PID 自控原理实验报告
pid控制实验报告

pid控制实验报告实验报告:PID控制一、实验目的通过本实验,我们的目的是深入了解PID(比例、积分、微分)控制算法,理解其在实际控制中的应用,掌握PID参数的调整方法。
二、实验原理PID控制是依据被控对象的误差(偏差)与时间的积分、微分关系来确定控制器输出的控制方式。
具体来说,PID控制器输出的控制量=Kp*(当前误差+上次误差*dt+所有误差的积分),其中Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
它通过对偏差的补偿,使得被控对象能够在振荡绕过设定值、稳定达到设定值的过程中快速、准确定位设定值。
三、实验设备本实验采用的设备为PID控制器、液晶显示屏、电压控制电机和传感器。
四、实验步骤1. 首先,我们需要将系统设为手动调节状态,关闭控制器。
2. 然后,我们将传感器和记录仪建立起连接。
3. 将系统调整为自动控制状态,让控制器自行计算控制量、作出相应控制。
4. 调整PID控制器的Kp系数,以调整控制精度。
5. 调整PID控制器的Ki系数,以调整控制的灵敏度。
6. 调整PID控制器的Kd系数,以调整控制器的稳定性。
7. 最终完成调整后,我们可以用振荡器数据展示出来实验结果。
五、实验结果在完成调整后,我们得出的控制器输出的控制量稳定在理论值附近,在控制精度与控制的灵敏度达到较好平衡的情况下,控制器的稳定性得到了保证。
实验结果具有较好指导意义。
六、结论本实验通过掌握PID控制算法的实际应用方法,以及对参数的合理设置为基础,完成了对PID控制器各参数调整技巧的掌握,极大地丰富了实验基础技能。
同时,实验结果为之后的实际应用提供了参考,有着极其重要的现实意义。
自动控制原理实验报告

自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
pid实验报告

pid实验报告PID实验报告引言:PID控制器是一种常用的自动控制器,它通过调整输出信号来使被控对象的实际值与期望值尽可能接近。
在本次实验中,我们将通过设计一个PID控制器来控制一个温度系统,以验证PID控制器的性能和效果。
实验目的:1. 理解PID控制器的原理和工作方式;2. 掌握PID控制器的参数调节方法;3. 验证PID控制器在温度控制系统中的应用效果。
实验装置:1. 温度传感器:用于测量被控对象的温度;2. 控制器:采用PID控制算法,根据测量值和设定值计算控制信号;3. 加热器:根据控制信号调节加热功率;4. 温度系统:被控对象,通过加热器调节温度。
实验步骤:1. 搭建实验装置:将温度传感器放置在温度系统中,连接到控制器的输入端;将控制器的输出端连接到加热器;2. 参数调节:根据实际情况,初步设定PID控制器的参数,包括比例系数Kp、积分时间Ti和微分时间Td;3. 实验运行:设置温度设定值,观察温度系统的响应,并记录数据;4. 参数优化:根据实验结果,调整PID控制器的参数,使温度系统的响应更加稳定和准确;5. 重复实验:反复进行参数调节和实验运行,直到达到满意的控制效果。
实验结果:通过多次实验和参数调节,我们得到了一个较为理想的PID控制器参数设置,使温度系统的响应速度较快且稳定。
实验结果表明,PID控制器能够有效地控制温度系统,使其实际温度与设定值之间的误差保持在可接受范围内。
讨论与分析:1. 比例系数Kp的调节:较大的Kp值会使系统响应速度快,但可能导致系统震荡;较小的Kp值则会使系统的稳定性提高,但响应速度较慢。
因此,在实际应用中需要根据具体要求进行调节。
2. 积分时间Ti的调节:较大的Ti值可以减小系统的稳态误差,但可能导致系统响应速度变慢和超调现象;较小的Ti值则会使系统的响应速度提高,但可能导致稳态误差增大。
因此,需要在稳态误差和响应速度之间进行权衡。
3. 微分时间Td的调节:较大的Td值可以提高系统的稳定性,减小超调现象,但可能导致系统响应速度变慢;较小的Td值则会使系统的响应速度提高,但可能导致系统震荡。
PID(比例-积分-微分)

自动控制原理实验报告实验名称:线性系统的时域分析实验时间:2013.12.25实验地点:实验学生(签名):实验设备验收人员(签名):实验成绩:实验指导教师(签名):—————————————————————————————一、实验目的1、认识各种电路元件,了解其功能,并能在电路板上连接电路图,分析电路的工作原理。
2、掌握线性系统的时域特性规律,观察比例微分环节、比例-积分-微分环节输出时域响应曲线,并测量相应参数。
3、熟悉自动控制原理实验装置,能够熟练运用LabACTn软件解决线性系统的时域输出响应。
二、实验原理及内容1、微分环节为了便于观察比例微分的阶跃响应曲线,本实验增加了一个小惯性环节,其模拟电路如图3-1-5所示。
图3-1-5 典型比例微分环节模拟电路 实际比例微分环节的传递函数:)11((S)(S)(S)S TSK U U G i O τ++==微分时间常数:CR R R R R T )(32121++=惯性时间常数:C R 3=τ21R R R K +=额外定义如下参数:3321)//(R R R R K D +=s K T D 06.0=⨯=τ比例微分环节对幅值为A 的阶跃响应为:))(()(K t KT A t U A +=δ2、PID (比例-积分-微分)环节PID (比例-积分-微分)环节模拟电路如图3-1-6所示。
图3-1-6 PID (比例-积分-微分)环节模拟电路 典型PID 环节的传递函数:s T K s T K K s T s T K s U s U s G d p i p p d i p i O ++=++==)11()()()(其中232121)(C R R R R R T d ++=, 121)(C R R T i +=,21R R R K p +=。
惯性时间常数:23C R =τ, τ⨯=D d K T ,3321)R //(R R R K D +=。
典型PID 环节对幅值为A 的阶跃响应为:])([)(0t T K t T K K A t U ip d p p ++⋅=δ三、实验步骤1、比例微分环节(1)构造模拟电路:按图3-1-5安置短路套及插孔连线,表如下。
自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
pid控制实验报告

pid控制实验报告PID控制实验报告引言PID控制是一种常用的控制算法,广泛应用于工业自动化系统中。
本实验旨在通过实际的PID控制实验,验证PID控制算法的效果和优势,并对PID控制的原理、参数调节方法等进行探讨和分析。
一、实验目的本次实验的目的是通过一个简单的温度控制系统,使用PID控制算法来实现温度的稳定控制。
通过实验,验证PID控制算法的有效性和优越性,掌握PID控制的基本原理和参数调节方法。
二、实验设备和原理本实验所用的设备为一个温度控制系统,包括一个温度传感器、一个加热器和一个控制器。
温度传感器用于实时检测环境温度,加热器用于调节环境温度,控制器用于实现PID控制算法。
PID控制算法是基于误差的反馈控制算法,其主要原理是通过不断地调整控制器的输出信号,使得系统的实际输出与期望输出之间的误差最小化。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制通过比例系数调整控制器的输出信号与误差的线性关系;积分控制通过积分系数调整控制器的输出信号与误差的积分关系;微分控制通过微分系数调整控制器的输出信号与误差的微分关系。
通过合理调节这三个系数,可以实现对系统的精确控制。
三、实验步骤1. 搭建温度控制系统:将温度传感器、加热器和控制器连接在一起,确保信号传输的正常。
2. 设置期望温度:根据实验要求,设置一个期望的温度作为控制目标。
3. 调节PID参数:根据实验的具体要求和系统的特性,调节PID控制器的比例系数、积分系数和微分系数,使得系统的响应速度和稳定性达到最佳状态。
4. 开始实验:启动温度控制系统,观察实际温度与期望温度的变化情况,记录实验数据。
5. 数据分析:根据实验数据,分析PID控制算法的效果和优势,总结实验结果。
四、实验结果与讨论通过实验,我们得到了一系列的实验数据。
根据这些数据,我们可以进行进一步的分析和讨论。
首先,我们观察到在PID控制下,温度的稳定性得到了显著的提高。
pid控制实验报告[最新版]
![pid控制实验报告[最新版]](https://img.taocdn.com/s3/m/ab6b0408640e52ea551810a6f524ccbff121ca13.png)
pid控制实验报告pid控制实验报告篇一:PID控制实验报告实验二数字PID控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
一、位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:Tu T ?kpeu=para; J=0.0067;B=0.1; dy=zeros= y= -+ = k*ts; %time中存放着各采样时刻rineu_1=uerror_1=error;%误差信号更新图2-1 Simulink仿真程序其程序运行结果如表2所示。
Matlab输出结果errori = error_1 = 表2 例4程序运行结果三、离散系统的数字PID控制仿真1.Ex5 设被控对象为G?num 仿真程序:ex5.m%PID Controller clear all; close all;篇二:自动控制实验报告六-数字PID控制实验六数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台三、实验内容1.系统结构图如6-1图。
图6-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e)/s Gp1(s)=5/((0.5s+1)(0.1s+1)) Gp2(s)=1/(s(0.1s+1))-TS 2.开环系统(被控制对象)的模拟电路图如图6-2和图6-3,其中图6-2对应GP1(s),图6-3对应Gp2(s)。
图6-2 开环系统结构图1 图6-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可使系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验
——第七次实验
一、实验目的
(1)了解数字PID控制的特点,控制方式。
(2)理解和掌握连续控制系统的PID控制算法表达式。
(3)了解和掌握用试验箱进行数字PID控制过程。
(4)观察和分析在标PID控制系统中,PID参数对系统性能的影响。
二、实验内容
1、数字PID控制
一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。
数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。
可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。
PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。
模拟PID控制框图如下:
输出传递函数形式:()1()()
p i
d U s D s K K K s E s s
=
=++
其中Kp 为调节器的比例系数,Ti 为调节器的积分常数,Td 是调节器的微分常数。
2、被控对象数学模型的建立 1)建立模型结构
在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID 整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为:
0001()1
s
G s K e
T S τ-=⨯
+
这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。
001211()1
1
G s K T S T S =⨯
⨯
++
2)被控对象参数的确认
对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认0T 和τ,以达到转换成有时延的单容被控过程的目的。
单位阶跃输入实验辨识的原理方框如图3-127所示。
对于不同的T 1、T 2和K 值,得到其单位阶跃输入响应曲线后,由
010()0.3()
Y t Y =∞和020()0.7()Y t Y =∞得到1t 和2t ,再利用拉氏反变换公式得到
To=To =t 2−t 1L n 1−Yo t 1 −Ln [1−yo (t 2)]=t 2−t 1
0.8473
τ=
t 2L n 1−Yo t 1 −t 1Ln [1−yo t 2 ]L n 1−Yo t 1 −Ln [1−yo t 2 ]
=
1.204t 1−0.3567t 2
0.8473
3、采样周期的选择 采样周期选择0.05s 。
4、数字PID 调节器控制参数的工程整定方法
虽然PID 调节可全面、综合的考虑系统的各项性能,但在工程实际中,考虑到工程造价和调节器的易于实现,长采用PID 三个参数来对系统进行校正。
等效有时延单容被控对象的参数0T 和τ,利用科恩库恩经验公式,可求得比例,比例-积分,比例-积分-微分的参数。
1
00
1[1.35(/)
0.27]p K T K τ-=
+
2
00002.5(/)0.5(/)
10.6(/)
i T T T T T τττ+=⨯
+
5、数字PID 调节器控制特性
1)比例控制是一种最简单的控制方式,其控制的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差。
如果系统是稳定的,增大比例调节的增益,可以减小系统的稳态误差。
2)积分控制中,控制器的输出与输入误差信号的积分成比例关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,为了消除稳态误差,在控制器中引入积分项。
增大积分系数,提高系统的稳态控制精度,但太大会引起系统不稳定。
3)微分控制中,控制器的输出与输入误差信号的微分成正比关系。
当存在较大的惯性组件或有滞后组件时,可能会出现震荡甚至不稳定。
加入微分具有克服积分调节作用缓慢性,避免积分作用可能降低系统响应速度的缺点。
对变化落后于误差变化的系统,需要增加微分性,它能预测误差变化的趋势。
三、实验内容及步骤
1、确立被控对象模型结构
此次实验采用两个惯性环节串接组成实验被控对象,T 1=0.5s ,T 2=0.2s ,K 0=2。
G 0(S )= 1
0.5s+1*2
0.2s +1≈K 0∗1
T
s+1
e −ts 2、被控对象参数的确认
被控对象参数的确认构成如图3-136所示。
本实验将函数发生器做信号发生输出矩形波施加于被测系统的输入端R ,观察矩形波从0V 阶跃到+1V 时被控对象的单位阶跃响应曲线。
实验步骤如下:
1)、按照模拟电路图连接电路。
采用函数发生器输出矩形波作为输入系统的输入,用虚拟示波器的两个通道分别采集系统的输入和输出信号。
2、运行相关的实验程序,选择“线性系统时域分析”——“启动试验项目”命令,弹出试验界面,调节实验机上函数发生器的“幅度调节”是矩形波的输出幅度为1.0V ,调节“正脉宽调节”电位器使之输出≥2秒。
3)、单击“开始”按钮,根据波形调节X 轴和Y 轴的单位设置,得出完整波形。
4)、取Y 0 t 1 =0.3Y 0 ∞ ,测得t 1的值;取Y 0 t 2 =0.7Y 0 ∞ ,测得t 2的值。
3、求得数字PID 调节器控制参数及确定采样周期为0.05s 。
4、数字PID 闭环控制系统实验
数字PID 闭环控制系统的构成如下图所示。
此次实验将函数发生器作信号发生器,矩形波输出施加于被测系统的输入端U i ,观察矩形波从0V 阶跃到+2.5V ,
时被测系统的PID控制特性。
实验步骤如下:
(1)按照模拟电路图连接(K o=2)。
(2)运行、观察、记录。
①选择“离散控制系统分析”→“数字PID控制”→“启动实验项目”命令,弹出实验界面后,调节函数发生器使之矩形波输出幅度为2.5V,正脉冲输出宽度≥6s。
在实验界面“PID参数”设置区设置参数,设置K p=2.557,T i=0.36,T d=0.053,采样周期T=0.05s,然后单击“开始”按钮,运行实验程序。
②在运行程序中,若修改PID参数后,须停止实验再单击“开始”按钮。
③单击“停止”按钮,观察实验结果,记录数字PID闭环控制系统实验响应曲线。
1、t1=0.396s, t2=0.942s,T0,τ
2、t1=0.171s, t2=0.396s
3、t1=0.310s, t2=0.760s
由t1和t2求出T0和τ
实验数据见下表:
5、根据用PID测得的Kp、Ti、Td进行Simulink仿真,得到三个响应曲线与上述三幅图进行对比:
1)、Kp=1.2、Ti=0.75、Td=0.053
2)、Kp=1.5、Ti=0.35、Td=0.053
3)、Kp=2、Ti=0.6、Td=0.053
四、实验总结
通过本次学习学会了通过对PID系数的控制来调节系统的稳定性。