流体静压润滑
7章流体静压润滑

§7-3 气体润滑轴承
以空气作为轴承的润滑剂有很大的优点,早 在1854年Him就已提出这种想法,但直到1897年 Kinsburg才证实了这一建议是可行的。目前,气 体轴承在工业中用得很多,已经有效地用于机床 主轴、测量仪器、透平机械、陀螺仪、牙钻等领 域。由于气体无污染,能用于任何温度,在某些 特殊领域中,气体轴承已成为惟一可应用的轴承。
Q ps h 3 η不变时,显然,当W∝ps时,Q ∝ Wh3。因此, 如果流量不变,则
1 W 3 h
所以,回复载荷随油膜厚度减小量的立方而增大。
3、补偿器的作用 如果补偿器C4为定压供油系统, 3 则当h4减小时,从凹槽中流出的流量随 h4 而减 小。如果流量减小,则节流器的压力降 pm ps 也减小。因为岐管压力pm为定值,凹槽压力ps4将 随h4的减小导致流量的减小而增大,即对轴形成 一个推力。 当h4减小时,与它相对的h2必然增大。又由于 节流器C2的作用,ps2相应减小,对轴形成一个拉 力,因此,轴同时受推和受拉而回到原位。
定 压 供 油 系 统
2、定量供油系统
系统的各油腔流量恒定,随油膜厚度变 化自动调节油腔压力来适应载荷的变化。定 量供油方式有两种:一是由一个多联泵分别 向油腔供油、每个油腔由一个泵单独供油; 二是集中由一个油泵向若干定量阀或分流器 供油后再送入各油腔。
定量供油系统
§7-1 立式推力轴承的分析
1、空载时通过节流器流入支承的一个油腔 的流量Qc d c4 pm ps
Qc
由以上可见,四种节流器的作用在于当特性 尺寸一定时,使流量Qc与压力差成正比。当Qc减 小时,压力差减小,因为供油压力pm为常量,故 油腔压力ps必然增大;当油膜厚度h减小时,流经 封油面的流量减小,这时油腔压力增大,使h恢复 到原来的厚度。这就是定压供油系统中使用节流 器的原因。
摩擦.磨损.润滑及润滑剂概论

第一章摩擦.磨损.润滑及润滑剂概论摩擦、磨损、润滑的种类及其基本性质│润滑剂及其基本性能指标│润滑剂的种类一、摩擦.磨损.润滑的种类及其基本性质摩擦、磨损、润滑是一种古老的技术,但一直未成为一种独立的学科。
1964年英国以乔斯特(Jost)为首的一个小组,受英国科研与教育部的委托,调查了润滑方面的科研与教育状况及工业在这方面的需求。
于1966年提出了一项调查报告。
这项报告提到,通过充分运用摩擦学的原理与知识,就可以使英国工业每年节约510,000,000英镑,相当于英国国民生产总值的1%。
这项报告引起了英国政府和工业部门的重视,同年英国开始将摩擦、磨损、润滑及有关的科学技术归并为一门新学科--摩擦学(Tribology)。
摩擦学是研究相互作用、相互运动表面的科学技术,也可以说是有关摩擦、磨损及润滑的科学与技术统称为摩擦学(Tribology)。
科学地控制摩擦,中国每年可节省400亿人民币。
故改善润滑、控制摩擦,就能为我们带来巨大的经济利益。
中国工程院咨询研究项目《摩擦学科学及工程应用现状与发展战略研究》调查显示,2006年全国消耗在摩擦、磨损和润滑方面的资金估计为9500亿元,其中如果正确运用摩擦学知识可以节省人民币估计可达到3270亿元,占国内生产总值GDP的1.55%。
美国机械工程学会在《依靠摩擦润滑节能策略》一书中提出,美国每年从润滑方面获得的经济效益达6000亿美元。
1986年,中国的《全国摩擦学工业应用调查报告》指出,根据对我国冶金、石油、煤炭、铁道运输、机械五大行业的调查,经过初步统计和测算,应用已有的摩擦学知识,每年可以节约37.8亿元左右,约占生产总值(5个行业1984年的可计算部分)的2.5%。
润滑油的支出仅是设备维修费用的2%~3%。
实践证明,设备出厂后的运转寿命绝大程度取决于润滑条件。
80%的零件损坏是由于异常磨损引起的,60%的设备故障由于不良润滑引起。
中国每1000美元产值消耗一次性能源(折合石油)为日本的5.6倍,电力为日本的2.77倍,润滑油耗量为日本的3.79倍。
工程摩擦学5 Lubrication

5. Lubrication
5.3 流体动压润滑 3)径向轴承:在流体动压润滑轴承中,径向轴承应用最广,往
复式柱塞泵、泥浆泵等都广泛采用了径向轴承。 (1)油膜厚度分布
2020/2/18
5. Lubrication
5.3 流体动压润滑 3)径向轴承:在流体动压润滑轴承中,径向轴承应用最广,往
复式柱塞泵、泥浆泵等都广泛采用了径向轴承。 (2)压力方程
对于一般无法向X趋近的稳定润滑 状态,V=0,上式也简化为:
2020/2/18
5. Lubrication
5.2 流体润滑的基本方程
1)流量方程:
2)剪应力方程
2020/2/18
5. Lubrication
5.3 流体动压润滑
1)流体动压润滑的承载原理
(1)两平行平面间的流动 速度梯度:
同时由图看出,在单位时间内以A截面进入的流量应等于由B截面流出的流量 在此情况流体末受挤压,不产生压力差,油膜中不可能形成压力,故不能承受外载荷。
5.4 流体静压润滑
2020/2/18
5. Lubrication
5.5 典型传动件的润滑
2020/2/18
5. Lubrication
5.5 典型传动件的润滑
通常根据滑动轴承的工作温度、轴颈圆周速度、载荷来确
定润滑油的运动粘度,再考虑其他要求而选出油的牌号。
2020/2/18
Hale Waihona Puke . Lubrication2020/2/18
5. Lubrication
2020/2/18
5. Lubrication
5.2 流体润滑的基本方程
1)流体的连续性方程式
2020/2/18
第一章 摩擦学基础知识(润滑)

三、润滑脂及其主要性能 • 组成:基础油+稠化剂+添加剂+澎润土 • 润滑脂的性能指标主要有针入度、滴点、析 油量、机械杂质、灰分、水分等
1)针入度 软硬程度 H(mm)/0.1
h
阻力大小、流动性强弱
标准锥体,150g,25 ℃ ,5s
2)滴点----固体 流体的温度转折点,表示耐热性 3)防水性能; 4)静音性能; 5)种类 A)钙基脂:抗水,适于轻中重载荷; B)钠基脂:高温,但不抗水; C)锂基脂:多用途,最好; D)铝基脂:高度耐水性,航运机械 E)其它特种润滑脂(特种合成油、添加剂、 稠化剂等)
五、添加剂 • 作用越来越大,在润滑脂、合成油中不加添加剂,
六、对润滑剂的要求
较低的摩擦系数 良好的吸附和渗入能力 有一定的黏度 有较高的纯度和抗氧化性 没有腐蚀性 有良好的导热性和较大的热容量
七、润滑装置 单体供油装置 油壶, 油杯,
油枪
油杯
压配式油杯
滴油式油杯
油芯式油杯
油环
油链
• 集中供油装置 a) 简单的少数点位集中供油 b) 设备中心、车间及工厂级集中供油 泵站+(稳压+冷却)+过滤+分配器+工位润滑
η t = η0 ( t0 / t )
m
2、润滑油的粘压特性
• 粘度和压力的关系近 似表示为:
η = η0 e
ap
粘温关系曲线
3、油性—反映在摩擦表面的吸附性能 油性 (边界润滑和粗糙表面尤其重要) 4、闪点—瞬时燃烧和碳化的温度; 闪点 燃点—长时间连续燃烧的温度(高温性能); ; 燃点 5、凝点—冷却,由液体转变为不能流动的临界 凝点 温度; (低温启动性能) 6、极压性(EP), 在重压下表面膜破裂的最大 极压性(EP) 接触载荷,用PB表示,(极限载荷) 7、酸值—限制润滑剂变质后对表面的腐蚀 酸值
摩擦与润滑习题

一.是非题:正确的在()中写“+”,错误的在()中写“-”(本大题共21 小题,每小题-1分,总计-21 分)1、流体动力润滑与流体静力润滑中压力油膜的建立都与两摩擦表面间的相对速度有关。
( )2、温度是影响油粘度变化的重要因素,随温度升高,粘度亦随之升高(即粘度值增加)。
( )3、温度及压强是影响油粘度变化的主要因素,对于一般滑动轴承,润滑计算只考虑温度影响,忽略压强对粘度的影响是合理的。
( )4、以一定相对速度运动的两平行板间的流体不能建立压力油膜,但只要两板构成了楔形空间,即可形成压力油楔。
( )5、某两金属摩擦表面的摩擦系数μ=0.01~0.001,说明处于边界润滑状态。
( )6、两滑动金属摩擦表面间的摩擦系数μ=0.01~0.001,可说明它们大约处于流体润滑状态。
( )7、机器零件之间在工作中有相互摩擦时,都要求其摩擦副间的摩擦阻力小。
( )8、库伦摩擦定律认为,滑动摩擦力大小与接触面积无关,只适用于粗糙表面,而不适用于光滑表面。
( )9、油润滑的运动副中,物理吸附的摩擦系数随分子膜的层数增多而降低。
()10、油润滑的运动副,物理吸附膜的摩擦系数与吸附膜分子的层数有关,层数多,摩擦系数亦增加。
( )11、油润滑的运动副,物理吸附膜是润滑油中的脂肪酸的一种极性化合物,物理吸附过程中要发生化学反应。
( )12、含极压添加剂的润滑油在工作温度不高时,亦具有良好的减摩性。
( )13、含极压添加剂的润滑油在工作温度高时,才易体现出它的良好的减摩作用。
( )14、两零件表面之间如果有摩擦,一定产生磨损。
( )15、两摩擦表面在空气中的摩擦系数与在真空中纯净表面的摩擦系数相同。
( )16、摩擦的库伦公式F=μF N适用于干摩擦、流体摩擦、固体润滑。
( )17、摩擦库伦公式F=μF N除适用于干摩擦情况外,亦适用于固体润滑但不适用流体摩擦。
( )18、油的粘度指数VI值越小,表明该油的温度变化时,粘度的变化也较小。
润滑油专业术语解析

润滑油知识(专业术语)蒸发度润滑脂的蒸发度是指在规定条件下蒸发后,润滑脂的损失量所占的质量百分数。
润滑脂的蒸发度主要取决于所采用的基础油的种类、馏分组成和分子量。
高温、宽温度条件下使用的润滑脂,其蒸发度的测定尤为重要,蒸发度可以定性地表示润滑脂上限使用温度。
润滑脂基础油蒸发损失,就会使润滑脂中的皂基稠化剂含量相对增大,导致脂的稠度发生变化,使用中会造成内摩擦增大,影响润滑脂的使用寿命。
因而,蒸发度指标可以从一定程度上表明润滑脂的高温使用性能。
SH/T0337一92是皿式法测定润滑脂蒸发度的方法。
GB/T7325一87是测定润滑脂和润滑油蒸发损失的方法,方法概要;把放在蒸发器里的润滑脂试样,置于规定温度的恒温浴中,热空气通过试样表面22h,根据试样失重计算蒸发损失。
为了更好地评价车辆及工程机械所用润滑脂的高温性能,还要通过模拟试验,测定高温条件下轴承的工作特性及测定轴承漏失量。
据统计,绝大部分滚动轴承润滑都采用润滑脂,因此,润滑脂的轴承使用寿命是一项极其重要的性能指标。
润滑脂在高温轴承寿命试验机上的评定,可以模拟润滑脂在一定的高温、负荷、转速条件下的工作性能,因此,测得的结果对实际使用具有一定的参考价值。
一般是在试验机上观测,当润滑脂达到使用寿命时,脂膜破坏,出现破坏力矩的峰值,试验自动停车,还会伴随出现轴承温升记录指示值剧升和干摩擦噪声,若经反复启动仍不能转动,则表示润滑脂膜巳遭破坏,试验结束,试验所进行的时问就是润滑脂的高温轴承寿命。
一般而言,润滑脂的轴承寿命越长,表示其使用期也越长。
介电常数我们测定润滑油的介电常数来监测在油润滑油的质量,对于润滑油介电常数的下降或上升有标准吗?好几种方法和ASTM规程用于检测油品的介电常数。
检测目的可能有很多种,比如水含量,酸值,极性的不溶物,磨损金属等等。
有很多因素,包括温度都会影响到介电常数。
有的仪器使用时间分辨技术,有的使用电介质光谱法。
还有的只是简单地给出类似的数值表示介电常数。
流体静压润滑的原理

流体静压润滑的原理《流体静压润滑的原理:一次意外的“油”发现》嘿,你知道流体静压润滑不?这玩意儿可有点意思呢。
我就先给你打个比方吧,就像你走在那种超级滑溜的冰面上,脚底下感觉就像有啥东西在托着你,让你滑得顺顺当当的,流体静压润滑就有点那感觉,不过它可不是冰,而是靠一种巧妙的流体力量。
我给你讲讲我遇到的一件事吧。
我之前在一个老工厂里瞎晃悠,那里面有好多老机器。
有一台老设备,总是嘎吱嘎吱响,工人师傅们就很头疼。
我就好奇凑过去看,那机器的轴承部分磨损得特别厉害。
这时候有个老师傅过来了,他捣鼓了半天,最后决定给这个轴承部分重新弄一弄润滑系统。
他拿来了一些油,还有一些奇怪的小装置。
我就站在旁边看他操作。
他先是在轴承周围安装了一些小通道,就像那种特别细小的沟渠一样。
然后小心翼翼地把油通过这些小通道灌进去。
我当时还纳闷呢,这油进去能有啥大作用?老师傅一边操作一边跟我说:“这油啊,可不仅仅是为了减少摩擦那么简单。
”他接着解释,这就跟流体静压润滑的原理有关。
你看啊,这油在这些小通道里,就像是一群听话的小士兵。
当机器开始运转的时候,这个轴承就开始有压力了。
这压力一作用在油上,油可不会就那么乖乖被压扁。
就好比你用手去按一个装满水的气球,水会在气球里到处跑,去抵抗你手的压力。
这油也是一样,在轴承和它周围的小空间里,油被压着,但是它会产生一种向外的力。
这个力就把轴承给托起来了,就像有无数双小手把轴承轻轻地托着,不让它直接和机器的其他部分干巴巴地摩擦。
我看着老师傅继续调整那些小装置,让油能更均匀地分布在需要润滑的地方。
他说:“这油的流量啊,还有压力都得刚刚好。
要是油太少,或者压力不够,那就托不住轴承,还会磨损;要是油太多或者压力太大呢,就会浪费油,还可能把机器的其他部分给弄坏喽。
”我这时候才恍然大悟,原来这小小的油,通过这样巧妙的安排,就能有这么大的作用。
就像流体静压润滑一样,靠的就是这个流体(在这里就是油啦)的压力,来让两个相互接触的部件之间形成一种稳定的支撑和润滑的状态。
润滑的的基本原理

润滑的的基本原理一、润滑的作用(1)减磨作用:在相互运动表面保持一层油膜以减小摩擦,这是润滑的主要作用。
(2)冷却作用:带走两运动表面因摩擦而产生的热量以及外界传来的热量,保证工作表面的适当温度。
(3)清洁作用:冲洗运动表面的污物和金属磨粒以保持工作表面清洁。
(4)密封作用:产生的油膜同时可起到密封作用。
如活塞与缸套间的油膜除起到润滑作用外,还有助于密封燃烧室空间。
(5)防腐作用:形成的油膜覆盖在金属表面使空气不能与金属表面接触,防止金属锈蚀。
(6)减轻噪音作用:形成的油膜可起到缓冲作用,避免两表面直接接触,减轻振动与噪音。
(7)传递动力作用:如推力轴承中推力环与推力块之间的动力油压。
二、润滑分类1.边界润滑两运动表面被一种具有分层结构和润滑性能的薄膜所分开,这层薄膜厚度通常在0.1µm以下,称边界膜。
在边界润滑中其界面的润滑性能主要取决于薄膜的性质,其摩擦系数只取决于摩擦表面的性质和边界膜的结构形式,而与滑油的粘度无关。
2.液体润滑两运动表面被一层一定厚度(通常为1.5μm~2μm以上)的滑油液膜完全隔开,由液膜的压力平衡外载荷。
此时两运动表面不直接接触,摩擦只发生在液膜界内的滑油膜内,使表面间的干摩擦变成液体摩擦。
其润滑性能完全取决于液膜流体的粘度,而与两表面的材料无关,摩擦阻力低、磨损少,可显著延长零件使用寿命。
这是一种理想的润滑状态。
1)液体动压润滑动压润滑由摩擦表面的几何形状和相对运动,借助液体的动力学作用,形成楔形液膜产生油楔压力以平衡外载荷。
如图5-1所示,在正常运转中,只要供油连续,轴颈就会完全被由润滑油动力作用而产生的油楔抬起,同时在轴承与轴颈之间形成一定偏心度,轴颈所受负荷由油楔中产生的油压所平衡。
此油楔的形成与其产生的压力主要与以下因素有关:图5-1 楔形油膜的形成(1)摩擦表面的运动状态:转速越高,越容易形成油楔。
(2)滑油粘度:粘度过大,则难以涂布。
(3)轴承负荷:负荷越高,越难以形成油楔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体润滑的基本原理
之
流体静压润滑
流体静压润滑
定义,什么是流体静压润滑
流体静压润滑是利用专用外界的流体装置,是流体产生压力,并将具有压力的流体输入到摩擦表面,将两摩擦表面用一层静压流体膜分开以支持外载荷的润滑。
流体静压润滑的特点
主要优点是:
(1)适用速度范围广由于流体静压润滑本身不需要相对运动的功能,因而在任何速度下包括很高速或很低速,启动或停车以及正反转都能建立—层完整的流体膜,并获得良好的工作性能。
(2)摩擦系数很小其一般摩擦系数μ只有0.0001~0.0008,例如采用32号机械油的静压导轨,其起动摩擦系数一般在0.0005,因而功耗小,效率高,并在低速条件下不会产生粘滑现象。
(3)使用寿命长因为两个相对运动的表面不直接接触、磨损很小、能长期保持精度,同时对摩擦副的材料没有特殊要求等,因而大大地延长了其使用寿命。
(4)运动精度高液体静压膜具有某种“平均误差”的作用,可以补偿制造误差的影响。
因而对轴颈或轴承的加工精度和表面粗糙度要求一般比液体动压润滑轴承为低。
这点同滚动元件支承相比尤为明显。
(5)适应性和抗振性能好静压润滑的适应性很广,能满足轻裁到重载,小型到大型,低速到高速的各种机床和机械设备的要求、同时,静压流体膜有良好的吸振性能,运动均匀平稳,振动、噪音都很小。
主要缺点:
其缺点主要是工作时要一套可靠的高压供油装置,投资费和维护费较高,也增加了机器所占空间,而总效率较低,从这个角度分析.不如动压润滑机构简单,费用低。
因此.究竞选用何种润滑方式,应根据具体要求综合考虑,必要时也可设计成动静压联合润滑方式。
3.2:流体静压润滑支承原理
流体静压支承的共同特点是各摩擦面都开有几个流体腔,每个流体腔的四周均有封流体的面,一般将一个流体腔及其封流体的面称为一个文承单元(或流体垫),若干个支承适当配置,便构成流体静压支承,整个摩擦副的承栽能力,是各支承单元承载能力的合成结果。
所以理解单个支承单元的工作原理,是全面了解整个支承的基础。
上图所示一个支承单元,上部为运动件,下部为支承件,其间隙为 (即流体膜厚度),以及出一个深度比间隙大得多的流体腔和四周具有一定宽度封油体的面组成(简称封油面)。
当末通入压力流体时,流体腔没有压力,被支承件(一般为运动件)受载荷作用压紧在支承上。
当流体从高压流体泵送入流体腔内后,使合成液体压力同支承单元载荷FN平衡时,运动件浮起,封油体的面处形成间隙,流体从封流体的面流出,由于间隙较小、阻力很大,流体腔内仍保持支承载荷所需要的压力,运动件能继续浮起,保持工作稳定。