伺服参数调整
伺服驱动器参数设置方法

伺服驱动器参数设置方法
伺服驱动器是现代自动化控制系统中的重要组成部分,其参数设置的合理与否直接影响到设备的运行效果和性能稳定性。
下面将介绍一种常见的伺服驱动器参数设置方法,希望对大家有所帮助。
首先,我们需要了解伺服驱动器的基本参数,包括电机型号、轴数、额定电流、额定转速等。
在进行参数设置之前,需要对这些基本参数有一个清晰的认识,这样才能更好地进行参数调整。
其次,根据实际的控制需求,对伺服驱动器的参数进行调整。
通常包括以下几个方面:
1. 速度环参数设置,包括速度环比例增益、速度环积分增益、速度环微分增益等。
这些参数的设置会直接影响到伺服电机的速度响应性能,需要根据实际情况进行合理调整。
2. 位置环参数设置,包括位置环比例增益、位置环积分增益、位置环微分增益等。
这些参数的设置会直接影响到伺服电机的位置精度和稳定性,需要根据实际控制要求进行调整。
3. 负载参数设置,包括负载惯量、负载摩擦力等。
这些参数的设置对于伺服电机的负载能力和动态性能有着重要影响,需要根据实际负载情况进行调整。
最后,进行参数调整后,需要进行系统的稳定性测试和性能验证。
通过对伺服驱动器进行负载试验、速度跟踪试验等,验证参数设置的效果是否符合实际控制要求,如果有需要,还可以进行进一步的参数微调。
总之,伺服驱动器参数设置是一个复杂而又关键的工作,需要结合实际情况进行合理调整,才能达到最佳的控制效果。
希望以上介绍对大家有所帮助,谢谢!
以上就是伺服驱动器参数设置方法的相关内容,希望对大家有所帮助。
伺服驱动器参数设置方法

伺服驱动器参数设置方法
1. 前期准备
根据伺服驱动器使用说明书来确认系统参数的设置范围,同时要了解所需参数的具体名称和作用。
在设置参数前,先停止伺服系统的运转。
2. 主伺服参数设置
主伺服参数指防护、速度、加速度等参数。
设置前,先按照使用说明书的要求选择相应的参数。
然后进行参数设置。
3. PID参数设置
PID参数设置包括比例系数、积分时间和微分时间三个参数。
一般情况下,这三个参数是配套使用的。
一般情况下,这三个参数都是需要根据实际情况进行调整的。
在设定前,先根据使用说明书选择相应的参数,然后调整PID参数,直到达到理想的运动效果。
4. 位置误差调整
基础参数调整完成后,要进行位置误差调整。
这时,可以手动转动伺服电机,观察位置误差变化。
这个过程中,要根据速度的变化,对位置误差进行调整,直到
达到预期效果。
5. 整机参数调整
完成单个电机的参数设定后,还需要对整个伺服系统进行参数调整。
整机参数包括系统响应速度、整机加速度等。
通过调整整机参数,可以使整个伺服系统的运动更加顺畅。
6. 参数测试
参数设置完成后,还需要对其进行测试,以验证是否满足了伺服系统的设计要求。
在测试过程中,可以根据需要逐步调整参数,以达到最佳效果。
安川伺服电机参数基本调整

安川伺服电机参数基本调整安川伺服电机是一种常见的电机控制设备,广泛应用于机械设备中。
在使用过程中,需要根据具体的应用需求对伺服电机的参数进行基本调整,以实现更好的运动性能和控制效果。
下面将介绍一些常见的安川伺服电机参数基本调整方法。
1.转矩限制参数调整:转矩限制参数是指电机在运行中所能输出的最大转矩。
根据实际需求,可以适当调整转矩限制参数,以达到所需的运动效果。
一般来说,如果转矩限制设置得过大,容易导致电机过载;而设置得过小,则可能无法满足实际应用需求。
因此,在进行参数调整时,需要根据具体应用场景进行合理设置。
2.速度限制参数调整:速度限制参数是指电机在运行中所能达到的最大速度。
在使用伺服电机时,常常需要对其运动速度进行控制,以满足实际需求。
通过调整速度限制参数,可以控制电机的最大速度。
一般来说,速度限制设置得过大,可能会导致电机运行不稳定;设置得过小,则无法满足实际要求。
因此,在进行参数调整时,需要综合考虑电机的性能和实际需求。
3.比例增益参数调整:比例增益是伺服电机控制中的重要参数,用于控制电机响应速度和稳定性。
在进行比例增益参数调整时,需要注意以下几点:首先,增益设置得太小,可能会导致电机响应迟钝;设置得太大,则容易导致电机振荡或不稳定。
其次,在调整时应尽量使电机响应速度和运动稳定性达到一个合理的平衡。
最后,比例增益参数一般需要根据具体应用需求进行调整。
4.调整滤波时间常数参数:滤波时间常数参数是伺服电机控制中的一个重要参数,用于抑制电机输出信号的高频噪声。
在进行滤波时间常数参数调整时,需要注意以下几点:首先,滤波时间常数设置得过小,可能会导致电机输出信号的噪声没有得到有效抑制;设置得过大,则会影响电机的运行性能。
其次,应根据具体应用需求进行合理调整,以满足实际要求。
5.调整位置环参数:位置环是伺服电机控制中的一个重要环节,用于实现位置的准确控制。
在进行位置环参数调整时,需要注意以下几点:首先,位置环控制的稳定性对电机性能影响较大,因此在设置参数时应尽量提高稳定性。
伺服驱动参数设置方法

伺服驱动参数设置方法引言:伺服驱动参数设置是指根据具体的应用需求,对伺服驱动器进行参数配置,以实现精准的电机控制和运动控制。
正确的参数设置可以提高系统的性能和稳定性,确保电机运动的准确性和可靠性。
本文将介绍伺服驱动参数设置的方法和步骤。
一、了解伺服驱动器在进行伺服驱动参数设置之前,首先需要了解伺服驱动器的基本特性和工作原理。
伺服驱动器是一种用于控制电机运动的设备,它通过接收控制信号,输出相应的电流或电压,驱动电机实现精确的位置和速度控制。
二、确定应用需求在进行伺服驱动参数设置之前,需要明确具体的应用需求,包括所控制的电机类型、负载特性、运动要求等。
不同的应用需求可能需要不同的参数设置,因此需要在此基础上进行参数调整。
三、设置基本参数1. 电机类型:根据实际应用情况,选择正确的电机类型,包括步进电机、直流无刷电机或交流伺服电机等。
2. 电机参数:设置电机的额定电流、额定转速、极对数等参数,这些参数可以通过电机的技术手册或者其他相关资料获得。
3. 控制模式:选择合适的控制模式,包括位置控制、速度控制或力矩控制等。
四、调整闭环参数闭环参数是伺服驱动器中最关键的参数之一,它直接影响到系统的稳定性和控制精度。
根据应用需求和实际情况,逐步调整以下闭环参数:1. 比例增益:比例增益决定了控制器对误差的响应程度,过大的比例增益会导致系统震荡,过小则会导致响应不及时。
通过试验和调整,找到合适的比例增益值。
2. 积分时间:积分时间决定了控制器对误差积分的时间长度,过大的积分时间会导致系统响应迟钝,过小则会导致系统震荡。
根据实际情况,逐步调整积分时间,找到合适的值。
3. 微分时间:微分时间决定了控制器对误差变化率的响应程度,过大的微分时间可能会导致系统产生高频振荡,过小则会导致系统对噪声敏感。
通过试验和调整,找到合适的微分时间值。
五、设置限制参数为了保护系统和设备的安全运行,还需要设置一些限制参数,以避免超出系统的能力范围。
伺服电机的参数调节方法

伺服电机的参数调节方法伺服电机作为一种高精度控制器,其参数的调节方法对其性能具有非常重要的影响。
通过恰当地调节电机的参数,可以使其达到更高的精度和响应速度。
在本文中,我们将介绍伺服电机参数调节的方法。
一、伺服电机参数的意义1. 比例增益(KP)比例增益是电机输出与误差之间的比例系数。
它可以调节电机的灵敏度和控制响应速度。
比例增益越大,控制效果越好,但过大会导致震荡和不稳定。
相反,比例增益过小将导致电机偏差过大,精度和响应速度下降。
2. 积分时间(TI)积分时间是指误差累积对输出的影响时间,是衡量电机回归能力的重要参数。
当电机输出大于误差时,积分时间越长,电机响应越大,误差越小。
相反,积分时间过短会导致电机无法稳定工作。
3. 微分时间(TD)微分时间是误差变化速率对电机输出的影响时间,可以调节电机的“智能度”。
在实际应用中,微分时间通常为0.1倍的积分时间。
当微分时间过大时,将导致电机响应迟缓和不稳定。
二、伺服电机参数的调节方法1. 比例增益(KP)参数调节方法(1)先将积分时间和微分时间调节到最小。
(2)逐渐增加比例增益,直到电机出现震荡或不稳定。
此时再将比例增益减小到震荡停止或不稳定的状态。
(3)再次逐渐增加比例增益,直到电机产生震荡或不稳定,并将比例增益减小到震荡停止或不稳定的状态。
(4)重复步骤(3)直到电机稳定工作。
2. 积分时间(TI)参数调节方法(1)先将比例增益和微分时间调节到最小。
(2)逐渐增加积分时间,直到电机达到最佳位置控制。
(3)增加积分时间将导致大的调节误差,如果电机无法达到最佳位置控制,则缩短积分时间。
(4)重复步骤(3)直到电机达到最佳位置控制。
3. 微分时间(TD)参数调节方法(1)先将比例增益和积分时间调节到最小。
(2)逐渐增加微分时间,直到电机达到最佳位置控制。
(3)如果微分时间太长,则会导致电机对小的误差变化过于敏感,从而降低稳定性。
(4)重复步骤(3)直到电机达到最佳位置控制。
数控机床伺服参数调整方法

数控机床伺服参数调整方法数控机床是一种通过控制系统控制的机床,它的精度和稳定性取决于伺服系统的参数调整。
伺服系统是控制电机转速和位置的关键部件,正确调整伺服系统的参数可以提高机床的加工精度和生产效率。
本文将介绍一种数控机床伺服参数调整方法。
一、伺服系统的参数数控机床的伺服系统有许多参数,常见的有比例增益、积分时间、微分时间和滤波时间等。
比例增益决定了伺服系统的响应速度和稳定性,积分时间和微分时间分别控制了伺服系统的积分和微分作用,滤波时间用于减小伺服系统的噪声。
不同的机床对参数的要求可能不同,因此需要根据具体机床的要求进行调整。
二、参数调整方法1. 比例增益的调整比例增益是伺服系统的一个重要参数,它决定了伺服系统的响应速度和稳定性。
一般来说,较大的比例增益可以提高系统的动态性能,但过大的比例增益会导致系统震荡和不稳定。
调整比例增益需要在性能和稳定性之间取得平衡。
具体的调整方法如下:(1)增加比例增益,观察系统的响应速度和稳定性,如果出现震荡现象或者系统变得不稳定,说明比例增益过大,需要适当降低。
2. 积分时间的调整(1)增加积分时间,观察系统的稳态误差,如果稳态误差减小,但超调量增大,说明积分时间过大,需要适当减小。
(1)增加滤波时间,观察系统的响应速度和抖动情况,如果系统的响应速度变慢,说明滤波时间过大,需要适当减小。
三、结论通过调整伺服系统的参数,可以有效提高数控机床的加工精度和生产效率。
在进行参数调整时,需要在性能和稳定性之间取得平衡,根据具体机床的要求进行调整。
调整伺服系统参数需要进行逐步试验,观察系统的响应速度和稳定性,在实际加工中进行实验验证,以获得最佳的参数设置。
数控机床伺服参数调整方法

数控机床伺服参数调整方法数控机床伺服参数调整是一项重要的工作,直接影响到数控机床的加工质量和效率。
正确的参数调整可以使数控机床运行平稳、精度高,同时可以减少故障发生的可能性。
下面将介绍数控机床伺服参数调整的方法。
一、了解伺服系统在进行伺服参数调整之前,我们首先需要充分了解伺服系统的工作原理和结构,包括伺服电机、编码器、伺服放大器等。
了解伺服系统的工作原理对调整参数非常有帮助。
二、参数调整前的准备工作在进行伺服参数调整之前,我们首先需要做好以下几个准备工作:1. 完善的机床维修手册和相关资料:了解数控机床的结构及所有部件的规格和性能。
2. 合适的调试设备:调试仪器和设备,如震动分析仪、示波器、频谱分析仪等。
3. 监测工具:有关数控机床性能的监测工具,如力传感器、位移传感器等。
4. 监控系统:对数控机床伺服系统的运行参数进行监测和记录。
5. 了解数控系统的功能和基本原理。
三、参数调整的具体步骤1. 伺服放大器增益参数的调整伺服放大器的增益参数是影响数控机床伺服性能的关键参数之一。
增益过大或过小都会导致系统性能下降,因此需要正确、合理地进行调整。
调整增益参数时,可以利用调试仪器进行监测和调整。
我们可以通过震动分析仪或频谱分析仪对伺服系统进行监测,得到系统的频率响应曲线。
接着,可以根据频率响应曲线的特性来调整伺服放大器的增益参数,使之达到最佳状态。
2. 速度环参数的调整速度环是数控机床伺服系统中的重要部分,对其速度环参数进行合理调整可以提高系统的速度响应性能。
调整速度环参数时,我们可以通过示波器监测伺服系统的速度响应特性,并根据实际情况进行调整。
四、参数调整后的测试在完成伺服参数的调整后,我们需要进行严密的测试,以确认参数调整的效果。
测试内容包括静态性能测试和动态性能测试。
1. 静态性能测试静态性能测试主要是对数控机床伺服系统的稳态性能进行测试。
包括位置控制精度测试、速度控制精度测试、静态刚度测试等。
注意事项在进行伺服参数调整时,需要注意一些重要的事项:1. 保持安全:在进行参数调整时,需要确保机床处于停机状态,以免发生意外事故。
伺服系统的参数设定与调整方法

伺服系统的参数设定与调整方法伺服系统是一种常见的控制系统,广泛应用于各种机械设备中。
准确的参数设定和调整对于伺服系统的性能和稳定性至关重要。
本文将介绍伺服系统参数设定和调整的方法。
一、伺服系统参数设定方法伺服系统的参数设定是指根据实际需求,确定控制系统中的参数数值。
常见的参数包括比例增益、积分时间和微分时间等。
以下是一些常用的伺服系统参数设定的方法:1. 衰减法:通过衰减法可以较为准确地估计参数。
首先将伺服系统给予一个较大的幅值输入信号,观察输出信号的衰减情况。
通过分析衰减的速度和振荡周期等参数,可以确定系统的阻尼比和固有频率,从而设定PID控制器的参数。
2. 格里德法:格里德法是一种基于试错原理的参数设定方法。
系统首先设定一个较小的比例增益值,然后逐渐增大这个值,观察系统的响应。
如果系统出现振荡,则减小比例增益值;如果系统响应较慢,则增大比例增益值。
通过不断试错和调整,最终确定合适的比例增益。
3. 找根法:找根法是一种通过根轨迹的方法来确定参数的设定值。
通过分析系统的特征方程,可以画出系统的根轨迹。
根轨迹的形状和分布可以反映系统的稳定性和灵敏性。
根据根轨迹的情况,可以调整PID控制器的参数。
二、伺服系统参数调整方法伺服系统参数调整是指根据实际的运行效果和性能要求,微调参数的数值。
以下是几种常用的伺服系统参数调整的方法:1. 自适应控制:自适应控制是指根据系统的实时响应和状态,自动调整参数的数值。
自适应控制可以根据实际需求动态地修改参数,以提高系统的性能和稳定性。
2. 批量调整法:批量调整法是指通过实验和试验,对整个参数集进行调整。
可以通过设定不同的比例增益、积分时间和微分时间等参数来进行实验,观察系统的响应和性能指标,最终找到最佳的参数组合。
3. 样本跟踪法:样本跟踪法是指通过跟踪样本轨迹来调整参数。
首先设定一个样本轨迹,然后通过观察系统对样本轨迹的响应,逐渐调整参数,直到系统响应与样本轨迹一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N脉冲抑制 脉冲抑制: 脉冲抑制 当在调整时,由于提高了速度增益,而引起了机床在停止时也出现 了小范围的震荡(低频),从伺服调整画面的位置误差可看到,在 没有给指令(停止时),误差在0左右变化。使用单脉冲抑制功能 可以将此震荡消除,按以下步骤调整
a) 参数2003#4=1,如果震荡在0-1范围变化,设定此参数即可。 b) 参数2099,按以下公式计算。
伺服的屏蔽和轴的屏蔽 伺服的屏蔽: 伺服的屏蔽:当显示轴数与实际携带轴数不同时,如画面显示4 个轴而实际只携带三个 轴时(即只连接3 个驱动接口时),可以通过将该轴参数的1023 设定为-1 或(-128) 将该伺服屏蔽,将1800#1CVR 设定为1 消除404#报警,然后根据实际情况进行FSSB 的设定。如果不想在画面上显示该轴,可将该轴参数的3115#0NDP 设定为1,不进行相 关轴的显示。
·参数2066=-10到-20,一般设-10 ·第四步;使用HRV2;HRV3标准伺服参数
参数号码 2004 2040 设定值 0X000011 标准设定值 意义 HRV2 控制有效 电流环路积分增益 这三个参数通过电机参数初始 化自 动设定, 动设定,进行电机参数初始化 时选 择的电机代码号为电机代码表 中 括号内的电机代码即可实现 HRV2 控制。 控制。 设置说明
显示如下:
* 先按[AMP] (放大器),再按[OPRT],选择[SETTING],如果正常设定,会出现000报警, 关机再开机。 ·在轴设定画面上,指定关于轴的信息,如分离型检测器接口单元的连接器号。 ·按[SETING]键(若显示警告信息,重复上述步骤)。此时,应关闭电源,然后开机,如 果没有出现5138报警,则设定完成。 显示如下:
第11步 按软键[SETTING]。(当输入一个值后此软 键才显示) 第12步 设定参数No.1815的第1位为1,为Y轴和A轴。 第13步 CNC关机再开机。此设定完成。
伺服调整画面。 伺服调整画面。
以下为伺服调整画面,一般用户都忽略了此画面的调整,其实这方面的调整对机床更重要。
最佳调整速度环增益和位置环增益有助于提高控制性能和提高对外 界的抗干扰能力,这是机床一开始就要进行调整的项目. 第一步:设定时,首先将功能位 功能位(2003)的位3(PI) 设定1(冲床 功能位 为0),回路增益 回路增益(1825)设定为3000,比例,积分增益 比例, 回路增益 比例 积分增益不要改, 速度增益从200增加,每加100后,用JOG移动坐标,看是否震动, 速度增益 或看伺服波形(TCMD)是否平滑 注:速度增益=(负载惯量比(参数2021)+256)/256 *100。负载 惯量比表示电机的惯量和负载的惯量比,直接和具体的机床相关, 一定要调整。 第二步:伺服波形显示 调整完后,一定要还原为 第二步 伺服波形显示:参数3112#0=1(调整完后 一定要还原为 伺服波形显示 调整完后 一定要还原为0), 关机再开。 按SYSTEM→扩展键→扩展键→W.DGNS
2041
标准设定值
电流环路比例增益
2003#3 2017#7 2006#4 2016#3
1 1 1 1
PI控制有效 控制有效 如机床有震动可将该参数设为0 速度环比例项高速处理功能 如机床有震动可将该参数设为 速度反馈读入1ms有效 有效 速度反馈读入 停止时比例增益可变功能有 效
2119
2(1um ( 检测) 检测) 停止时比例增益可变 20( ( 功能: 功能:停止判断水平 0.1um检 (检测单位) 检测单位) 检 测) 5000 128 1 150 伺服环路增益 通过SEVRO GUIDE 观 通过 察调整
第六步:调整位置环增益(插补轴必须相同的数值)
重力轴防落调整: 重力轴防落调整:
一般重力轴的电机都带有制动器,在按急停时或伺服报警 时,由于制动器的动作时间而产生的轴的跌落,可通过参 数调整来避免。 参数调整:2005#6=1,2083 设定延时时间(ms),一般 设定200左右,具体要看机械重力的多少。如果是该轴放 大器是2或3轴放大器,每个轴都要设定。
举例说明:
2.位置脉冲数,按如下方法设定:
注:如果设定数大于32767,用参数2185做乘数。
3.参考计数器容量,按如下方法设定
全闭环改为半闭环的相关参数设定
在日常的维修中如何将全闭环该为半闭环,对于FANUC 0i系列数控系统, 仅需要修改参数即可,不需要改动任何硬件状态。所需要修改的参数如下: 把机床参数1815的#1位(OPT)对应的轴修改为“0”,表示使用内置编码器作 为位置反馈。(半闭环控制方式) 在伺服设定画面修改N/M柔性齿轮比参数,根据丝杠螺距计算N/M
第三步:250um加速反馈的说明
对于机床刚性较低的机床,设定加速度 反馈相当有效.电机与机床弹 性连接,负载惯量比电机的惯量要大,在调整负载惯量比时候(大 于512),会产生50-150HZ的振动,此时,不要减小负载惯量比的 值,可设定此参数进行改善。 ·此功能把加速度反馈增益乘以电机速度反馈信号的微分值,通过 补偿转矩指令Tcmd,来达到抑制速度环的震荡。
OiMB/C 伺服参数调整
基本参数设定( 基本参数设定(FSSB)。 )。 ·参数1023设定为1;2;3等。对应光缆接口X,Y,Z等。 ·参数1902的位0 = 0,伺服FSSB参数自动设定。
·在FSSB设定画面,指定各放大器连接的被控轴的轴号(1,2, 3等)。在CUR下面会显示放大器的电流(如40A),如果没有或 显示--,则检查伺服放大器是否有电或光缆是否正确连接。 ·按[SETING]软键。(若显示警告信息,请重新设定)。
当伺服模块中有任何一个单元出现故障报警时,均会引起所有单元的 VRDY-OFF(伺服准备就绪断掉),有时很难判断故障点,这时就需要把 某个轴“虚拟化”,也就是数控系统不向该伺服模块发出指令,同时也不 读这个轴的反馈数据。既便这个轴有故障,也把这个轴的信号“屏蔽掉”, 让其他伺服放大器可以吸合,即VRDY置“1”,使其它轴正常工作。 如果需要把控制轴的其中一个轴的放大器和电机取下,有以下几种方法:
设定例子1 通用配置(半闭环)
第1步 设定参数No.1023如下: X:1 Y:2 Z:3 A:4 第2步 各个轴的伺服参数初始化。 第3步 CNC关机再开机。 第4步 在放大器设定画面输入轴号。
第5步 按软键[SETTING]。(当输入一 个值后此软键才显示) 第6步 按功能键 [SYSTEM] 第7步 按延续菜单键 >几次,直到显示 [FSSB]。 第8步 按软键[FSSB]切换屏幕显示到放 大器设定画面,显示下列软键:
第5步 按软键[SETTING]。(当输入一 个值后此软键才显示) 第6步 按功能键[SYSTEM] 第7步 按延续菜单键 >几次,直到显示 [FSSB]。 第8步 按软键[FSSB]切换屏幕显示到放 大器设定画面,显示下列软键:
第9步 按软键[AXIS]。 第10步 在轴设定画面设定分离 型检测器。(分离型检测器接口 单元:M1/M2)
1. 一个伺服放大器带二个电机,还想让一个电机运动,将相应轴 一个伺服放大器带二个电机,还想让一个电机运动, 设为1{系统和编码器不通讯 : PRM2009#0(SDMY)设为 系统和编码器不通讯 ,2165 设为 系统和编码器不通讯}, 设为0(放大器最大电流为0) 设为 (放大器最大电流为 )再封伺服插头。
防止累计进給调整方法: 防止累计进給调整方法 在摩擦和扭力较大的机床,在低速进给时容易发生 在摩擦和扭力较大的机床 在低速进给时容易发生 1.首先将功能位 功能位(2003)的位3(PI) 设定1,为提高扭矩的启动, 功能位 适当增加速度环路积分增益数值 P2043
2.在手轮进给或其它微小进给时,发生指令1脉冲不走,两个脉冲一起走2个脉 冲或更多个脉冲一起走,和上述情况相反,使用Vcmd偏移功能来提高单脉冲进 给功能。 主要是由于机械摩擦太大,如果没有必要,一般可不调整此功能,调整不当会产 生过冲。 动作过程原理如下:参数:2003#7=1,2045接近32767(32700),用手脉X1 档移动,用千分表测量位置变化,进行调整。
第9步 按软键[AXIS]。 第10步 不输入任何数据按软键 [(OPRT)],然后按软键[SETTING]。 第11步 关闭CNC电源然后再打开。设 定就完成了。
设定2例子 通用配置(全闭环)
第1步 设定参数No.1023如下: X:1 Y:2 Z:3 A:4 第2步 各个轴的伺服参数初始化。 第3步 CNC关机再开机。 第4步 在放大器设定画面输入轴号。
轴的屏蔽(即电机的脱开,在不使用该电机的情况下,去掉该电 轴的屏蔽 机,及该电机的动力电缆、反馈电缆 ),有以下两种方法。如下图: 去掉第4 轴 A 轴。
方法1: 方法 虚拟反馈功能 将第四轴参数 2009#0---〉1 2165 -----〉0 第四轴伺服电机反馈电缆接口JFX 11---12 短接 注:此时屏幕仍然显示4 轴,被封住的轴如果移动会出 现411 报警,未被封住的轴可正常移动。如果设定了这 两个参数但是未加反馈封头,则出现401 报警 当需要把第四轴还原时请在硬件安装的同时, 当需要把第四轴还原时请在硬件安装的同时,恢复上述 两个参数。( 。(上述图中任意电机都可以通过此种方法脱 两个参数。(上述图中任意电机都可以通过此种方法脱 放大器的连接无需更改,仅需一个封头连接于JFx) 开,放大器的连接无需更改,仅需一个封头连接于 )
对检测单位为1μm,指定如下: 所需的脉冲数 (脉冲/转) 20
1/100 2/100或1/50
将位置脉冲数改为12500(对检测单位为1µm)。 正确计算参考计数器容量。参考计数器容量是指电机一转所需要 的位置脉冲数,例如,10mm的直联丝杠,电机转一转,工作台移 动10毫米,换算成位置脉冲数等于10000,所以参考计数器容量设 定值等于10000。所以,参考计数器容量=栅格间隔/检测单位 在这里需要注意的是,在修改之前应把原全闭环伺服参数记录下 来,以便以后正确恢复。