(完整)圆锥曲线、数列、三角函数、不等式-高中数学阶段测试2(有答案)

合集下载

2021年高二下学期第二次阶段测试数学(理)试题含答案

2021年高二下学期第二次阶段测试数学(理)试题含答案

2021年高二下学期第二次阶段测试数学(理)试题含答案xx.4一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置........上。

1、对某种花卉的开放花期追踪调查,调查情况如下:花期(天) 11~13 14~16 17~1920~22 个数 20 403010则这种花卉的平均花期为________天.2、执行如图所示的流程图,则输出的k 的值为 .(第2题) (第3题)3、某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为________万元.4、已知数据x 1,x 2,…,x n 的方差s 2=4,则数据﹣3x 1+5,﹣3x 2+5,…,﹣3x n +5的标准差为 .5、袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.6、设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.7、在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是________.8、 ⎝ ⎛⎭⎪⎫ax -1x 8的展开式中x 2的系数为70,则a =________.9、已知,则= .10、如图所示,已知空间四边形ABCD ,F 为BC 的中点,E 为AD 的中点,若EF →=λ(AB →+DC →),则λ=________.11、如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.(第10题)(第11题)12、设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a =____________.13、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为.14、学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有种.(用数字作答)二、解答题:本大题共6小题,计90 分。

新人教A版选修2_12022-2021学年高中数学第2章圆锥曲线与方程阶段性测试题二

新人教A版选修2_12022-2021学年高中数学第2章圆锥曲线与方程阶段性测试题二

第二章 圆锥曲线与方程(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·北京海淀区二模)设曲线C 是双曲线,则“曲线C 的方程为x 2-y 24=1”是“曲线C 的渐近线方程为y =±2x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:双曲线x 2-y 24=1的渐近线方程为y =±2x ,而渐近线方程y =±2x 的双曲线方程不一定是x 2-y 24=1,如x 22-y 28=1,所以“曲线C 的方程为x 2-y 24=1”是“曲线C 的渐近线方程为y =±2x ”的充分不必要条件.答案:A2.已知双曲线方程为x 24-y 23=1,则此双曲线的右焦点的坐标为( )A .(1,0)B .(5,0)C .(7,0)D .(7,0)解析:∵a 2=4,b 2=3,∴c 2=a 2+b 2=7,∴c =7,∴此双曲线右焦点的坐标为(7,0).答案:D3.(2019·沈阳模拟)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆x 2+y 2-4x=0所截得的弦长为2,则双曲线C 的离心率为( )A .2B . 3 C. 2D .233解析:双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为bx -ay =0,圆x 2+y 2-4x =0的圆心为(2,0),半径为r =2,由题意得⎝ ⎛⎭⎪⎫2b a 2+b 22+⎝ ⎛⎭⎪⎫222=22,即4b 2c 2=3.又b 2=c 2-a 2,∴c 2=4a 2,∴e =ca=2.答案:A4.在△ABC 中,A (-5,0),B (5,0),点C 在双曲线x 216-y 29=1上,则sin A -sin Bsin C =( )A.35 B .±35C.45D .±45解析:由正弦定理,得sin A -sin B sin C =|CB |-|CA ||AB |,∵AB =10,a 2=16,b 2=9,c =5,∴A ,B 为焦点,∴|CB |-|CA |=2a 或-2a ,∴|CB |-|CA |=±8,∴sin A -sin B sin C =±810=±45,选D. 答案:D5.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .⎝ ⎛⎦⎥⎤0,12 C.⎝ ⎛⎭⎪⎫0,22 D .⎣⎢⎡⎭⎪⎫22,1 解析:∵满足MF 1→·MF 2→=0的点M 在圆x 2+y 2=c 2上,∴圆x 2+y 2=c 2在椭圆内部,即c <b ,∴c 2<b 2=a 2-c 2,2c 2<a 2,∴e 2<12,即e ∈⎝ ⎛⎭⎪⎫0,22.答案:C6.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|=( )A .9B .6C .4D .3解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),抛物线的焦点F (1,0),准线方程为x =-1.∵FA →+FB →+FC →=0,∴F 为△ABC 的重心,∴x 1+x 2+x 3=3.又|FA →|=x 1+1,|FB →|=x 2+1,|FC →|=x 3+1,∴|FA →|+|FB →|+|FC →|=x 1+x 2+x 3+3=6.答案:B7.(2019·哈尔滨模拟)已知双曲线C 的右焦点F 与抛物线y 2=8x 的焦点相同,若以点F 为圆心,2为半径的圆与双曲线C 的渐近线相切,则双曲线C 的方程为( )A.y 23-x 2=1 B .x 23-y 2=1C.y 22-x 22=1 D .x 22-y 22=1解析:设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),而抛物线y 2=8x 的焦点为(2,0),即F (2,0),∴4=a 2+b 2.又圆F :(x -2)2+y 2=2与双曲线C 的渐近线y =±b ax 相切,由双曲线的对称性可知圆心F 到双曲线的渐近线的距离为2bb 2+a2=2,∴a 2=b 2=2,故双曲线C 的方程为x 22-y 22=1.答案:D8.抛物线x 2=8y 的焦点为F ,过点F 的直线交抛物线于M ,N 两点,点P 为x 轴正半轴上任意一点,则(OP →+PM →)·(PO →-PN →)=( )A .-20B .12C .-12D .20解析:设M (x 1,y 1),N (x 2,y 2),∴(OP →+PM →)·(PO →-PN →)=OM →·NO →=(x 1,y 1)·(-x 2,-y 2)=-x 1x 2-y 1y 2.∵x 2=8y 的焦点为F (0,2),设过点F 的直线为y -2=kx ,与抛物线联立,⎩⎪⎨⎪⎧y -2=kx ,x 2=8y 得x 2-8kx -16=0,∴x 1x 2=-16,x 1+x 2=8k ,则y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=-16k 2+2k ×8k +4=4,∴(OP →+PM →)·(PO →-PN →)=OM →·NO →=-x 1x 2-y 1y 2=-(-16)-4=12.答案:B9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在双曲线的左支上,且|MF 2|=7|MF 1|,则此双曲线的离心率的最大值为( )A.43 B .53 C .2D .73解析:因为|MF 2|=7|MF 1|,所以|MF 2|-|MF 1|=6|FM 1|,即2a =6|MF 1|≥6(c -a ),故8a ≥6c ,即双曲线的离心率e =c a ≤43,当且仅当M 为双曲线的左顶点时,等号成立,故此双曲线的离心率的最大值为43.答案:A10.已知双曲线的两个焦点为F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且满足MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 23-y 27=1 D .x 27-y 23=1解析:由MF 1→·MF 2→=0,知MF 1⊥MF 2,由焦点三角形的面积公式,知12|MF 1|·|MF 2|=b 2tan 45°,∴b 2=1.又c =10,∴a 2=c 2-b 2=10-1=9.又焦点在x 轴上,故所求的双曲线方程为x 29-y 2=1.答案:A11.过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点F 作弦AB ,若|AF |=d 1,|BF |=d 2,则1d 1+1d 2的数值为( )A.2ba2B .2ab2C.a +ba 2D .与AB 斜率有关解析:一般推理较繁,为快速确定答案可考虑两种特殊情况,当AB 的斜率为0时,记A (-a,0),B (a,0),F (c,0),则d 1=|AF |=c +a ,d 2=|BF |=a -c ,∴1d 1+1d 2=1a +c +1a -c =2a a 2-c 2=2a b 2;当AB ⊥x 轴时,x =c ,y =±b 2a ,记A ⎝ ⎛⎭⎪⎫c ,-b 2a ,B ⎝ ⎛⎭⎪⎫c ,b 2a ,则d 1=|AF |=b 2a ,d 2=|BF |=b 2a ,∴1d 1+1d 2=2ab2,因此可以判断选B.答案:B12.(2019·揭阳二模)已知双曲线:x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,直线y =3(x +c )与双曲线的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则双曲线的离心率为( )A. 2 B . 3 C .2D .3+1解析:∵直线y =3(x +c )过左焦点F 1,且其倾斜角为60°,∴∠MF 1F 2=60°,∠MF 2F 1=30°,∴∠F 1MF 2=90°,即F 1M ⊥F 2M .∴|MF 1|=12|F 1F 2|=c ,|MF 2|=|F 1F 2|·sin 60°=3c ,由双曲线的定义有|MF 2|-|MF 1|=3c -c =2a ,∴离心率e =c a=c 3c -c 2=23-1=3+1. 答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,满分20分,把答案填写在题中的横线上) 13.(2019·宁波质检)与圆(x -2)2+y 2=1外切,且与直线x +1=0相切的动圆圆心的轨迹是________.解析:设动圆圆心为P (x ,y ),由几何意义知,点P (x ,y )的轨迹是以(2,0)为焦点,以x =-2为准线的抛物线,故其方程为y 2=8x .答案:y 2=8x14.已知A ,B 为椭圆C :x 2m +1+y 2m =1的长轴的两个顶点,P 是椭圆C 上的动点,且∠APB 的最大值是2π3,则实数m 的值是________. 解析:由椭圆知,当点P 位于短轴的顶点时,∠APB 取得最大值,∴a b=3,∴m +1m=3,∴m =12.答案:1215.以抛物线y 2=20x 的焦点为圆心,且与双曲线x 216-y 29=1的两条渐近线都相切的圆的方程为________.解析:抛物线y 2=20x 的焦点坐标为(5,0),双曲线x 216-y 29=1的渐近线方程为3x ±4y=0,圆心(5,0)到渐近线3x -4y =0的距离为155=3,即圆的半径为3,故所求圆的方程为(x -5)2+y 2=9.答案:(x -5)2+y 2=916.(2019·天津市七校期中联考)已知椭圆C 1与双曲线C 2有公共焦点F 1,F 2,P 为椭圆C 1与双曲线C 2的一个交点,PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若e 2=2e 1,则e 1=________.解析:如图,由椭圆定义及勾股定理得,⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a 1,|PF 1|2+|PF 2|2=4c 2,可得S △PF 1F 2=b 21,∵e 1=ca 1,∴a 1=c e 1,∴b 21=a 21-c 2=c21e 21-1,同理,可得S △PF 1F 2=b 22,∵e 2=c a 2,∴a 2=1e 2,∴b 22=c 2-a 22=c 21-1e 22,∴c 21e 21-1=c 21-1e 22,即1e 21+1e 22=2.∵e 2=2e 1,∴e 1=104. 答案:104三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)求证:无论m 为何值,直线l :mx -y -m +1=0与椭圆x 216+y 29=1恒有交点.证明:直线l 的方程可化为y -1=m (x -1), ∴直线l 恒过定点(1,1).而定点(1,1)在椭圆x 216+y 29=1的内部.∴直线l 与椭圆恒有交点.18.(12分)已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得弦长为15,求抛物线的方程.解:依题意,设抛物线方程为y 2=ax ,(a ≠0)将y =2x +1代入,得4x 2+(4-a )x +1=0.设弦的两端点分别为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=a -44,x 1x 2=14. 由Δ=(4-a )2-16>0,解得a <0或a >8. 由弦长公式得|AB |= 1+22·(x 1+x 2)2-4x 1x 2=15, ∴⎝⎛⎭⎪⎫a -442-1=3,∴(a -4)2=64, ∴a =12或a =-4.∴抛物线方程为y 2=12x 或y 2=-4x .19.(12分)已知F 1,F 2分别为椭圆x 2100+y 2b2=1(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|·|PF 2|的最大值;(2)若∠F 1PF 2=60°,且△F 1PF 2的面积为6433,求b 的值.解:(1)|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=100(当且仅当|PF 1|=|PF 2|时取等号),∴|PF 1|·|PF 2|的最大值为100.(2)S △F 1PF 2=12|PF 1|·|PF 2|sin 60°=6433,∴|PF 1|·|PF 2|=2563,①由题意知,⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2-4c 2=2|PF 1|·|PF 2|cos 60°,∴3|PF 1|·|PF 2|=400-4c 2.② 由①②,得c =6,∴b =8.20.(12分)(2019·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P为椭圆C 上一点,O 为坐标原点.(1)若△POF 2为等边三角形,求椭圆C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解:(1)连接PF 1,由△POF 2为等边三角形可知,在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,∴|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故椭圆C 的离心率是e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在.当且仅当12|y |·2c =16,y x +c ·y x -c=-1,x 2a 2+y 2b 2=1,即c |y |=16,① x 2+y 2=c 2,② x 2a 2+y 2b2=1,③由②③及a 2=b 2+c 2,得y 2=b 4c 2,又由①,知y 2=162c2,故b =4.由②③,得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥4 2.当b =4,a ≥42时,存在满足条件的点P . 所以b =4,a 的取值范围为[42,+∞).21.(12分)(2019·太原期末)P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Г.(1)求曲线Г的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.解:(1)圆A 的圆心为A (-1,0),半径等于2 2.由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22,故曲线Г是以A ,B 为焦点,以22为长轴长的椭圆,∴a =2,c =1,b =1. 曲线Г的方程为x 22+y 2=1.(2)由cos ∠BAP =223,|AP |=22,点P 在第一象限,∴P ⎝ ⎛⎭⎪⎫53,223.于是直线AP 方程为y =24(x +1). 由⎩⎪⎨⎪⎧x 22+y 2=1,y =24(x +1),解得5x 2+2x -7=0,x 1=1,x 2=-75.由于点M 在线段AP 上,所以点M 的坐标为⎝ ⎛⎭⎪⎫1,22. 22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与曲线C 交于A ,B 两点.(1)写出曲线C 的方程; (2)若OA →⊥OB →,求k 的值.解:(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b = 22-(3)2=1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1消去y 并整理,得(k 2+4)x 2+2kx -3=0. 其中Δ=4k 2+12(k 2+4)>0恒成立. 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0. ∴y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k2k 2+4+1=0,化简得-4k 2+1=0,所以k =±12.。

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改)的全部内容。

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )D 。

2。

椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A 。

1或5 B. 1或9 C 。

1 D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )。

C. 21 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C )4 8.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A 。

圆锥曲线、数列、三角函数、统计、不等式、命题-高中数学阶段测试(有答案)(2020113023232

圆锥曲线、数列、三角函数、统计、不等式、命题-高中数学阶段测试(有答案)(2020113023232

34 12A.15B.30C.31D.642x y 4x y 10,则z x y 的最大值为(y 0高中数学阶段测试测试范围:圆锥曲线、数列、三角函数、统计、不等式、命题、选择题(共12题,每题5分) 1. 'X 2”是’X 2 2x A .必要不充分条件 C .充要条件2. 命题 “ x R,sin x 8 0 ”成立的( ) B .充分不必要条件 D .既不充分也不必要条件 1 ”的否定是( ) A . x R,sin x 1 C . x R,sin x 1 B . x R,sin x 1 D . x R,sin x 13.等差数列{a n }中,a 7 a g 16, a 4 1,则()5•如果方程 1表示焦点在y 轴上的椭圆,则 m 的取值范围是() A . 3v m v 4 B . 4m7 一2D7 - 2m 36.已知{a n }是公比为 2的等比数列, S n 为数列{a n }的前n 项和,若2( S 61) a y ,则 a 32 X 7.已知双曲线C : —2a 2y_ b 21(a 0,b 0)的渐近线方程为y3 X ,且其右焦点为(5,0), 4则双曲线C 的方程为 2 X A . 9 2y_ 16 2XB .162 XC . ——32y_ 4x 28.已知椭圆C :—直线l 与椭圆C 交于代B 两点,且线段AB 的中点为M 2,1,则直4.在平面直角坐标系xOy 中,若x, y 满足约束条件线I的斜率为(34122X 1的渐近线方程为415 .已知命题P:函数y log a (1 2x )在定义域上单调递增;命题Q:不等式2216.抛物线y 2px (p 0)的焦点为F ,准线为I , A , B 是抛物线上的两个动点, 且满足 AFB —,3设线段AB 的中点M 在I 上的投影为N ,则1MN -1的最大值是 ______|AB|三、解答题(总分10+12X 5=70分)17.在 ABC 中,角A 、B 、C 所对的边分别为 a b c ,且2acosB 2c b .9.若 ab0且直线ax by0过点P (1,2),则1 -的最小值为a b10.已知 A( 1, 1), 过抛物线C:4x 上任意一点M 作MN 垂直于准线于N 点,则| MN | | MA |的最小值为()B .10C .511.已知 2F 是抛物线x 4y 的焦点, 直线 kx 1与该抛物线相交于A,B 两点,且在第一象限的交占为占 JA ,若2x12.已知椭圆— aA, B 两点, 直线 二、填空题 (共 AF 2y b 23 FB ,贝U k 的值是(1 a b 0的左、右焦点分别为AF 2与椭圆的另一个交点为4题,每题5分) F 1,F 2,过F 1且与X 轴垂直的直线交椭圆于uuju C ,若 AF 2 10 C.5uuur2F 2C ,则椭圆的离心率为(3”3 D.-1013.双曲线14.抛物线4x 上一点M 到焦点的距离为5,则点M 的横坐标为(a 2)x 2 2(a 2)x 40对任意实数 x 恒成立.若 PQ 是真命题,则实数a 的取值范围为(1 )求A 的大小;(2)若 a 2,b c 4 .求 ABC 的面积•18、学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为 n的样本,按照[50, 60), [60,70), [70, 80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为 24与6.(1 )求n 及频率分布直方图中的 x , y 的值;(2)已知[90, 100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选 2名作进一步调查,求2名学生中至少有1名男生的频率.19.已知直线l : y 2x 4被抛物线C : y 2 2 px( p 0)截得的弦长 AB 3^5.(I )求抛物线C 的方程;(H )若抛物线C 的焦点为F ,求三角形ABF 的面积.(1 )求a n 的通项公式;(2 )设b n-一,求数列 b n 的前n 项和.a n an 120.已知S n 为数列a n 的前n 项和,已知a n 20 , an2a n 4S n 3.21、如图,在四棱锥P ABCD 中,PD 平面ABCD ,底面ABCD 是菱形,BAD 60°, AB 2 ,PD 6 , O 为AC 与BD 的交点,E 为棱PB 上一点.(I)证明:平面 EAC 平面PBD ;(H)若PD//平面EAC ,求三棱锥P EAD 的体积•点P 满足 PF 1F 2 900,且 PF 1F 2的面积为S PF 1F 2 (1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为 A 、B ,过点Q 1,0的动直线l 与椭圆C 相交于M直线AN 与直线x 4的交点为R ,证明:点R 总在直线BM 上.22 xy22.已知椭圆C : —221 aa bb 0的左、右焦点分别为F i .3,0、F 2 .3,0,椭圆上的N 两点,。

高二数学圆锥曲线测试题(含答案)

高二数学圆锥曲线测试题(含答案)

高二数学圆锥曲线检测题(文科) 2015.1一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆22146x y +=的长轴长为 ( )A .2 B.3 C.3 D.622.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆交于点P , ||2PF = ( ) A .23 B .3 C .27D .4 3.若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件621≥+PF PF ,则点P 的轨迹是 ( ) A .椭圆B .线段C .不存在D .椭圆或线段5.设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B.316或3 C.316 D.316或2 6.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 97.在同一坐标系中,方程12222=+by a x 与)0(02>>=+b a bx ay 的曲线大致是 ( )8、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ). C. 21-9.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .1053B .11C .22D .1010.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx-c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2) ( ) A .必在圆x 2+y 2=2上 B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内 D .以上三种情形都有可能6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A.(7, B.(14, C.(7,± D.(7,-± 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对二、填空题(本题共5小题,每小题4分,共20分)11.双曲线221412y x -=的焦点坐标为________________. 12.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .13.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线B.双曲线C. 椭圆D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.2 B. 12C. 2D. 16.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3(C)48.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对10.方程02=+ny mx 与)02>+n mx 的曲线在同一坐标系中的示意图应是( )B 11.以双曲线169的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A . B.C .D.12.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x二、填空题:13.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .14.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 15、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的16.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 .; 三、解答题:17.已知双曲线与椭圆125922=+y x 共焦点,它们的离心率之和为514,求双曲线方程.(12分) 18.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1)求△21PF F 的面积; (2)求P 点的坐标.(14分) 19、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338的双曲线方程.(14分) 20 在平面直角坐标系xOy 中,点P 到两点(03)-,,(03),的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?21.A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?22、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

2021-2022年高中数学阶段质量检测二圆锥曲线与方程苏教版

2021-2022年高中数学阶段质量检测二圆锥曲线与方程苏教版

2021-2022年高中数学阶段质量检测二圆锥曲线与方程苏教版5.两个焦点为(±2,0)且过点P ⎝ ⎛⎭⎪⎫2,-2的椭圆的标准方程为_____________________.6.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,AF =2,则BF =________.7.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.8.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是________.9.设点P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)与圆x 2+y 2=2a 2的一个交点,F 1,F 2分别是双曲线的左、右焦点,且PF 1=3PF 2,则双曲线的离心率为________.10.已知双曲C 1=x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐进线的距离为2,则抛物线C 2的方程为________________________.11.(新课标全国卷Ⅰ改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为_____________________.12.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则PF 1·PF 2的值是________.13.若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 的中点的连线斜率为22,则nm的值为________. 14.(四川高考改编)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知双曲线与椭圆x 236+y 249=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为37,求双曲线的方程.16.(本小题满分14分)已知中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为32,且与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆的方程.17.(本小题满分14分)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.18.(本小题满分16分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与C 相交于A ,B 两点,若|AB |=8,求直线l 的方程.19.(本小题满分16分)(陕西高考)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(1)求动点M的轨迹C的方程;(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.20.(本小题满分16分)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.答案阶段质量检测(二) 圆锥曲线与方程1.解析:令x 216-y 29=0,解得y =±34x .答案:y =±34x2.解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为|±3×1-0|1+3=32.答案:323.解析:由题意因为PQ 过双曲线的右焦点(5,0),所以P ,Q 都在双曲线的右支上,则有FP -PA =6,FQ -QA =6,两式相加,利用双曲线的定义得FP +FQ =28,所以△PQF 的周长为FP +FQ +PQ =44.答案:444.解析:设P (x ,y ),动圆P 在直线x =1的左侧,其半径等于1-x ,则PC =1-x +1,即x +22+y 2=2-x .∴y 2=-8x . 答案:y 2=-8x5.解析:∵两个焦点为(±2,0), ∴椭圆的焦点在x 轴上,且c =2.设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫522a 2+⎝ ⎛⎭⎪⎫-322b 2=1a 2-b 2=4,,解得a 2=10,b 2=6.∴椭圆的标准方程为x 210+y 26=1.答案:x 210+y 26=16.解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有,焦点F (1,0),AF =x 1+1=2,x 1=1,直线AF 的方程是x =1,故BF =AF =2.答案:27.解析:在△ABF 中,AF 2=AB 2+BF 2-2AB ·BF ·cos∠ABF =102+82-2×10×8×45=36,则AF =6.由AB 2=AF 2+BF 2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =OF =AB2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以BF =AF 1=8.由椭圆的性质可知AF +AF 1=14=2a ⇒a =7,则e =c a =57.答案:578.解析:设P (x ,y )为抛物线上任意一点,则P 到直线的距离d =|2x -y -4|5=|2x -x 2-4|5=|x -12+3|5,∴当x =1时,d 取最小值35,此时P 的坐标为(1,1).答案:(1,1) 9.解析:由⎩⎪⎨⎪⎧PF 1-PF 2=2a ,PF 1=3PF 2得PF 1=3a ,PF 2=a ,设∠F 1OP =α,则∠POF 2=180°-α, 在△PF 1O 中,PF 21=OF 21+OP 2-2OF 1·OP ·cos α ①,在△OPF 2中,PF 22=OF 22+OP 2-2OF 2·OP ·cos(180°-α) ②,由cos(180°-α)=-cos α与OP =2a , ①+②得c 2=3a 2,∴e =ca=3aa= 3.答案: 310.解析:∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的率心率为2.∴c a =a 2+b 2a=2,∴b =3a .∴双曲线的渐近线方程为 3 x ±y =0.∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3×0±p 22=2.∴p =8.∴所求的抛物线方程为x 2=16y . 答案:x 2=16y11.解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3. 所以E 的方程为x 218+y 29=1.答案:x 218+y 29=112.解析:取P 在双曲线的右支上,则⎩⎨⎧PF 1+PF 2=2 m ,PF 1-PF 2=2 a ,∴⎩⎨⎧PF 1=m +a ,PF 2=m -a .∴PF 1·PF 2=(m +a )(m -a )=m -a . 答案:m -a13.解析:设A (x 1,y 1),B (x 2,y 2),AB 中点(x 0,y 0).由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x ,得(m +n )x 2-2nx +n -1=0∴x 1+x 2=2n m +n ,∴x 0=n m +n .∴y 0=mm +n. 又y 0x 0=22,∴m n =22,∴nm= 2. 答案: 214.解析:由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝ ⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:2215.解:在椭圆x 236+y 249=1中,焦点坐标为(0,±13),离心率e ′=137,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=13,137∶a 2+b 2a =37,解得⎩⎪⎨⎪⎧a 2=9,b 2=4.∴双曲线的方程为y 29-x 24=1.16.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵e =32,∴a 2=4b 2,即a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.把直线方程代入并化简,得5x 2-8x +4-4b 2=0. 设M (x 1,y 1)、N (x 2,y 2),则x 1+x 2=85,x 1x 2=15(4-4b 2).∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=15(1-4b 2).由于OM ⊥ON ,∴x 1x 2+y 1y 2=0. 解得b 2=58,a 2=52.∴椭圆方程为25x 2+85y 2=1.17.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程为y =-3(x -c ).代入椭圆方程3x 2+4y 2=12c 2,得B ⎝ ⎛⎭⎪⎫85c ,-335c .所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设AB =t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t . 由余弦定理得(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.18.解:抛物线y 2=4x 的焦点为F (1,0),当直线l 斜率不存在时,|AB |=4,不合题意.设直线l 的方程为y =k (x -1),代入y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由题意知k ≠0, 则x 1+x 2=2k 2+4k2.由抛物线定义知,|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2, ∴x 1+x 2+2=8,即2k 2+4k2+2=8.解得k =±1.所以直线l 的方程为y =±(x -1), 即x -y -1=0,x +y -1=0.19.解:(1)设M 到直线l 的距离为d ,根据题意d =2|MN |. 由此得|4-x |=2x -12+y 2,化简得x 24+y 23=1,所以,动点M 的轨迹方程为x 24+y 23=1.(2)法一:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2).将y =kx +3代入x 24+y 23=1中,有(3+4k 2)x 2+24kx +24=0,其中Δ=(24k )2-4×24(3+4k 2)=96(2k 2-3)>0,故k 2>32.由根与系数的关系得,x 1+x 2=-24k3+4k2,①x 1x 2=243+4k2.② 又因为A 是PB 的中点,故x 2=2x 1,③ 将③代入①,②,得x 1=-8k 3+4k 2,x 21=123+4k2, 可得⎝ ⎛⎭⎪⎫-8k 3+4k 22=123+4k 2,且k 2>32,解得k =-32或k =32,所以直线m 的斜率为-32或32.法二:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2). ∵A 是PB 的中点, ∴x 1=x 22,①y 1=3+y 22.② 又x 214+y 213=1,③ x 224+y 223=1,④ 联立①,②,③,④解得⎩⎪⎨⎪⎧x 2=2,y 2=0,或⎩⎪⎨⎪⎧x 2=-2,y 2=0.即点B 的坐标为(2,0)或(-2,0), 所以直线m 的斜率为-32或32.20.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形且|AB 1|=|AB 2|, 故∠B 1AB 2为直角,从而|OA |=|OB 2|,即b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2, 由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20. 因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意,直线PQ 的倾斜角不为0, 故可设直线PQ 的方程为x =my -2,代入椭圆方程得 (m 2+5)y 2-4my -16=0.(*)设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是方程(*)的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5. 又=(x 1-2,y 1),=(x 2-2,y 2),所以 ·=(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16m 2+1m 2+5-16m2m 2+5+16 =-16m 2-64m 2+5,由PB 2⊥QB 2,知·=0, 即16m 2-64=0,解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0. 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8109,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16109.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16109.综上所述,△PB 2Q 的面积为16109.z g26866 68F2 棲 ;38029 948D 钍25080 61F8 懸,m[ 22124 566C 噬321231 52EF 勯。

高二数学圆锥曲线测试题以及详细答案(完整资料).doc

高二数学圆锥曲线测试题以及详细答案(完整资料).doc
(2)将k=1代入方程①得x2-2x-3=0,解出 x1=-1,x2=3,由y=x+1得y1=0,y2=4
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .

而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,12D. 0,12高中数学阶段测试测试范围:圆锥曲线、数列、三角函数、不等式考试时间:120分钟本套试卷分第I 卷(选择题)和第n 卷(非选择题)两部分,满分150分.第I 卷(选择题,共60分)、选择题:(本题共12小题,每小题 5分,共60分•在每小题给出的四个选项中,只有一项是 符合题目要求的.)n16.若S n 为数列{a n }的前n 项和,且S n,则( )n 1 a 5D . 30A . 45 °B . 135 °C . 45。

或 135 °D .以上答案都不对4.抛物线 y4x 2 的准线方程是()A. y 1B. y 1C.y 丄161 D. y165.若椭圆 2x a2yb 21 a b 0 的离心率为——,2 则a ()bA . 3B .2C. ■. 3 D . 23.在△ ABC 中,A=60 °,a )1 12 .A . Ina InbB.— —C . a abab2 2D . a b 2abp 是真命题D . q 是真命题4. 3,b 4 2,则 B=(1.已知a b ,则下列不等式中恒成立的是(2 .若p 是真命题,q 是假命题,则( )A . p q 是真命题B . p q 是假命题C .301(m R)2y_ x21有相同的焦点,则该双曲线的渐近线方程为( )A.y3xB.y xC. y3x y 1 0&实数x, y满足x2y3 0,若4x2x y 6 0A.,0B.,4C.1 x3D. y3xy m恒成立, 则实数m的取值范围是()7.已知双曲线my2 x2与椭圆29. 已知等差数列a n满足2a3 a8 2如0,且数列b n是等比数列,若b s ,则b qg()A.32B.16C.8D.410. 《九章算术》是我国古代的数学名著,书中有如下问题:今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(钱”是古代的一种重量单位) .这个问题中,甲所得为()5 “ 4 “ 3 “5“A. -钱B. 钱C. -钱 D .一钱43232 211 . 直线y 、、3x与椭圆2 1(a b0)交于A B两点,以线段AB为直径的圆恰好a b经过椭圆的右焦点, 则椭圆C的离心率为()A. 乜B. 3 1C. .3 1D. 4 2.32212 .2抛物线y2px(p 0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足AFB —,设线段AB的中点M在I上的投影为N,则|MN-1的最大值是()3 |AB |A. 3 B .乜C.乜 D .乜2 3 4第U卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.)13•用含有逻辑联结词的命题表示命题’Xy 0的否定是 ___________________________ .2 215.椭圆mx ny 1与直线x y 1 0相交于A,B两点,过AB中点M与坐标原点的直线的斜率为二,则m的值为_____________________ .2 n216•设命题甲:关于x的不等式x 2ax 4 0有解,命题乙:设函数f(x) log a(x a 2)在区间(1,)上恒为正值,那么甲是乙的 _______________________ 条件.三、解答题:(本大题共6小题,共70分•解答应写出文字说明,证明过程或演算步骤.17 .设S n是等差数列a n的前n项和,已知S3 6,a4 4 .14•在ABC 中,若a2 b2 c2.3ab,则C =(1)求a, b ; ( 2 )解不等式 x c ax b19.ABC 的内角 A,B,C 的对边分别为 a,b,c ,已知 2cosC(acosB+b cosA) G(I )求C ; (II )若c -J 7, ABC 的面积为 ------------,求VABC 的周长.220.某外商到一开放区投资 72万美元建起一座蔬菜加工厂,第一年各种经费 12万美元,以后每年增加4万美元,每年销售蔬菜收入 50万美元.(1) 若扣除投资及各种经费,则从第几年开始获取纯利润? (2) 若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以 48万美元出售该厂; ②纯利润总和最大时,以 16万元出售该厂,问哪种方案最合算?x 2 y 21 一21. 已知椭圆 2- 一2 1(a b 0)的离心率为 ,短轴的一个端点到右焦点的距离为2a b2'(1) 试求椭圆M 的方程;(2) 若斜率为1的直线I 与椭圆M 交于C 、D 两点,点”1, 3)为椭圆M 上一点,记直线PC 的斜2 2 率为k 1,直线PD 的斜率为k 2,试问:k 1 k 2是否为定值?请证明你的结论.(1)求数列a n 的通项公式; (2)若 b n3an1 3an ,求b n的前 n 项和218.已知不等式ax 3x 64的解集为 xx 1或x b322 .已知数列a n的前n项和为S n, a1,2S n n 1 a n 1 n 2 .2(1)求a2, a3, a n的通项公式;1 * 7(2)设b 2 n N ,数列b n的前n 项和为T n,证明:T n nNa n 1 10桂林中学2016—2017学年上学期期考模拟考高二年级数学科文科答案、选择(本大题共12小题,每题5分,满分60分)17. (本题满分10分)18. (本题满分12分)所以a,b的值分别是1,2……6分(2) 把a1,b 2代入(x c)(ax b) 0,得(x c)(x2) 0.当c2时, 不等式的解集为xx c或x 2 ;当c2时, 不等式的解集为xx 2 或x c ;当c2时,不等式的解集为{ xx2……12分13. x 0且y 0 14. 30 °16.必要不充分解:(1 )设公差为d,则S3 3a1 a4 a13d3d 6,解得4,a1d1,••• an n . ........ 4 分1.(2)v b n 3n 13n3n b n 1b n 1 3 1b n是等比数列.b11b21b n1(11(1 10分(1)因为不等式ax23x 6 4的解集为XX 1 或x所以b是方程ax2 3x 0的两根,由根与系数关系得解得219. (本题满分12分)试题分析:⑴先利用正弦定理曲亍边角代换化简得得cosC = l 故Q 諾;(ID 根磅胡血C =C = j 得血=4再利用余弦走理得("+巧'=25・再根据心=丿7可得AABC 的周长为5 + J7.试题解析:⑴ 由已乡吸正弦®里得=2ssC :(siii A.8&B + siiiBcoEA.} = TnC : 即 2cosCsin(A+B) = smC. 故2 sinCcosC = sinC *1 疽 可得cosC = A 所決C =X J2 2 2 2b 2abcosC 7 .故 a b 13,从而 a b 25.所以 C 的周长为5 、、7 .……12分20. (本题满分12分)由题意知,每年的经费是以 12为首项,4为公差的等差数列,设纯利润与年数的关系为 f(n),则f(n)=50n - : 12n+_1)X 4] -2=-n 2+4On -2……3 分2(1)获纯利润就是要求f(n)>0,「. En 2+40n -2>0,解得2<n<18.由n € N 知从第三年开始获利.……6 分 (2)①年平均利润=02=40 £(n+竺)< 1当且仅当n=6时取等号.故此方案先获利 6X16+48=144 n n (万美元),此时 n=6,②f(n)= -2(n -10)2+128.……8 分当n=10时,f(n)|max =128.故第②种方案共获利 128+16=144 (万美元).……10分 故比较两种方案,获利都是144万美兀,但第①种方案只需6年,而第②种方案需 10年,故选择第①种方案.……12分21.(本题满分12分)22【答案】(1) a 2,c1b3 ,椭圆M 的方程为 X1.... 4分43(2)设直线l 的方程为:1 y x 2b , C(x 1, yJ,D(X 2,y 2)联立直线|的方程与椭圆方程得:1 , (1)y —x b222X J 1 (2)4 3(1) 代入(2) 得:3x 24(1 x b)212(Il )由已知,-absinC23,所以ab由已知及余弦定理得,a 2化简得:x2 bx b2 3 0 (3)0 时,即,b24(b23) 0 即b| 2时,直线I与椭圆有两交点,X i X2 b由韦达定理得:2x1x2b 3所以,313y i—-x i b—222X i1x11k i k2313y2—一X2 b—222X21x218分10分则k1k21 . 3—Xi b —2 2x111 . 3 —X2 b —2 2X2 1x1 x2 (b 2)(论x2) 3 2b(x i 1)(X2 1)b23 (b 2)( b) 3 2b(X i 1)(X2 1)所以k i k?为定值。

12分22.(本题满分12分)试题解析:(1)当n 2 时,2S23a2 1,解得a22 ;当n 3时,2 S3 4a3 1,解得a3 3.当n 3时,2S n1 a n 1,a n 2 S n 1 na n 1 1,以上两式相减, 2a n n 1 a n na n i,a n n a n n a n 1 n1a n 1n 1a n2••• a n 3 2,n n, n(2)bna n 4,n 2512时,b n3350 10 12分•- T n25。

相关文档
最新文档