客车缓速器工作原理
客车缓速器工作原理

客车缓速器工作原理液力缓速器的工作原理缓速器转子随变速箱输出轴转动,而导轮不动。
当缓速器内充有油时,随输出轴转动的转子作用于油液一个动量矩M1,带动油液绕轴旋转,同时,油液沿叶片运动作内循环圆旋转,甩向导轮。
即油液有两个方向的运动;绕轴向的“公转”和绕径向的“自转”。
油液甩向导轮时,油液的“公转”对导轮叶片产生冲击作用,将转子作用于油液的动量矩M1传递到导轮叶片上。
同时,固定的导轮叶片也对油液产生一个反向作用的动量矩M2。
油液流出导轮再流入转子时,同样将M2传递到转子上,形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。
由于油液在循环流动中没有受到任何其它附加外力,根据力学平衡原理,油液甩向导轮和流向转子的动量矩关系有M1=-M2。
转子转动的能量经油液的阻尼作用转变成热量,通过散热器散发到空气中。
液力缓速器的控制原理缓速器与车辆制动系联动,在车辆制动管路上,电脑(ECU)控制线联接制动灯开关,同时安装有三个压力传感器控制(P/N)。
这三个压力传感器的工作压力分别为0.15、0.3、0.5MPa。
缓速器内的变速器油平时储藏在储能器中,当司机踩下制动踏板时,制动灯开关给ECU一个信号,使ECU的缓速器控制处于待命状态。
在制动管路的气压达到0 15MPa时,压力传感器信号通过ECU 传给N电磁阀使其动作,压缩空气经电磁阀进入储能器,推动活塞将储能器内的变速器油经油路6压进缓速器内,缓速器起作用。
此时进入缓速器的油量较少,减速能力为最大值的1/3。
制动踏板继续下踩,气压升高至0 3MPa时,第二个压力传感器信号指令N电磁阀,控制储能器增大供油量给缓速器,减速能力达最大值的2/3。
当气压升高到0 5MPa以上时,第三个压力传感器信号控制进入缓速器的油量最多,减速能力达到100%。
车辆解除制动时,N电磁阀在ECU信号的作用下,关闭压缩空气,并排出储能器内的压缩空气:储能器活塞在弹簧作用下复位,油液在压差和离心力作用下流回到储能器内,缓速器转为空转状态。
客车缓速器工作原理

客车缓速器工作原理
液体阻尼原理是指通过在缓速器内部设置装有液体的空腔,在车辆运动过程中,液体在容器内来回流动,通过液体的黏滞性产生阻尼力,将车辆的动能转化为热能进行吸收和分散。
当车辆减速或停止时,液体内部流动的能量转化为热能排放给周围环境,从而实现车辆的缓速功能。
摩擦阻尼原理是指通过在缓速器中设置摩擦片,并在车辆运动过程中施加一定的压力,形成摩擦力,阻碍车辆的惯性运动。
摩擦阻尼原理主要通过传动装置将车辆的运动能量转化为摩擦能量,在摩擦面上产生摩擦热进行分散。
这种原理适用于对于较大的车辆缓速需求,可通过增加摩擦片的数量和面积来增强摩擦阻尼效果。
1.车辆刹车:驾驶员通过踩刹车踏板使车辆减速或停止。
刹车系统会将制动力传递给缓速器。
2.液体阻尼:液体阻尼原理使液体在缓速器内流动,产生阻力,将车辆的动能转化为热能进行吸收和分散。
3.摩擦阻尼:摩擦阻尼原理使摩擦片产生摩擦力,阻碍车辆的惯性运动,并将运动能量转化为摩擦热进行分散。
4.热量分散:车辆的动能通过阻尼过程转化为热能,并通过缓速器的外表面和散热器散发给周围环境。
需要注意的是,不同类型的客车缓速器可能存在一些差异,但是基本的工作原理是相似的。
另外,客车缓速器在设计和使用过程中需要考虑到各种因素,如车辆质量、速度、道路状况等,以确保缓速器能够有效工作并保证行车安全。
汽车缓速器功能原理全介绍

缓速器是大型车辆(卡车、客车)的辅助制动装置,使质量较大的车辆平稳减速而不消耗制动系统,它通过控制电路给定子总成的励磁线圈通电,产生磁场,转子总成随车辆传动部分高速旋转,切割磁力线,产生反向力矩,使车辆减速。
对于经常在山区或丘陵地带行驶的汽车,为了使下长坡时长时间而持续地减低或保持稳定车速并减轻或解除行车制动器的负荷,通常需要加装缓速器等辅助制动装置。
通常,总质量在5t以上的客车和12t以上的货车上需要装备这种辅助制动的减速装置。
根据其工作原理的不同,汽车缓速器可分为发动机缓速装置、液力缓速器、电涡轮缓速器、电机缓速装置和空气动力缓速装置等典型结构形式。
根据制动转矩作用形式的不同,汽车缓速器可分为一级缓速器(作用在变速箱前端的缓速器)和二级缓速器(作用在变速箱后端的缓速器)。
发动机缓速装置发动机排气制动发动机排气制动的工作原理是,在排气总管与消声器间装设一个排气节流阀,通过排气节流使发动机在排气行程中变成由汽车驱动的空气压缩机。
由于排气背压的提高,可增加排气行程中所作的负功。
当处于排气背压和汽缸压力作用下的排气阀两侧作用力之差值超过排气阀弹簧压力时,排气阀将不受凸轮轴的控制而产生浮动(开启),被压缩的空气在气阀重叠时间内从进气阀溢出,从而减少其在进气行程中膨胀所做的功,其工作原理如图1所示。
排气节流阀多为蝶阀,可采用机械式、气压、电控气压操纵,以电磁气压操纵最为常见。
关闭该阀时应切断发动机供油。
为了使车轮制动器的磨损减至最小,排气制动操纵有与制动踏板和加速踏板联动的趋势。
在踏下制动踏板或松开加速踏板时,排气制动即自动起作用。
排气制动的效能与发动机产生的制动压力(取决于排气阀开启前的排气总管压力、气阀重叠度和排气系统泄漏量等)、排量和转速成正比。
通常排气制动功率约为发动机标定功率的70%~100%,比纯发动机制动提高50%~100%,大体上相当于后一种情况降低一个档位(变速器)的效果,汽车减速度约为0.3~0.7m/ (挂高档时取下限,挂低档时取上限)。
大车的液力缓速器原理

大车的液力缓速器原理
大车的液力缓速器是一种利用液体流体力学原理来实现缓冲和调速的装置。
其原理基本如下:
液力缓速器由两个互相靠近的转子组成,分别为泵轮和涡轮。
泵轮与主动轮相连,涡轮与从动轮相连。
两个转子之间有一圆形的密封工作室,其中充满了液体。
当主动轮驱动泵轮旋转时,泵轮将液体从密封工作室中抽取出来并通过液力缓速器的出口流出。
由于动力学原理,液体通过泵轮加速旋转,形成液流的向心力。
这个快速旋转的液体将产生一个向外推进的力量,作用在涡轮上,从而驱动从动轮。
由于液力传递的特性,主动轮和从动轮之间没有直接的物理连接。
当工作负载发生变化时,主动轮的速度会发生变化,进而改变泵轮的旋转速度。
涡轮感受到液体流动的改变,从而调整从动轮的速度。
通过调整主动轮和从动轮之间的液体流量和流动速度,液力缓速器能够实现缓冲和调速的功能。
当工作负载变大时,液体流动的阻力增加,从动轮的速度相应降低,实现了缓冲效果。
反之,当工作负载变小时,液体流动的阻力减小,从动轮的速度相应增加,实现了调速效果。
总的来说,液力缓速器通过利用液体流体力学原理,通过调整液体的流量和流动
速度来实现缓冲和调速的功能。
这种装置具有结构简单、无需维护和使用寿命长的优势。
电涡流缓速器工作原理及其使用注意事项

()车辆常规制动系统必须随时有效 2 从 电涡 流缓速 器 的工 作原理 中 ,我们 了解到 :
当缓速器转子旋转 时 ,才有涡流产生 ,才会 产生 电 磁反力 ;而 当缓速器转子停 止旋转时 ,则不会有 电 磁反力 。可 以看 出就 实现 “ 停车 ”这个 目标而 言 .
会减小 ,由此 引起 的电磁反力也就越弱 。因此 ,电
磁力线垂直于纸面 ,奔读 者而来 ,如看见的箭镞 。
② 磁极 外的磁 力线方向是从 N 极指 向 s极 ,
故 图 4中位 于转盘 上 方 N 极 的磁 力 线标 示应 是 X.S
涡流缓速器不 能用来 取代车辆 的常规制 动系统 ,它 只是一种辅助 减速装 置 。车辆 的常规制动装 置必须
温度可以超过 5 0 0 ℃:国内曾有 料 卷进电涡流缓
速器烧 焦、 冒烟的报道 ,笔者所在单位 也曾遇到过
主减速器角齿油封渗油 ,齿轮油流到缓速器上烧焦 、
碳化 的情况 。因此 ,在缓速器安装时 ,应 注意规范
其周 围的线路 和管路 .使 其与缓速器保持适 当的间
距 ;应经常检查缓速器 的定 、转子 ,保证定 、转 子
磁极的 。对于桶形单转盘 电涡流缓 速器 ,磁极是 沿 定子总成的圆周分布 的 .电磁反力作 用在桶形转 盘 的桶 身上 ;而双转盘 电涡流缓速器 的磁 极分布在定 子总成 的两侧端 面 。电磁反力 同时作用 在前后两个
转 盘 上
随时有效 。 ()注意保持缓速器清洁和良好散热 3 当电涡流缓速器长 时间工作 时 ,转子表面最高
阻碍电涡流缓速器转子旋转 的力 。
磁通量的变化 。在 T时刻 ,线 圈 1 的运动趋势是靠
缓速器的工作原理及在公交车辆上使用的经济性和社会效益分析

学习《现代汽车技术及应用》给我的启迪——缓速器的工作原理及在公交车辆上使用的经济性和社会效益分析机动车制动系统是行车安全的首要保证。
城市公共汽车因频繁而超强的制动导致制动器故障率高,一直是公交企业的难题,而缓速器是一种零磨损,低功耗的环保产品。
在实际使用中缓速器可以大大的提高车辆行驶的安全性、稳定性、环保性以及经济性。
为公交车辆配备缓速装置可以解决鼓式制动器故障率高、产生热效能高、刹车噪音大、不利于环保等技术难题。
一、电涡流缓速器的基本结构、工作原理分析1 电涡流缓速器的基本结构电涡流缓速器系统是独立于传统机械制动系统的辅助制动系统。
主要由定子和转子总成、信号传感器、驱动控制器和指示灯等组成。
1.1 电涡流缓速器的基本结构电涡流缓速器由定子、转子和固定支架组成。
定子上有8个高导磁材料的磁极,呈圆周均匀分布。
磁极上绕有励磁线圈。
圆周相对的2个磁极串联而成一对磁极,相邻2个磁极则N、S极性相间。
这样,就形成4对N、S相间的磁极。
转子有内、外转盘,二者成刚性整体,用导磁性能良好的铁磁材料制造。
装配后,内转盘在定子内侧,外转盘在定子外侧。
转子用联接法兰联接在传动轴凸缘上,随轴转动。
固定支架用于固定缓速器定子,可以安装在主减速器壳或变速器壳输出轴一侧。
转子与定子间有一个很小的空隙,这是一个很重要的结构参数,对制动转矩的影响最大。
空隙既要满足最隹电磁参数的需要,又要保证转子在规定的偏心误差内能够自由转动。
电涡流缓速器在结构上有良好的散热设计。
定子通过合理布置磁极,形成尽可能大的外表面积。
转子则优化设计了风道和风叶,保证散热气流足够。
1.2 信号传感器信号传感器采集信号,并以电信号方式传输给驱动控制器。
(1)车速信号传感器安装在缓速器上,感应采集车速变化信号。
该信号控制电涡流缓速器系统是否进入制动待命状态。
在驱动控制器作用下,当车速>5km/h时,系统进入制动待命状态。
车速在0~5km/h 时,系统退出制动待命状态,对司机的制动操作不响应。
液力缓速器基本结构及工作原理

液力缓速器基本结构及工作原理一、基本结构液力缓速器结构大致相同,以VOITH液力缓速器为例(图1),它是由转子、定子、工作腔、输入轴、热交换器、储油箱和壳体组成。
其安装方式一般分为与传动轴串连和并连两种。
串连时可在变速器前、后安装;如果采取并连,则缓速器和变速器做成一个整体来安装。
对于装有带液力变矩器的自动变速器车辆来说,原变速器系统已配备了储油罐、油泵和散热器等部件,因此,在配有自动变速器的客车和载货汽车上安装液力缓速器成本更低。
二、工作原理缓速器工作时,压缩空气经电磁阀进入储油箱,将储油箱内的变速器油经油路压进缓速器内,缓速器开始工作。
转子带动油液绕轴线旋转;同时,油液沿叶片方向运动,甩向定子。
定子叶片对油液产生反作用,油液流出定子再转回来冲击转子,这样就形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。
工作液在运动过程中使进出口形成压力差,油液循环流动,通过热交换器时,热量被来自发动机冷却系统的冷却水带走。
整个系统工作原理如图2所示。
1 热交换器整体 25 控制压力(Py)气路“A”1/1 液力缓速器油-冷却循环通路 26 供压(Pv)气路1/2 变速箱油-冷却循环通路 36 排气管路“R”2 控制盒 41 油管4 接线端子15 42 油箱6 熔断器(8A) 43 油池8 接地端子 44 定轮15 ABS-信号 46 动轮16 液力缓速器手柄控制开关 47 车速表信号17 液力缓速器指示灯 55 放油口堵头18 刹车灯继电器 62 调压阀19 冷却水温度传感器 63 单向阀(进)20 油温传感器 64 单向阀(出)21 比例阀 69 ISO接口22 排气装置 70 附加功能接口23 排气球阀 72 压力传感器。
大客车缓速器工作原理

大客车缓速器工作原理大客车缓速器是大客车制动系统中的一个重要组成部分,它的作用是控制大客车的速度,使其能够平稳减速或停车。
缓速器的工作原理主要包括液力传动原理和机械传动原理两个方面。
液力传动原理是大客车缓速器最主要的工作原理之一。
液力传动是利用液体介质的流体动力学原理,通过流体的流动和压力变化来实现动力传递的一种方式。
大客车缓速器中的液力传动原理主要是利用液体在密闭空间内的压力传递和流动来实现缓速的效果。
大客车缓速器的液力传动原理是利用液体在密闭空间内的压力传递和流动来实现的。
当驾驶员踩下制动踏板时,制动液会被推入缓速器的压力室,驱动活塞向前运动。
同时,活塞前端的活塞杆也会随之向前伸出。
在活塞杆的前端有一个活塞杆头,它与压力室内的液体相连。
当液体被推入压力室时,液体的压力会使活塞杆头受到一定的压力,从而推动活塞杆向前运动。
当活塞杆向前运动时,压力室内的液体会被挤压出去,进入到缓速器的工作腔。
在工作腔内,液体会通过一系列的孔道和管道,使液体的流速逐渐减小,从而实现大客车的缓速效果。
同时,液体的流速越慢,制动力也会越大,从而实现大客车的缓速或停车。
除了液力传动原理,大客车缓速器还采用了机械传动原理。
机械传动是利用机械装置来实现动力传递的一种方式。
在大客车缓速器中,机械传动主要是指驱动盘和制动盘之间的摩擦作用来实现缓速的效果。
大客车缓速器的机械传动原理是利用驱动盘和制动盘之间的摩擦作用来实现的。
当驾驶员踩下制动踏板时,制动液会被推入缓速器的液压缸,从而使制动盘受到一定的压力。
制动盘上有一种摩擦材料,当制动盘受到压力时,它会与驱动盘产生摩擦力,从而使驱动盘减速或停止转动。
通过液力传动原理和机械传动原理的结合,大客车缓速器能够实现对大客车速度的平稳控制。
当驾驶员踩下制动踏板时,液力传动和机械传动会同时发挥作用,使大客车能够平稳减速或停车。
总结起来,大客车缓速器的工作原理主要包括液力传动原理和机械传动原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客车缓速器工作原理
液力缓速器
液力缓速器的工作原理:缓速器转子随变速箱输出轴转动,而导轮不动。
当缓速器内充有油时,随输出轴转动的转子作用于油液一个
动量矩M1,带动油液绕轴旋转,同时,油液沿叶片运动作内循环圆旋转,甩向导轮。
即油液有两个方向的运动;绕轴向的“公转”和绕径向的“自转”。
油液甩向导轮时,油液的“公转”对导轮叶片产生冲击作用,将转子作用于油液的动量矩M1传递到导轮叶片上。
同时,固定的导轮叶片也对油液产生一个反向作用的动量矩M2。
油液流出导轮再流入转子时,同样将M2传递到转子上,形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。
由于油液在循环流动中没有受到任何其它附加外力,根据力学平衡原理,油液甩向导轮和流向转子的动量矩关系有M1=-M2。
转子转动的能量经油液的阻尼作用转变成热量,通过散热器散发到空气中。
液力缓速器的控制原理:缓速器与车辆制动系联动,在车辆制动管路上,电脑(ECU)控制线联接制动灯开关,同时安装有三个压力传感器控制(P/N)。
这三个压力传感器的工作压力分别为0.15、0.3、0.5MPa。
缓速器内的变速器油平时储藏在储能器中,当司机踩下制动踏板时,制动灯开关给ECU一个信号,使ECU的缓速器控制处于待命状态。
在制动管路的气压达到015MPa时,压力传感器信号通过ECU 传给N电磁阀使其动作,压缩空气经电磁阀进入储能器,推动活塞将储能器内的变速器油经油路6压进缓速器内,缓速器起作用。
此时进入缓速器的油量较少,减速能力为最大值的1/3。
制动踏板继续下踩,气压升高至03MPa时,第二个压力传感器信号指令N电磁阀,控制储能器增大供油量给缓速器,减速能力达最大值的2/3。
当气压
升高到05MPa以上时,第三个压力传感器信号控制进入缓速器的油量最多,减速能力达到100%。
车辆解除制动时,N电磁阀在ECU信号的作用下,关闭压缩空气,并排出储能器内的压缩空气:储能器活塞在弹簧作用下复位,油液在压差和离心力作用下流回到储能器内,缓速器转为空转状态。
缓速器油温控制一般情况下,缓速器工作时,其油液经管路3和6形成回路。
油量过多时,通过流量阀在管路5泄油。
当大负荷工作时间长导致油温过高时,管路3的温度传感器发出信号给ECU,ECU指令H控制阀动作,使得缓速器的油液与变速器主油路接通,从而改善散热,降低油温
电涡流缓速器
客车电涡流缓速器图示
电涡流缓速器是一种高效汽车制动辅助装置,俗称“电刹”,它是国际流行的第三制动系统。
该产品既可以使汽车在坡道行驶时,方便地实行缓速和恒速行驶,也可以在高速公路或路况较差的情况下,及
时轻松地进行缓速,因此可极大地提高汽车行驶时的安全性与舒适性。
电涡流缓速器在国外已有五十年的使用历史,并且有关交通法规都强调汽车上要安装电涡流缓速器。
电涡流缓速器的工作原理:利用一个闭环导体在磁场中运动产生涡流,而磁场将会阻止其运动.电涡流缓速器由执行机构和控制部分组成。
(1)执行机构包括定子和转子。
定子由线圈和支架组成,定子绕组由4组8个线圈组成,定子安装在变速箱后端盖上。
定子两端各有一个转子,一端转子与变速箱输出轴法兰连接,另一端转子与传动轴连接。
(2)控制部分包括手控开关、脚控开关、继电器盒、ABS联接器等。
①手控开关在较长距离减速及下长坡时使用,安装在驾驶员附近,便于驾驶员操作。
开关分4个档,分别扳至1、2、3、4档,通过控制1、2、3、4个继电器吸和,依次增加进行工作的线圈数量,从而使制动力矩逐级增加。
②脚控开关安装在底盘上,用一根气管与制动总泵前轮制动气室连接。
脚控开关是为控制缓速器自动工作的,受制动气压的逐渐升高,依次接通4个压力传感器,使制动力矩逐级拉大。
行车制动起作用时,定子绕组线圈全部进入工作状态。
(3)继电器盒安装在靠近缓速器的位置,以缩短接线的长度,减少损耗。
继电器盒内由4个大电流继电器为定子绕组线圈提供每组35A 的电流。
(4)ABS联接器安装在电器控制箱内。
它根据客车行驶状态自动决定
缓速器的工作,包括ABS控制信号、ABS指示灯信号、里程表信号、脚控开关信号、手控开关信号等信号输入联接器。
当ABS检测到某个车轮打滑时,它立即切断缓速器使其停止工作,打滑结束后又逐级增加缓速器制动力矩,始终保持缓速器转矩受到路面的支持;当车速低于3km/h时,切断脚控功能,以避免不必要的电流损耗;ABS检测到故障时,它将切断脚控功能,但仍保留手控功能,保证行车安全。
(5)因缓速器工作时需消耗较大电流,客车发电机输出电流应不少于140A,蓄电池荷电量应不少于180A.h。