三羧酸循环
三羧酸循环体系

➢ 若从丙酮酸开始,加上生成旳1个NADH,则 共产生10+2.5=12.5个ATP。
➢若从葡萄糖开始,共可产生12.5×2+7=32个 ATP。(二版及其他教材为38个ATP,NADH3ATP,
FADH2 2ATP)
➢可见由糖酵解和TCA循环相连构成旳糖旳 有氧氧化途径,是机体利用糖氧化取得能量 旳最有效旳方式,也是机体产生能量旳主要 方式。
4. 氨基酸转化
天冬氨酸 α-酮戊二酸
谷氨酸 草酰乙酸
五、三羧酸循环旳调控
三羧酸循环旳速度主要取决于细胞对ATP旳需求量, 另外也受细胞对于中间产物需求旳影响。有3个调控 部位: 1.柠檬酸合成酶(限速酶)
ATP、NADH是该酶旳变构克制剂,高浓度旳ATP 和 NADH克制柠檬酸旳合成,即克制三羧酸循环地进行。高 浓度旳琥珀酰-CoA克制该酶旳活性。
地点:三羧酸循环在线粒体基质中进行。
柠檬酸循环是糖、脂肪、和氨基酸等氧 化所共同经历旳途径。另外,柠檬酸循环 生成旳中间物质也是许多生物合成旳前体。 所以柠檬酸循环是两用代谢途径 (amphibolic pathway)。
葡萄糖有氧氧化旳反应过程:
(EMP) COOH 丙酮酸脱氢酶系
O
葡萄糖
C=O
由氟乙酸形成旳氟乙酰-CoA可被柠檬酸合酶催化与草酰乙酸 缩合生成氟柠檬酸,氟柠檬酸结合到顺-乌头酸酶旳活性部位 上,克制柠檬酸循环向下进行。氟乙酸和氟乙酰-CoA可做杀 虫剂或灭鼠药。多种有毒植物旳叶子大部分具有氟乙酸,可 作为天然杀虫剂。
F-CH2CO氟O乙H酸
COO-
F-CH HO-C-COO- 氟柠檬酸
H
三羧酸循环

糖有氧氧化:三羧酸循环:(乙酰COA—CO2+H2O+ATP)1.此循环是以乙酰COA和草酰乙酸缩合生成柠檬酸(三羧基化合物)故称TAC也可称柠檬酸循环,或Krebs循环。
2.在柠檬酸合酶催化下,乙酰COA中的乙酰基与草酰乙酰缩合生成柠檬酸并释放出HS-COA。
3.在顺乌头酸酶的催化下,柠檬酸先脱水成顺乌头酸,再加水,异构化生成异柠檬酸。
4.在异柠檬酸脱氢酶催化下,异柠檬酸发生氧化(脱氢)脱羧反应转变生成a-酮戊二酸,脱下的氢由NAD+接受生成NADH+H+脱羧产生CO2。
5.在a-酮戊二酸脱氢酶复合体催化下,发生氧化(脱氢)脱羧反应转变生成琥珀酰COA,脱下的氢由NAD+接受生成NADH+H+脱羧产生CO2。
6.在琥珀酸硫激酶催化下可将其分子中的高能硫脂键的能量转移给GDP生成GTP,本身则转变为琥珀酸。
7.在琥珀酸脱氢酶催化下,琥珀酸脱氢氧化成为延胡索酸,脱下的氢由辅酶FAD接受生成FADH2。
8.在延胡索酸酶催化下,延胡索酸加水生成苹果酸。
9.在苹果酸脱氢酶催化下,苹果酸脱氢生成草酰乙酸,脱下的氢由其辅酶NAD+接受生成NADH+H+。
所生成的草酰乙酸可在次和另一个乙酰COA缩合形成柠檬酸,进入新一轮的TAC反应。
乙酰草酰成柠檬,柠檬又成a-酮,琥酰琥酸延胡索,苹果落在草丛中。
进行一次循环共生成10分子ATP。
TAC(三羧酸循环)反应的特点:1.TAC是在线粒体内进行的单向不可逆的循环反应,必须在有氧条件下方可进行。
2.TAC是由草酰乙酸和乙酰CoA缩合成柠檬酸开始反应每循环一周消耗一个乙酰基。
反应过程中有两次脱羧(生成2CO2)四次脱氢(生成3NADH+H+,1FADH2)一次底物磷酸化反应生成GTP共生成10分子的ATP。
三羧酸循环

三羧酸循环
1、三羧酸循环的化学历程 2、三羧循环及葡萄糖有氧氧化的化学计量和能量计量 3、 三羧循环的生物学意义 4、 三羧酸循环的调控 5、草酰乙酸的回补反应(一般了解)
O CH3-C-SCoA
CoASH
NADH
NAD+
草酰乙酸
柠檬酸
1.三羧酸循环 途径
(TCA)
顺乌头酸
H2O
苹果酸
异柠檬酸 NAD+
柠檬酸合酶
ADP
ATP、琥珀酰CoA、 柠檬酸 NADH
异柠檬酸脱氢酶 ADP 、Ca2+ ATP、 NADH
α-酮戊二酸脱氢酶系 Ca2+
ATP、NADH、 琥珀酰CoA
4、三羧循环的生物学意义
❖是有机体获得生命活动所需能量的主要途径 ❖是糖、脂、蛋白质等物质代谢和转化的中心枢纽 ❖形成多种重要的中间产物 ❖是发酵产物重新氧化的途径
❖糖酵解:1分子葡萄糖 2分子丙酮酸,净生 成了2个ATP,同时产生2个NADH。
❖丙酮酸氧化脱羧:丙酮酸 乙酰CoA,生成1 个NADH。
❖三羧酸循环:乙酰CoA CO2和H2O,产生 一个GTP(即ATP)、3个NADH和1个FADH2 。
葡萄糖完全氧化产生的ATP
酵解阶段: 2 ATP 2 1 NADH
延胡索酸酶(fumarase)酶具有立体异构特异 性
延胡索酸
马来酸
苹果酸
8)L-苹果酸脱氢生成草酰乙酸
• 三羧酸循环中第4次氧化还原反应
TCA第一阶段:柠檬酸生成
草酰乙酸
O CH3-C-SCoA
CoASH
柠檬酸合成酶
顺乌头 酸酶 H2O
H2O
TCA第二阶段:氧化脱羧
三羧酸循环

三羧酸循环(tricarboxylic acid cycle)是需氧生物体内普遍存在的代谢途径,因为在这个循环中几个主要的中间代谢物是含有三个羧基的柠檬酸,所以叫做三羧酸循环,又称为柠檬酸循环;或者以发现者Hans Adolf Krebs([英]1953年获得诺贝尔生理学或医学奖)命名为Kre bs循环。
三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽。
柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA),Krebs循环。
是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。
乙酰coa进入由一连串反应构成的循环体系,被氧化生成h2o和co2。
由于这个循环反应开始于乙酰coa与草酰乙酸(oxaloacetate)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citric acid cycle)。
在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。
其详细过程如下:(1)乙酰coa进入三羧酸循环乙酰coa具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。
首先从ch3co基上除去一个h+,生成的阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰coa中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。
该反应由柠檬酸合成酶(citrate synthetase)催化,是很强的放能反应。
由草酰乙酸和乙酰coa合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,atp是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、nadh能变构抑制其活性,长链脂酰coa也可抑制它的活性,amp可对抗atp的抑制而起激活作用。
(2)异柠檬酸形成柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。
三羧酸循环

由于该循环的第一个产物是柠檬酸,又叫柠檬 酸循环。 三羧酸循环的细胞定位:线粒体内
三羧酸循环定义
在有氧的情况下,葡萄糖酵解产生的丙酮酸氧 化脱羧形成乙酰CoA,乙酰CoA经一系列氧化、脱 羧,最终生成 CO2和 H2O并产生能量的过程。
三羧酸循环概要
TCA循环一轮分8步完成。来自丙酮酸脱 氢脱羧后的乙酰基(C2单位)由CoA带着进入 TCA,第一步是C2与一个C4化合物(草酰乙酸) 结合成C6化合物(柠檬酸),然后经过2次脱羧 (生成2个CO2)和4次脱氢(生成3NADH+ 1FADH2),还产生1个GTP(高能化合物), 最终回到C4化合物(草酰乙酸),结束一轮循 环。
FAD
三、生化历程
三羧酸循环特点:
一次底物水平磷酸化 二次脱羧 三个不可逆反应 四次脱氢 1 mol乙酰CoA经三羧酸循环彻 底氧化净生成10 molATP。
五、生物学意义
1、 TCA 循环是生物体获能的主要途径,远比无氧分解产 生的能量多。
2、TCA是生物体各有机物质代谢的枢纽。糖、脂肪、氨 基酸的彻底分解都需通过TCA途径,而TCA中的许多中间产 物如草酰乙酸、α—酮戊二酸、琥珀酰CoA等又是合成糖、 氨基酸等的原料。
丙酮酸脱氢酶复合体
• 该复合体由三个酶和五个辅酶或辅基组成,是 一个庞大的多亚基聚合体 • 三个酶:丙酮酸脱氢酶(E1)、二氢硫辛酰胺 转乙酰酶(E2)、二氢硫辛酰胺脱氢酶(E3) • 五个辅酶: 硫胺素焦磷酸酯 TPP、硫辛酸、HS—CoA、 NAD+、FAD
丙酮酸脱氢酶复合体排列示意图
丙酮酸的氧化脱羧
以 NAD+ 为电子受体,存在于线粒 体中,需Mg2+。
以NADP+为电子受体,存在于胞 液中,需Mn2+。
三羧酸循环 名词解释

三羧酸循环名词解释三羧酸循环是一种重要的生物化学过程,也被称为柠檬酸循环或Krebs循环。
它是细胞内供能的主要路径之一,通过将有机物质在细胞的线粒体中氧化分解,产生能量和二氧化碳。
三羧酸循环是一系列化学反应的循环过程,将碳源转化为能量形式(ATP)和电子供体NADH和FADH2。
三羧酸循环的过程可以分为八个主要反应,每个反应都由特定的酶催化,并产生特定的中间产物。
以下是对三羧酸循环主要反应的简要解释:1. 乙酰辅酶A与草酰乙酸的反应:乙酰辅酶A(由脂肪酸或糖类代谢生成)与草酰乙酸结合,释放出辅酶A,形成柠檬酸。
2. 柠檬酸的异构化:柠檬酸脱水酶催化柠檬酸的异构化,生成庚二酸。
3. 庚二酸的氧化:庚二酸经庚二酸脱氢酶氧化为苹果酸。
4. 苹果酸的脱羧:苹果酸脱羧酶催化苹果酸的脱羧反应,生成酮戊二酸。
5. 酮戊二酸的脱羧:酮戊二酸脱羧酶催化酮戊二酸的脱羧反应,生成亚戊酸。
6. 亚戊酸的还原:亚戊酸经亚戊酸脱氢酶的反应还原为乙酰辅酶A。
通过以上六个反应,三羧酸循环已将一个乙酰辅酶A转化为产生三个分子的二氧化碳和同时得到一个分子的GTP(能量)、三个分子的NADH(电子供体)和一个分子的FADH2(电子供体)。
这些中间产物随后可以进入细胞呼吸链中的氧化磷酸化反应,最终产生更多的ATP和水。
三羧酸循环在维持细胞能量平衡、产生ATP的还具有其他重要的生理功能。
柠檬酸从三羧酸循环中分子构造的角度来看,可以作为生物合成的前体,参与合成脂肪酸、胆固醇等重要有机物质;还可以参与尿素循环代谢途径的产生,对于氨基酸代谢和解毒过程十分重要。
三羧酸循环是一种复杂而重要的生物化学代谢过程,通过将有机物质氧化分解,产生能量和二氧化碳。
它在维持细胞能量平衡和参与许多生理功能方面起着关键作用。
进一步了解三羧酸循环的机制和生理特性,有助于我们对生物体能量代谢和相关疾病的理解,以及为药物和治疗方法的研发提供基础。
一、三羧酸循环的重要性三羧酸循环是细胞内最重要的代谢途径之一,它对于维持细胞能量平衡和生命活动至关重要。
简述三羧酸循环

简述三羧酸循环三羧酸循环,也被称为柠檬酸循环或Krebs循环,是生物体内的一种重要代谢途径。
它是维持细胞能量供应和有机物合成的关键过程。
本文将通过人类视角,以简洁的语言描述三羧酸循环的过程和功能。
三羧酸循环是一系列化学反应的集合,发生在细胞线粒体的内膜系统中。
它的主要功能是将有机物质(如葡萄糖、脂肪酸等)分解为二氧化碳和能量,同时合成一些重要的有机分子。
三羧酸循环是细胞呼吸的重要组成部分,通过产生能量分子ATP来满足细胞的能量需求。
三羧酸循环的过程可以分为四个主要步骤:酸化、脱羧、还原和再生。
首先,葡萄糖或其他有机物质在细胞质内被分解为丙酮酸和辅酶A,然后通过转运蛋白进入线粒体内膜系统。
在线粒体内,丙酮酸被氧化为柠檬酸,再经过一系列的反应逐步转化为其他有机酸。
在这个过程中,每一个有机酸都会脱羧,生成二氧化碳和高能电子。
这些高能电子通过蛋白质复合物呼吸链传递,最终与氧气结合生成水,并释放大量的能量。
在三羧酸循环中,还有一些重要的中间产物,如柠檬酸、草酰乙酸和丙酮酸。
这些中间产物不仅可以用于生成能量,还可以通过其他途径合成脂肪酸、胆固醇等生物大分子。
此外,三羧酸循环还参与调节细胞内的代谢平衡,维持细胞内的酸碱平衡,调节体温等重要生理过程。
三羧酸循环对人体的生物代谢有着重要的影响。
它是有氧呼吸的关键步骤,能够产生大量的ATP,为细胞提供所需的能量。
此外,三羧酸循环还参与葡萄糖代谢、脂肪酸代谢等重要生理过程,对维持身体的正常功能至关重要。
总结起来,三羧酸循环是一种重要的代谢途径,通过将有机物质分解为二氧化碳和能量,并合成其他重要有机分子,满足细胞的能量需求和生物合成的需要。
它不仅对维持细胞正常功能至关重要,还对整个生物体的正常生理过程起着重要调节作用。
通过深入了解三羧酸循环的机制和功能,我们可以更好地理解生物体的代谢过程,并为相关疾病的治疗提供新的思路和方法。
三羧酸循环(TCA)

二,生化历程 (一)不可逆的氧化阶段(1-----3) 不可逆的氧化阶段( -----3 1,6—P—G , 6—P葡萄糖酸内酯 葡萄糖酸内酯 可逆
2,6—P葡萄糖酸内酯水解生成 , 葡萄糖酸内酯水解生成6—P葡萄糖酸 葡萄糖酸内酯水解生成 葡萄糖酸 不可逆
3,6—P葡萄糖酸脱氢脱羧 , 葡萄糖酸脱氢脱羧 生成5—P 核酮糖(5—P—Ru) 不可逆 核酮糖( 生成 )
异构化反应 —H2O 可逆
通过2——3步,将柠檬酸异构化为 异柠檬酸.实质是将前者的—OH从C2 变到了后者的C3,成为仲醇(由叔醇变 为仲醇),更易氧化.
4—5,异柠檬酸氧化脱羧生成α—酮戊二酸 5 异柠檬酸氧化脱羧生成α 酮戊二酸
第一次脱氢脱羧
可逆
消耗1NAD+,生成 生成1NADH+H+,1CO2 消耗 +
因此:第一阶段:净生成8molATP 第二阶段:净生成6molATP,2 molCO2 第三阶段:净生成24molATP,4 molCO2 共净生成38molATP, 共净生成38molATP,6molCO2 38molATP 真核生物中,共净生成 真核生物中,共净生成36molATP,6molCO2 ,
3,磷酸烯醇式丙酮酸羧激酶催化PEP生成草酰乙酸 ,磷酸烯醇式丙酮酸羧激酶催化 生成草酰乙酸
心脏,骨骼肌中, 心脏,骨骼肌中,PEP羧激酶催化 羧激酶催化 PEP+CO2+GDPO=CCOOH +GTP
CH2COOH
ห้องสมุดไป่ตู้,由苹果酸酶,苹果酸脱氢酶催化使 ,由苹果酸酶, 丙酮酸生成草酰乙酸
原核, 原核,真核中广泛存在的苹果酸酶催化
不可逆
消耗1 生成1NADH+ 消耗1NAD+,生成1NADH+H+,1CO2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙酮酸脱氢(羧)酶
E1
24
TPP(焦磷酸硫 丙酮酸氧化脱羧 胺素)
硫辛酸 将乙酰基转移到CoA
二氢硫辛酰胺转乙酰酶
E2
24
二氢硫辛酰胺脱氢酶
E3
12
FAD
将还原型硫辛酰胺
转变为氧化型
反应步骤 (P118)
丙酮酸氧化脱羧的调控
由丙酮酸到乙酰CoA是一个重要步骤,处于代谢途径 的分支点,所以此体系受到严密的调节控制: 1、产物抑制:乙酰CoA抑制乙酰转移酶E2组分,NADH 抑制二氢硫辛酸脱氢酶E3组分。抑制效应被CoA和 NAD+逆转。 2、核苷酸反馈调节:丙酮酸脱氢酶E1受GTP抑制,被 AMP活化。 3、砷化物与E2中的辅基硫辛酰胺形成无催化能力的砷 化物。 4、可逆磷酸化作用的调节:丙酮酸脱氢酶E1的磷酸化 状态无活性,反之有活性。 5、Ca2+激活
TCA中唯一底物水平磷酸化直接产生高能磷酸化合物的步骤
GTP+ADP GDP+ATP
6 、 琥珀酸脱氢生成延胡索酸
嵌入线粒体内膜
COOH 琥珀酸脱氢酶 CH2 +FAD CH2 COOH
COOH CH +FADH2 HC COOH
TCA中第三次氧化的步骤 丙二酸为该酶的竞争性抑制剂 开始四碳酸之间的转变
TCA化,二次脱羧, 通过一个循环,可以认为乙酰COA 2CO2
乙酰辅酶A 草酰乙酸 苹果酸 柠檬酸
异柠檬酸
延胡索酸 a-酮戊二酸 琥珀酸 琥珀酰 辅酶A
三、三羧酸循环的化学计量
乙酰CoA+3NAD++FAD+GDP+Pi+2H2O 2CO2+3NADH+FADH2+GTP+CoA+3H+ 循环有以下特点:
4 、 α-酮戊二酸氧化脱羧成为琥珀酰 COA( α-酮戊二酸脱氢酶复合体)
COOH CO + +COASH+NAD CH2 CH2 COOH
SCOA CO + +CO +NADH+H 2 CH2 CH2 COOH
TCA中第二次氧化作用、脱羧过程
α-酮戊二酸脱氢酶复合体与丙酮酸脱氢酶复合体相似
目录
一. 由丙酮酸形成乙酰CoA 二. 三羧酸循环的过程 三. 三羧酸循环的化学计量 四. 三羧酸循环的回补反应 五. 三羧酸循环的调控
六. 三羧酸循环的生物学意义
一、由丙酮酸形成乙酰CoA
丙酮酸进入线粒体转变为乙酰CoA,这是连接糖酵解 和三羧酸循环的纽带: 丙酮酸+CoA+NAD+ 乙酰CoA+ CO2+NADH+H+
PEP羧化(在植物、酵母、细菌)
反应在胞液中进行
苹果酸脱氢
丙酮酸
苹果酸
氨基酸转化
天冬氨酸 α-酮戊二酸 谷氨酸
草酰乙酸
五、三羧酸循环的调控
三羧酸循环的速度主要取决于细胞对ATP的需求量,另外 也受细胞对于中间产物需求的影响。有 3个调控部位。 1、柠檬酸合成酶(限速酶) ATP、NADH是该酶的变构抑制剂,高浓度的ATP 和NADH 抑制柠檬酸的合成,即抑制三羧酸循环地进行。高农 度的琥珀酰-CoA抑制该酶的活性。 2、异柠檬酸脱氢酶 该酶受ATP和NADH变构抑制,受ADP变构促进和Ca2+激活。 3、α-酮戊二酸脱氢酶 该酶受产物琥珀酰CoA和NADH抑制,也受高能荷抑制。 Ca2+激活。
COOH COOH + + NAD NADH+H + H HO- CH CO CH-COOH CH-COOH 2+ Mg CH2 CH2 COOH COOH
草酰琥珀酸 α-酮戊二酸 TCA中第一次氧化作用、脱羧过程 异柠檬酸脱氢酶为第二个调节酶
CO2
COOH CO CH2 CH2 COOH
三羧酸到二羧酸的转变
1分子乙酰CoA通过TCA循环被氧化,可生成10分子ATP。
若从丙酮酸开始,加上纽带 生成的1个 NADH,则共产生10+2.5=12.5个ATP。 若从葡萄糖开始,共可产生 12.5×2+7=32个ATP。
可见由糖酵解和TCA循环相连构成的糖的 有氧氧化途径,是机体利用糖氧化获得能量 的最有效的方式,也是机体产生能量的主要 方式。
COOH CH2 COOH
7 、 延胡索酸被水化生成苹果酸(延胡 索酸酶)
COOH COOH 延胡索酸酶 HO-CH CH +H2O CH H-C-H COOH COOH
8 、 苹果酸脱氢生成草酰乙酸(苹果酸 脱氢酶)
COOH HO-CH + +NAD H-C-H COOH
COOH C=O +NADH+H+ CH2 COOH
反应不可逆,分5步进行,由丙酮酸脱氢酶复合体催化。 丙酮酸脱氢酶复合体是一个十分大的多酶复合体,包 括丙酮酸脱氢酶E1、二氢硫辛酰胺转乙酰酶E2、二氢硫 辛酰胺脱氢酶E3三种不同的酶及焦磷酸硫胺素(TPP)、 硫辛酸,FAD, NAD+,CoA 及Mg2+六种辅助因子组装而成。
丙酮酸脱氢酶复合体的内容
六、三羧酸循环的生物学意义 与糖酵解构成糖的有氧代谢途径,为机体提供大量的
能量,一分子葡萄糖经糖酵解、TCA循环和呼吸链氧化共 可产生32个ATP。 TCA循环是糖、脂类、蛋白质代谢联络的枢纽。
TCA循环
中间产物
脂肪酸、氨基酸 合成代谢
分解代谢产物
CO2+H2O+能量
TCA循环既是物质分解代谢的组成部分,亦是物质合成的重要步 骤,为其他生物合成提供原料。
草酰乙酸的回补反应主要通过4个途径:
丙酮酸羧化 PEP的羧化 苹果酸脱氢 由氨基酸形成
丙酮酸羧化(动物体内的主要回补反应)
生物素Mg2+
在线粒体内进行
草酰乙酸或循 环中任何一种 中间产物不足
TCA循环 速度降低 产生更多的草酰乙酸
乙酰-CoA 浓度增加
高水平的乙酰CoA激活
丙酮酸羧化酶
二 TCA循环的过程
1 、乙酰COA与草酰乙酸缩合形成柠檬酸
O C-SCOA CH2 HO-C-COO CH2 COOH2O
COOC=O CH2 + COO-
O C-CH3 S-COA
柠檬酸 合酶
单向不可逆 可调控的限速步骤
COA COOCH2 HO-C -COO- + HS-COA+H+ CH2 COO- 三羧酸
α-酮戊二酸脱氢酶E1 琥珀酰转移酶E2 二氢硫辛酸脱氢酶E3 TPP、硫辛酸、COA、FAD、NAD+、Mg2+
5 、琥珀酰COA转化成琥珀酸,并产生 GTP(琥珀酰COA 合成酶)
S COA GDP+Pi CO CH2 CH2 COOH
GTP+HSCOA
COOH CH2 CH2 COOH
三羧酸循环的过程及其调控
1 ATP、NADH 琥珀酰-CoA抑制
2CO2
乙酰辅酶A 草酰乙酸 苹果酸 柠檬酸
2
异柠檬酸
ATP、NADH抑制 ADP、Ca2+激活
延胡索酸 a-酮戊二酸 琥珀酸 琥珀酰 辅酶A
3 ATP、NADH 琥珀酰-CoA抑制 ADP、Ca2+激活
1、乙酰CoA与草酰乙酸缩合形成柠檬酸,使两个C原子进入循环。在以后的 两步脱羧反应中,有两个C原子以CO2的形式离开循环,相当于乙酰CoA的2 个C原子形成CO2。 2、在循环中有4对H原子通过4步氧化反应脱下,其中3对用以还原NAD+生 成3个NADH+H+,1对用以还原FAD,生成1个FADH2。 3、由琥珀酰CoA形成琥珀酸时,偶联有底物水平磷酸化生成1个GTP, 1GTP 1ATP。 4、循环中消耗两分子水。 5、3NADH 7.5 ATP , 1FADH2 1.5ATP,再加上1 个GTP 6、单向进行 7、整个循环不需要氧,但离开氧无法进行。
2、 柠檬酸异构化成异柠檬酸(顺乌 头酸酶)
COOCOOH2O CH H2O CH2 HO-C -COOC -COOCH2 CH2 COOCOO柠檬酸 COOHO- CH CH-COOCH2 COO异柠檬酸
顺乌头酸
在pH7.0,25C的平衡态时,柠檬酸:顺乌头酸:异柠檬酸=90:4:6
3 、 由异柠檬酸氧化脱羧生成α-酮戊二酸 (异柠檬酸脱氢酶)
三羧酸循环
By 刘心连
概念:在有氧的情况下,葡萄糖酵解产生的丙酮酸 氧化脱羧形成乙酰CoA。乙酰CoA经一系列氧化、脱 羧,最终生成CO2和H2O并产生能量的过程,称为柠檬 酸循环,亦称为三羧酸循环(tricarboxylic acid cycle), 简称TCA循环。由于它是由H.A.Krebs(德 国)正式提出的,所以又称Krebs循环。 三羧酸循环在线粒体基质中进行。
四、三羧酸循环的回补反应
三羧酸循环不仅是产生ATP的途径,它的中间产物也 是生物合成的前体,如
草酰乙酸
α-酮戊二酸
天冬氨酸
谷氨酸
琥珀酰CoA
卟啉环
上述过程均可导致草酰乙酸浓度下降,从而影响三羧酸 循环的运转,因此必须不断补充才能维持其正常进行,这种 补充称为回补反应(anaplerotic reaction)。