。
沪教版初三数学相似三角形教案.docx

姓王瑜上课时间2016年 9 月 3 日上午 10:10-12 :10名辅导科数学年级九年级课时3目课题名比例线段、相似三角形称1、理解放缩与相似形的概念,掌握相似形基本特征。
2、理解比与比例及比例中项等概念,掌握比例的基本性质、合比定理和教学目更比定理,会用它们进行简单的比例变形;标3、理解比例线段及黄金分割的概念,理解平行线分线段成比例定理,会作第四比例项教学重相似三角形的判定与性质点教学难比例的基本性质、相似三角形的判定与性及其应用点教学及辅导过程◆考点聚焦1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,?并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,?会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.◆备考兵法1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,要注意基本图形的应用,如“A型”“X 型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题,关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置,用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.◆考点链接一、相似三角形的定义三边对应成 _________,三个角对应 ________的两个三角形叫做相似三角形.二、相似三角形的判定方法1.若 DE∥BC(A 型和 X 型)则 ______________.2.射影定理:若 CD为 Rt△ABC斜边上的高(双直角图形)2,2,2.则 Rt△ABC∽Rt△ACD∽Rt△CBD 且 AC=________CD=_______BC=__ ____A E D CD E AB C B C A D B3.两个角对应相等的两个三角形 __________.4.两边对应成 _________且夹角相等的两个三角形相似.5.三边对应成比例的两个三角形___________.三、相似三角形的性质1.相似三角形的对应边 _________,对应角 ________.2.相似三角形的对应边的比叫做 ________,一般用 k 表示.3.相似三角形的对应角平分线,对应边的 ________线,对应边上的 _______?线的比等于 _______比,周长之比也等于 ________比,面积比等于 _________.【历年考点例析】考点一、比例及有关概念 , 比例的基本性质例 1①在比例尺是 1:38000 的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为 ______Km。
沪科版数学九年级(上册)22.2相似三角形的判定-教案(1)

相似三角形的判定【教学目标】1.理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角:2.掌握相似三角形判定定理的“预备定理”;3.能灵活运用三角形相似的判定定理证明和解决有关问题。
【教学重点】灵活运用三角形相似的判定定理证明和解决有关问题。
【教学难点】三角形相似的判定定理的探索与证明。
【课时安排】5课时。
【教学过程】【第一课时】三角形相似判定定理的“预备定理”。
一、复习旧知:前面我们学习了相似多边形及相似比的有关概念,下面请同学们思考以下几个问题:(一)辨析:1.四个角分别相等的两个四边形一定相似吗?2.四组对应边的比分别相等的两个四边形一定相似吗?3.什么样的两个多边形是相似多边形?4.什么是相似比(相似系数)?(二)简答:1.正方形和长方形或长宽之比不相等的两个矩形。
2.正方形和不是正方形的菱形或两组内角均不相等的菱形。
3.两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形。
4.相似多边形对应边长度的比叫做相似比或相似系数。
二、概念讲解:概念:如图1,AAB(2与八AB。
相似。
记作“△ABCs/XABt,”,读作“Z\ABC相似于左ABC,”。
注意:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角。
, 、ZA=ZA\ZB=ZB;ZC=ZC;△ABCs/XABC,V〉AB BC CA明确:对于,根据相似三角形的定义,应有……(引导学生明白定义的双重性。
)问题:将左ABC与左ABC,相似比记为ki,△ABC与8ABC相似比记为k?,那么幻与灯有什么关系?ki=k2能成立吗?说明:三角形全等是三角形相似的特例。
(一)类比猜想:1.两个三角形全等的判定有哪几种方法?2.全等是不是需要所有的对应边和对应角都相等?3.猜想:两个三角形相似是不是也需要所有的对应边?和对应角都相等?有没有简便的方法?(二)简析:1.两个三角形全等的判定方法有:SAS,ASA、SSS,AAS,直角三角形还有HL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形
一、相似三角形的定义:
对应角相等 、对应边成比例的三角形叫做相似三角形。
二、相似三角形的判定方法(一)
判定方法(1):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
判定方法(2):如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
判定方法(3):如果一个三角形的三条边分别与另一个三角形的三条边对应成比例那么这两个三角形相似。
除了上述三种判定方法外,还有以下三种判定方法:
(1)定义法:对应角相等、对应边成比例的两个三角形相似(这种方法一般不常用)
(2)平行于于三角形一边的直线和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似。
(3)直角三角形被斜边上的高分成的两个直角三角形原三角形相似。
(此知识常用,但用时需要证明)
三、判定相似三角形的思路
1、有一对等角,找 :①、另一对等角 ②、 等角的两边对应成比例
2、有两边对应成比例,找:①、夹角相等 ②、第三边也成比例
3、直角三角形,找一对锐角相等
4、等腰三角 形,找:①、顶角相等 ②、一对底角相等 ③、底和腰成比例
四、在做题过程中,某些图像出现的频率会比较高,所以我们要熟知这些常见的图形,并学会从习题中基本图形很快的寻找和发现相似:
1、平行线型:
A
( 1 ) ( 2 )
(a )如图1,“A ” 型:即公共角的对边平行
(b) 如图2,“X ”型:对顶角的对边平行
2、斜交型:指公共角的对边不平行,即相交或延长线相交或对顶角所对的边延长线相交,其中再有一角相等,或其公共角(或对顶角)的两边对应成比例,就可以判定这两个三角形相似,基本图形常见如下:
E D
A
B C C
D E B A E C B D
A B D
C E B
D C A
( 3 ) ( 4 ) ( 5 )
a 、如图3,若 ∠D=∠B 或 ∠ACB=∠AED ,或AB:AD=AC:AE , 则△ABC ∽△ADE ;
b 、如图4,若∠ACD=∠B 或 ∠ADC=∠ACB ,或AC:AB=AD:AC, 则△ACD ∽ △ABC ;
C 、如图5,若∠AED=∠C 或 ∠ADE=∠B ,或 AD:AB=AE:AC, 则△ADE ∽ △ABC ;
( 6 )
d 、如图6,若∠A=∠D , 或 ∠B=∠C ,或OA:OB=OD:OC,则△AOB ∽ △DOC;
五、相似三角形面积之比等于相似比的平方
例题、习题
1、P 是ΔABC 中AB 边上一点,过点P 作直线(不与直线AB 重合)截ΔABC ,使截得的三角形与原三角形相似,满足这样的条件的直线最多有( )条
A 2条
B 3条
C 4条
D 5条 2、如图,已知D 为△ABC 内一点,
E 为△ABC 外一点,且∠1=∠2, ∠3 =∠4。
求证 : △ABC ∽ △DBE
3、如图,菱形ABCD 的边长为3,延长AB 到E ,使EB =2AB ,连接EC 并延长交AD 延长线于F ,如果△EBC ∽△EAF ,试求AF 的长
D A B C O
A
B C E
D 1 2 3 F 4 A D E
C
B
4、如图,在△ABC 中,DE ∥BC ,且DE=
32BC=2cm ,△ADE 的周长为10cm ,求梯形BCDE 的周长。
5、如图,△ABC 被DE 、FG 分成面积相等的三部分,且DE ∥FG ∥BC 。
求DE :FG :BC 。
三、训练题:
1、如图,梯形ABCD 中,AD ∥BC ,对角线BD 分成两部分面积的比是1:2,EF 是中位线,则被EF 分成的两部分面积之比为S AEFD :S BCFE =( )
A 、3:4
B 、4:5
C :5:7
D 、7:9
2、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若S △AOD :S △ACD =1:3,则S △AOD :S △BOC 等于( )
A 、1:6
B 、1:3
C 、1:4
D 、1:6
3、如图,DE ∥BC ,DE 把△ABC 的面积分成相等的两部分,那么DE :BC 等于( )
A 、1:2
B 、1:4
C 、2:2
D 、2:2
4、如图,将△ABC 的高AD 三等分,过每一个分点作底边的平行线,这样把三角形分成三部分,设这三部分的面积为S 1,S 2,S 3,则S 1:S 2:S 3=( )
A B C D E
S 3S 1S 2A B C D E F G
A 、1:2:3
B 、2:3:4
C 、1:3:5
D 、3:5:7
5、如图,在△ABC 中,∠CBA=90°,BD ⊥AC 于D ,则下面关系式中错误的是( )
A 、A
B 2=AD×A
C B 、B
D 2=AD×DC C 、AB 2=AC 2-BC 2 D 、AB 2=AC×DC
6、如图,在△ABC 中,AD ⊥BC ,PQMN 为正方形,且顶点在△ABC 各边上,BC=60cm ,AD=40cm ,则正方形边长为( )
A 、12cm
B 、16cm
C 、20cm
D 、24cm
7、如果两个相似三角形的对应边的比是4:5,周长的和为18cm ,那么这两个三角形的周长分别为_______________。
8、△ABC 中,BC=54cm ,CA=45cm ,AB=63cm ,另一个与它相似的三角形的最短边为15cm ,则周长为_______________。
9、在△ABC 中,点D 、E 分别为AB 、AC 上的点,DE ∥AC ,AB :DB=2:1,F 为AC 上任一点,△DEF 面积为22,则S △ABC =_________________。
10、如图,D 、E 分别是AB 、AC 上的点,5
3==AB AE AC AD ,△ABC 的角平分线AH 交DE 于点F ,过点F 作BC 的平行线,分别交AB 、AC 于点G 、K 。
已知BC=20cm ,求GK 。
11、点M 是Rt △ABC 的斜边AB 的中点,过M 作MD ⊥AB 交AC 于D ,交BC 的延长线于E 。
求证:MC 是MD 、ME 的比例中项。
B C D H F G K B C M E D。