白噪声及有色噪声序列的产生

合集下载

白噪声的产生与测试实验

白噪声的产生与测试实验
N0 。 设产生 N=20480 长度的 (2, 2
3)正态随机随机数,从中取 1024、10240、20480 个点的功率普密度,做比较,
观察这些随机数的功率谱密度随长度的变化。实际的白噪声功率普密度不是常 数。 ⑷ 根据白噪声的特性,确定哪些随机信号属于白噪声范畴。根据分析确定 白噪声与概率分布有关系吗? ⑸ 通过编程分别确定当5个均匀分布过程、5个指数分布分别叠加时,结果 是否是高斯分布。叠加次数对结果的影响?
Sn ( f ) N0 2
其中 N 0 /2就是白噪声的均方值。 白噪声的自相关函数位:
R ( ) N0 N ( ) 白噪声的自相关函数是位于τ=0处、强度为 0 的冲击函数。 2 2
这表明白噪声在任何两个不同的瞬间的取值是不相关的。同时也意味着白噪声能
随时间无限快的变化,因为它的带宽是无限宽的。下面我们给出几种分布的白噪 声。 随机过程的几种分布 均匀分布随机信号、正态分布(高斯分布)随机信号、指数分布随机信号等。
lim
T
(5)
取20480个点时的功率谱密度和自相关函数,如下图 (1) 功率谱密度:
(2) 随机信号叠加:
4.随机信号检验:
五、实验总结
这次试验让我们对白噪声有了很大的理解,最主要是在实验过程中用到了好 久不用的matlab软件,由于好长时间不用好多的函数的功能都忘记了,而且实验 过程中用到的好多函数以前都没接触过,所以还得花好长时间去查阅相关资料。 这次试验的目的其实让我们学会是利用matlab软件对信号分析,同时加深我们 对信号和噪声参数处理的理解,锻炼我们的实践动手能力。 参考文献:
均值表达了信号变化的中心趋势,或称之为直流分量。 在 MATLAB 中,可以用 mean()函数来计算。 (1)

白噪声的产生以及Matlab仿真

白噪声的产生以及Matlab仿真

一、白噪声和有色噪声定义
1.白噪声(white noise)
系统辨识中所用到的数据通常都是含有噪声的。

从工程实际出发,这种噪声往往可以视为具有有理谱密度的平稳随机过程。

白噪声是一种最简单的随机过程,是有一系列不相关的随机变量组成的理想化随机过程。

其自相关函数为dirac函数。

2.有色噪声(colored noise)
理想的白噪声只是一种理论上的抽象,在物理上是很难实现的,现实中并不存在这样的噪声。

因而,工程实际中测量数据所包含的噪声往往是有色造势。

所谓有色噪声(或相关噪声)是指序列中没一时刻的噪声相关。

有色噪声可以看成是由白噪声序列驱动的线性环节的输出。

二、白噪声与有色噪声区别
(1)其实由定义可以看出,白噪声不同时刻是不相关的,自相关函数为脉冲函数;有色噪声则是相关的。

(2)实际测试可以通过测试功率谱来区别,白噪声的功率谱在各频率的值都比较平均,有色噪声则会有较为明显的峰值。

白噪声
功率谱。

建模LS算法

建模LS算法

%白噪声及有色噪声序列的产生clear all; close all;L=30; %仿真长度d=[1 0]; c=[1 1.642 0.715]; %D、C多项式的系数(可用roots命令求其根)nd=length(d)-1; nc=length(c)-1; %nd、nc为D、C的阶次xik=zeros(nc,1); %白噪声初值,相当于ξ(k-1)...ξ(k-nc)ek=zeros(nd,1); %有色噪声初值xi=randn(L,1); %randn产生均值为0,方差为1的高斯随机序列(白噪声序列)for k=1:Le(k)=-d(2:nd+1)*ek+c*[xi(k);xik]; %产生有色噪声%数据更新for i=nd:-1:1ek(i)=0;endek(1)=e(k);for i=nc:-1:2xik(i)=xik(i-1);endxik(1)=xi(k);endsubplot(2,1,1);plot(xi);xlabel('k'); ylabel('噪声幅值'); title('白噪声序列');subplot(2,1,2);plot(e);xlabel('k'); ylabel('噪声幅值'); title('有色噪声序列');a=[1 1.642 0.715]'; b=[0.39 0.35]'; %对象参数na=length(a)-1; nb=length(b)-1; %na、nb为A、B阶次L=30; %仿真长度uk=zeros(1+nb,1); %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值u=[1.147 0.201 -0.787 -1.589 -1.052 0.866 1.152 1.573 0.626 0.433 -0.958 0.810 -0.044 0.947 -1.474 -0.719 -0.086 -1.099 1.450 1.151 0.485 1.633 0.043 1.326 1.706 -0.340 0.890 1.144 1.177 -0.390];theta=[a(2:na+1);b]; %对象参数真值for k=1:Lphi(k,:)=[-yk;uk(1:1+nb)]'; %此处phi(k,:)为行向量,便于组成phi矩阵y(k)=phi(k,:)*theta+e(k); %采集输出数据for i=1+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endthetae=inv(phi'*phi)*phi'*y' %计算参数估计值thetae。

产生高斯白噪声和有色噪声的MATLAB程序

产生高斯白噪声和有色噪声的MATLAB程序

1.产生一个高斯白噪声t=0:0.1:100;x=wgn(1,1001,2);y=sin(50*t);i=y+x;subplot(2,1,1),plot(x);subplot(2,1,2),plot(i);产生白噪声的函数Y = WGN(M,N,P) generates an M-by-N matrix of white Gaussian noise.P specifies the power of the output noise in dBW.Y = WGN(M,N,P,IMP) specifies the load impedance in Ohms.Y = WGN(M,N,P,IMP,STATE) resets the state of RANDN to STATE.2.给信号叠加一个高斯白噪声我想要程序代码,产生一个高斯白噪声,并且让MATLAB输出高斯的时域波形和频谱。

让产生的高斯白噪声与一个语音信号叠加,画出叠加后的时域波形和频谱。

t = 0:.1:10;x = sawtooth(t); % Create sawtooth signal.y = awgn(x,10,'measured'); % Add white Gaussian noise.plot(t,x,t,y) % Plot both signals.legend('Original signal','Signal with AWGN');MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是A WGN。

WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。

白噪声

白噪声
0.2188 0.3359 -0.9531 -0.7188 0.6875 -0.8359
-0.0156 0.9219 0.5703 0.4531 -0.2500 -0.4844
0.1016 -0.3672 0.8047 -0.1328 0.2188 0.3359
-0.9531 -0.7188 0.6875 -0.8359
0.0234 0.1406 0.8438 0.0820 0.4922 0.9609
0.7852 0.7266 0.3750 0.2578 0.5508 0.3164
0.9023 0.4336 0.6094 0.6680 0.0234 0.1406
0.8438 0.0820 0.4922 0.9609 0.7852 0.7266
0.0234 0.1406 0.8438 0.0820

1编程如下:
A=6;x0=1;M=255;f=2; N=100;%初始化;
x0=1;M=255;
fork=1:N %乘同余法递推100次;
x2=A*x0;%分别用x2和x0表示xi+1和xi-1;
x1=mod (x2,M);%取x2存储器的数除以M的余数放x1(xi)中;
白噪声
如果一个零均值、平稳随机过程的谱密度为常数,我们称之为白噪声(由白色光联想∞,τ=0
0,τ≠0
3 ,其中, 为Dirac函数,即 =

4 无记忆性,即t时刻的数值与t时刻以前的过去值无关,也不影响t时刻以后的将来值。从另一意义上说,即不同时刻的随机信号互不相关。
Columns 31 through 40
-1 1 -1 1 1 1 1 -1 -1 -1
Columns 41 through 50

实验1---白噪声和M序列的产生

实验1---白噪声和M序列的产生

实验1 白噪声和M序列的产生实验报告1.实验题目:白噪声和M序列的产生.实验对象或参数、生成均匀分布随机序列1)利用混合同余法生成[0, 1]区间上符合均匀分布的随机序列,并计算该序列的均值和方差,与理论值进行对比分析。

要求序列长度为1200,推荐参数为a=655395.程序框图7.实验结果及分析1、生成均匀分布随机序列 (1)生成的0-1均布随机序列如下所示:200400600800100012000.10.20.30.40.50.60.70.80.91计算序列的均值和方差程序代码:mean_R = mean(R)var_R = var(R)均值和方差实际值:mean_R =0.4969var_R =0.0837随机变量X服从均匀分布U(a,b),则均值为(a+b)/2,方差为(b-a)先平方再除以12。

[0,1]区间均值和方差理论值:mean_R =(0+1)/2=0.5;var_R =1/12 = 0.083333。

结论:容易看到,实际值与理论值较接近。

(2)该随机序列落在10个子区间的频率曲线图如下:结论:从结果图可以容易看到,该序列的均匀性较好。

2、生成高斯白噪声生成的白噪声如下图:-2.5-2-1.5-1-0.500.511.52生成的白噪声的频率统计图如下:0510152025结论:从结果图知,生成的白噪声基本服从N(0,1)分布。

3、生成M 序列生成的M 序列如下(n = 63):010203040506070-1.5-1-0.50.511.5验证M 序列性质:均衡特性:m 序列每一周期中 1 的个数比 0 的个数多 1 个(-a 和a 的个数差1) 测试程序:number_a = sum(M_XuLie == a);number_a_c = sum(M_XuLie == -a);number_anumber_a_c 结果:number_a =31number_a_c =32结论:从测试结果看性质成立游程特性:m 序列的一个周期(p =2n -1)中,游程总数为2n -1。

通信中常见噪声

通信中常见噪声
(2-26)
式中, 为噪声的数学期望值,也就是均值; 为噪声的方差。
通常,通信信道中噪声的均值 =0。由此,我们可得到一个:在噪声均值为零时,噪声的平均功率等于噪声的方差。证明如下:
因为噪声的平均功率
(2-27)
而噪声的方差为
(2-28)
所以,有
(2-29)
上述结论非常有用,在通信系统的性能分析中,常常通过求自相关函数或方差的方法来计算噪声的功率。
窄带高斯噪声的是频谱局限在 附近很窄的频率范围内,其包络和相位都在作缓慢随机变化。如用示波器观察其波形,它是一个频率近似为 ,包络和相位随机变化的正弦波。
因此,窄带高斯噪声 可表示为
(2-39)
式中, 为噪声 的随机包络; 为噪声 的随机相位。相对于载波 的变化而言,它们的变化要缓慢的多。
如图2-13所示。
为了方便以后分析,在此给出
(1)误差函数是递增函数,它具有如下性质
1) ;
2) 。
(2)互补误差函数是递减函数,它具有如下性质
1) ;
2) ;
3) 。
2.5.3高斯型白噪声
我们已经知道,白噪声是根据噪声的功率谱密度是否均匀来定义的,而高斯噪声则是根据它的概率密度函数呈正态分布来定义的,那么什么是高斯型白噪声呢?
实际上完全理想的白噪声是不存在的,通常只要噪声功率谱密度函数均匀分布的频率范围远远超过通信系统工作频率范围时,就可近似认为是白噪声。例如,热噪声的频率可以高到 Hz,且功率谱密度函数在0~ Hz内基本均匀分布,因此可以将它看作白噪声。
2.5.2高斯噪声
在实际信道中,另一种常见噪声是高斯噪声。所谓是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。其一维概率密度函数可用数学表达式表示为

白噪声的产生

白噪声的产生

Se (ω ) =
σ2
, −π < ω < π;
a <1
H ( z −1 ) =
假定 e(0) = 0 ,则有: 相关函数计算可得:
σ
1 − az −1
,
a <1
e(k ) = σ [ w(k ) + aw(k − 1) + L + a k −1w(1)] Re (l ) = σ 2 a l 1 − a 2k al 2 ≈ σ 1 − a2 1 − a2
且 C ( z −1 ), D( z −1 ) 的根都在 z 平面的单位圆内。 ● 例子 设平稳有色噪声序列 {e(k )} 的自相关函数为:
1 − a2 则相应的功率谱密度函数为:
Re (l ) =
σ 2a l
, l = 0, ± 1, ± 2,L;
a <1
1 − 2a 2 cos ω + a 2 成型滤波器的脉冲传递函数为:
中科院研究生院 2009~2010 第一学期 随机过程在工程中的应用讲稿
孙应飞
白噪声的产生方法
1.1 白噪声及其产生方法 1.1.1 白噪声的概念 ● 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: RW (τ ) = σ 2δ (τ ) 谱密度: SW (ω ) = σ 2 − ∞ < ω < +∞ 近似白噪声过程
● 重要结果: G ( s ) =
注意 3:不是任何多项式都可以作为生成 M 序列的特征多项式,它必须满足以
4
中科院研究生院 2009~2010 第一学期 随机过程在工程中的应用讲稿
孙应飞
下条件。 ● 必要条件:特征多项式 F ( s ) 是既约多项式 ● 充分必要条件: 特征多项式 F ( s ) 是本原多项式, 即 F ( s ) 是多项式 s N P ⊕ 1 的 一个因子。 ● 满足以上两个条件的部分特征多项式见表 2.11,注意表的使用 1.2.4 M 序列的性质 ● M 序列的循环周期 N P = ( 2 P − 1) bit ● M 序列的“游程” M 序列中某种状态连续出现的段称为“游程”。一个 P 级 M 序列的“游程”总 数为 2 P −1 ,其中“0”游程与“1”游程各占一半。长度为 i bit( 1 ≤ i ≤ P − 2 )的 游程占 1 / 2 i ,即有 2 P −1−i 个,但长度为 ( P − 1) bit 的游程只有一个,为“0”游程, 长度为 P bit 游程也只有一个,为“1”游程。 ● M 序列的可加性 所有 M 序列都具有移位可加性(模 2 和)。 1.2.5 M 序列的自相关函数 幅度的选取:作变换: M (i ) = a(1 − 2 xi ) ,幅度变为 a 和 − a 。 ● 计算式: R M (τ ) =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声序列。这种序列在统计特性上表现出三个主要特征:首先,其均值恒定为0,这意味着在整个序列中,正负噪声值的出现概率是相等的,从而保证了噪声的平均水平为零;其次,白噪声序列的方差为1,方差是衡量数据波动程度的一个指标,方差为1表示序列中的噪声值在其均值附近有一定的波动范围,但这种波动是稳定的,不会过大或过小;最后,作为高斯白噪声,它还满足高斯分布的特性,即噪声值在统计上呈现出一种钟形曲线的分布形态,大部分噪声值集中在均值附近,而极端值出现的概率较低。这些特征使得白噪声序列在信号处理、通信系统设计等领域具有广泛的应用价值,如在系统性能测试中模拟真实的噪声环境,或在信号处理算法中作为输入信号以测试算法的性能。
相关文档
最新文档